freebsd-dev/sys/dev/drm2/i915/i915_gem.c
2015-06-12 13:15:14 +00:00

4279 lines
104 KiB
C

/*-
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
* Copyright (c) 2011 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/drm2/drmP.h>
#include <dev/drm2/drm.h>
#include <dev/drm2/i915/i915_drm.h>
#include <dev/drm2/i915/i915_drv.h>
#include <dev/drm2/i915/intel_drv.h>
#include <dev/drm2/i915/intel_ringbuffer.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sf_buf.h>
#include <vm/vm.h>
#include <vm/vm_pageout.h>
#include <machine/md_var.h>
static void i915_gem_object_flush_cpu_write_domain(
struct drm_i915_gem_object *obj);
static uint32_t i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size,
int tiling_mode);
static uint32_t i915_gem_get_gtt_alignment(struct drm_device *dev,
uint32_t size, int tiling_mode);
static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
unsigned alignment, bool map_and_fenceable);
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
int flags);
static void i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj);
static void i915_gem_object_put_pages_range(struct drm_i915_gem_object *obj,
off_t start, off_t end);
static int i915_gem_object_get_pages_range(struct drm_i915_gem_object *obj,
off_t start, off_t end);
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj);
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
static int i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj);
static bool i915_gem_object_is_inactive(struct drm_i915_gem_object *obj);
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj);
static vm_page_t i915_gem_wire_page(vm_object_t object, vm_pindex_t pindex,
bool *fresh);
static void i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
uint32_t flush_domains);
static void i915_gem_reset_fences(struct drm_device *dev);
static void i915_gem_retire_task_handler(void *arg, int pending);
static void i915_gem_lowmem(void *arg);
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj);
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
bool interruptible);
static int i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno);
MALLOC_DEFINE(DRM_I915_GEM, "i915gem", "Allocations from i915 gem");
long i915_gem_wired_pages_cnt;
static bool cpu_cache_is_coherent(struct drm_device *dev,
enum i915_cache_level level)
{
return HAS_LLC(dev) || level != I915_CACHE_NONE;
}
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
return true;
return obj->pin_display;
}
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
if (obj->tiling_mode)
i915_gem_release_mmap(obj);
/* As we do not have an associated fence register, we will force
* a tiling change if we ever need to acquire one.
*/
obj->fence_dirty = false;
obj->fence_reg = I915_FENCE_REG_NONE;
}
static void
i915_gem_info_add_obj(struct drm_i915_private *dev_priv, size_t size)
{
dev_priv->mm.object_count++;
dev_priv->mm.object_memory += size;
}
static void
i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, size_t size)
{
dev_priv->mm.object_count--;
dev_priv->mm.object_memory -= size;
}
static int
i915_gem_wait_for_error(struct drm_device *dev)
{
struct drm_i915_private *dev_priv;
int ret;
dev_priv = dev->dev_private;
if (!atomic_load_acq_int(&dev_priv->mm.wedged))
return (0);
mtx_lock(&dev_priv->error_completion_lock);
while (dev_priv->error_completion == 0) {
ret = -msleep(&dev_priv->error_completion,
&dev_priv->error_completion_lock, PCATCH, "915wco", 0);
if (ret == -ERESTART)
ret = -ERESTARTSYS;
if (ret != 0) {
mtx_unlock(&dev_priv->error_completion_lock);
return (ret);
}
}
mtx_unlock(&dev_priv->error_completion_lock);
if (atomic_load_acq_int(&dev_priv->mm.wedged)) {
mtx_lock(&dev_priv->error_completion_lock);
dev_priv->error_completion++;
mtx_unlock(&dev_priv->error_completion_lock);
}
return (0);
}
int
i915_mutex_lock_interruptible(struct drm_device *dev)
{
struct drm_i915_private *dev_priv;
int ret;
dev_priv = dev->dev_private;
ret = i915_gem_wait_for_error(dev);
if (ret != 0)
return (ret);
/*
* interruptible shall it be. might indeed be if dev_lock is
* changed to sx
*/
ret = sx_xlock_sig(&dev->dev_struct_lock);
if (ret != 0)
return (-ret);
return (0);
}
void
i915_gem_free_object(struct drm_gem_object *gem_obj)
{
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
struct drm_device *dev;
drm_i915_private_t *dev_priv;
dev = obj->base.dev;
dev_priv = dev->dev_private;
CTR1(KTR_DRM, "object_destroy_tail %p", obj);
if (obj->phys_obj)
i915_gem_detach_phys_object(dev, obj);
obj->pin_count = 0;
if (i915_gem_object_unbind(obj) == -ERESTARTSYS) {
bool was_interruptible;
was_interruptible = dev_priv->mm.interruptible;
dev_priv->mm.interruptible = false;
if (i915_gem_object_unbind(obj))
printf("i915_gem_free_object: unbind\n");
dev_priv->mm.interruptible = was_interruptible;
}
drm_gem_free_mmap_offset(&obj->base);
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(dev_priv, obj->base.size);
free(obj->bit_17, DRM_I915_GEM);
free(obj, DRM_I915_GEM);
}
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
INIT_LIST_HEAD(&ring->gpu_write_list);
}
void
i915_gem_load(struct drm_device *dev)
{
drm_i915_private_t *dev_priv;
int i;
dev_priv = dev->dev_private;
INIT_LIST_HEAD(&dev_priv->mm.active_list);
INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
for (i = 0; i < I915_NUM_RINGS; i++)
init_ring_lists(&dev_priv->rings[i]);
for (i = 0; i < I915_MAX_NUM_FENCES; i++)
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
TIMEOUT_TASK_INIT(dev_priv->tq, &dev_priv->mm.retire_task, 0,
i915_gem_retire_task_handler, dev_priv);
dev_priv->error_completion = 0;
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
if (IS_GEN3(dev)) {
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
}
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
/* Old X drivers will take 0-2 for front, back, depth buffers */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
dev_priv->fence_reg_start = 3;
if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) ||
IS_G33(dev))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
/* Initialize fence registers to zero */
i915_gem_reset_fences(dev);
i915_gem_detect_bit_6_swizzle(dev);
dev_priv->mm.interruptible = true;
dev_priv->mm.i915_lowmem = EVENTHANDLER_REGISTER(vm_lowmem,
i915_gem_lowmem, dev, EVENTHANDLER_PRI_ANY);
}
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_init *args;
drm_i915_private_t *dev_priv;
int error;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return -ENODEV;
dev_priv = dev->dev_private;
args = data;
if (args->gtt_start >= args->gtt_end ||
(args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
return (-EINVAL);
if (mtx_initialized(&dev_priv->mm.gtt_space.unused_lock))
return (-EBUSY);
/* GEM with user mode setting was never supported on ilk and later. */
if (INTEL_INFO(dev)->gen >= 5)
return -ENODEV;
/*
* XXXKIB. The second-time initialization should be guarded
* against.
*/
DRM_LOCK(dev);
error = i915_gem_init_global_gtt(dev, args->gtt_start,
args->gtt_end, args->gtt_end);
DRM_UNLOCK(dev);
return (error);
}
int
i915_gem_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv;
int ret;
DRM_LOCK(dev);
dev_priv = dev->dev_private;
if (dev_priv->mm.suspended) {
DRM_UNLOCK(dev);
return (0);
}
ret = i915_gpu_idle(dev);
if (ret != 0) {
DRM_UNLOCK(dev);
return (ret);
}
i915_gem_retire_requests(dev);
/* Under UMS, be paranoid and evict. */
if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
ret = i915_gem_evict_everything(dev, false);
if (ret != 0) {
DRM_UNLOCK(dev);
return ret;
}
}
i915_gem_reset_fences(dev);
/* Hack! Don't let anybody do execbuf while we don't control the chip.
* We need to replace this with a semaphore, or something.
* And not confound mm.suspended!
*/
dev_priv->mm.suspended = 1;
callout_stop(&dev_priv->hangcheck_timer);
i915_kernel_lost_context(dev);
i915_gem_cleanup_ringbuffer(dev);
DRM_UNLOCK(dev);
/* Cancel the retire work handler, which should be idle now. */
taskqueue_cancel_timeout(dev_priv->tq, &dev_priv->mm.retire_task, NULL);
return (ret);
}
void
i915_gem_init_swizzling(struct drm_device *dev)
{
drm_i915_private_t *dev_priv;
dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 5 ||
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
return;
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
DISP_TILE_SURFACE_SWIZZLING);
if (IS_GEN5(dev))
return;
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
if (IS_GEN6(dev))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
else
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
}
void i915_gem_init_ppgtt(struct drm_device *dev)
{
drm_i915_private_t *dev_priv;
struct i915_hw_ppgtt *ppgtt;
uint32_t pd_offset, pd_entry;
vm_paddr_t pt_addr;
struct intel_ring_buffer *ring;
u_int first_pd_entry_in_global_pt, i;
dev_priv = dev->dev_private;
ppgtt = dev_priv->mm.aliasing_ppgtt;
if (ppgtt == NULL)
return;
first_pd_entry_in_global_pt = 512 * 1024 - I915_PPGTT_PD_ENTRIES;
for (i = 0; i < ppgtt->num_pd_entries; i++) {
pt_addr = VM_PAGE_TO_PHYS(ppgtt->pt_pages[i]);
pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
pd_entry |= GEN6_PDE_VALID;
intel_gtt_write(first_pd_entry_in_global_pt + i, pd_entry);
}
intel_gtt_read_pte(first_pd_entry_in_global_pt);
pd_offset = ppgtt->pd_offset;
pd_offset /= 64; /* in cachelines, */
pd_offset <<= 16;
if (INTEL_INFO(dev)->gen == 6) {
uint32_t ecochk, gab_ctl, ecobits;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
gab_ctl = I915_READ(GAB_CTL);
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
ecochk = I915_READ(GAM_ECOCHK);
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
ECOCHK_PPGTT_CACHE64B);
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
} else if (INTEL_INFO(dev)->gen >= 7) {
I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
/* GFX_MODE is per-ring on gen7+ */
}
for_each_ring(ring, dev_priv, i) {
if (INTEL_INFO(dev)->gen >= 7)
I915_WRITE(RING_MODE_GEN7(ring),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
}
}
int
i915_gem_init_hw(struct drm_device *dev)
{
drm_i915_private_t *dev_priv;
int ret;
dev_priv = dev->dev_private;
i915_gem_init_swizzling(dev);
ret = intel_init_render_ring_buffer(dev);
if (ret != 0)
return (ret);
if (HAS_BSD(dev)) {
ret = intel_init_bsd_ring_buffer(dev);
if (ret != 0)
goto cleanup_render_ring;
}
if (HAS_BLT(dev)) {
ret = intel_init_blt_ring_buffer(dev);
if (ret != 0)
goto cleanup_bsd_ring;
}
dev_priv->next_seqno = 1;
i915_gem_context_init(dev);
i915_gem_init_ppgtt(dev);
return (0);
cleanup_bsd_ring:
intel_cleanup_ring_buffer(&dev_priv->rings[VCS]);
cleanup_render_ring:
intel_cleanup_ring_buffer(&dev_priv->rings[RCS]);
return (ret);
}
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
if (i915_enable_ppgtt >= 0)
return i915_enable_ppgtt;
/* Disable ppgtt on SNB if VT-d is on. */
if (INTEL_INFO(dev)->gen == 6 && intel_iommu_enabled)
return false;
return true;
}
int i915_gem_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long gtt_size, mappable_size;
int ret;
gtt_size = dev_priv->mm.gtt.gtt_total_entries << PAGE_SHIFT;
mappable_size = dev_priv->mm.gtt.gtt_mappable_entries << PAGE_SHIFT;
DRM_LOCK(dev);
if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
/* PPGTT pdes are stolen from global gtt ptes, so shrink the
* aperture accordingly when using aliasing ppgtt. */
gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
ret = i915_gem_init_aliasing_ppgtt(dev);
if (ret) {
DRM_UNLOCK(dev);
return ret;
}
} else {
/* Let GEM Manage all of the aperture.
*
* However, leave one page at the end still bound to the scratch
* page. There are a number of places where the hardware
* apparently prefetches past the end of the object, and we've
* seen multiple hangs with the GPU head pointer stuck in a
* batchbuffer bound at the last page of the aperture. One page
* should be enough to keep any prefetching inside of the
* aperture.
*/
i915_gem_init_global_gtt(dev, 0, mappable_size,
gtt_size);
}
ret = i915_gem_init_hw(dev);
DRM_UNLOCK(dev);
if (ret != 0) {
i915_gem_cleanup_aliasing_ppgtt(dev);
return (ret);
}
/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
dev_priv->dri1.allow_batchbuffer = 1;
return 0;
}
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv;
struct drm_i915_gem_get_aperture *args;
struct drm_i915_gem_object *obj;
size_t pinned;
dev_priv = dev->dev_private;
args = data;
pinned = 0;
DRM_LOCK(dev);
list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
if (obj->pin_count)
pinned += obj->gtt_space->size;
DRM_UNLOCK(dev);
args->aper_size = dev_priv->mm.gtt_total;
args->aper_available_size = args->aper_size - pinned;
return (0);
}
int
i915_gem_object_pin(struct drm_i915_gem_object *obj, uint32_t alignment,
bool map_and_fenceable)
{
int ret;
if (obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)
return (-EBUSY);
if (obj->gtt_space != NULL) {
if ((alignment && obj->gtt_offset & (alignment - 1)) ||
(map_and_fenceable && !obj->map_and_fenceable)) {
DRM_DEBUG("bo is already pinned with incorrect alignment:"
" offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
" obj->map_and_fenceable=%d\n",
obj->gtt_offset, alignment,
map_and_fenceable,
obj->map_and_fenceable);
ret = i915_gem_object_unbind(obj);
if (ret != 0)
return (ret);
}
}
if (obj->gtt_space == NULL) {
ret = i915_gem_object_bind_to_gtt(obj, alignment,
map_and_fenceable);
if (ret)
return (ret);
}
if (!obj->has_global_gtt_mapping && map_and_fenceable)
i915_gem_gtt_bind_object(obj, obj->cache_level);
obj->pin_count++;
obj->pin_mappable |= map_and_fenceable;
return 0;
}
void
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
{
KASSERT(obj->pin_count != 0, ("zero pin count"));
KASSERT(obj->gtt_space != NULL, ("No gtt mapping"));
if (--obj->pin_count == 0)
obj->pin_mappable = false;
}
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pin *args;
struct drm_i915_gem_object *obj;
struct drm_gem_object *gobj;
int ret;
args = data;
ret = i915_mutex_lock_interruptible(dev);
if (ret != 0)
return ret;
gobj = drm_gem_object_lookup(dev, file, args->handle);
if (gobj == NULL) {
ret = -ENOENT;
goto unlock;
}
obj = to_intel_bo(gobj);
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to pin a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
if (obj->pin_filp != NULL && obj->pin_filp != file) {
DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
obj->user_pin_count++;
obj->pin_filp = file;
if (obj->user_pin_count == 1) {
ret = i915_gem_object_pin(obj, args->alignment, true);
if (ret != 0)
goto out;
}
/* XXX - flush the CPU caches for pinned objects
* as the X server doesn't manage domains yet
*/
i915_gem_object_flush_cpu_write_domain(obj);
args->offset = obj->gtt_offset;
out:
drm_gem_object_unreference(&obj->base);
unlock:
DRM_UNLOCK(dev);
return (ret);
}
int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pin *args;
struct drm_i915_gem_object *obj;
int ret;
args = data;
ret = i915_mutex_lock_interruptible(dev);
if (ret != 0)
return (ret);
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->pin_filp != file) {
DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
obj->user_pin_count--;
if (obj->user_pin_count == 0) {
obj->pin_filp = NULL;
i915_gem_object_unpin(obj);
}
out:
drm_gem_object_unreference(&obj->base);
unlock:
DRM_UNLOCK(dev);
return (ret);
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_busy *args;
struct drm_i915_gem_object *obj;
int ret;
args = data;
ret = i915_mutex_lock_interruptible(dev);
if (ret != 0)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
args->busy = obj->active;
if (args->busy) {
if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
ret = i915_gem_flush_ring(obj->ring,
0, obj->base.write_domain);
} else {
ret = i915_gem_check_olr(obj->ring,
obj->last_rendering_seqno);
}
i915_gem_retire_requests_ring(obj->ring);
args->busy = obj->active;
}
drm_gem_object_unreference(&obj->base);
unlock:
DRM_UNLOCK(dev);
return (ret);
}
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_private *dev_priv;
struct drm_i915_file_private *file_priv;
unsigned long recent_enough;
struct drm_i915_gem_request *request;
struct intel_ring_buffer *ring;
u32 seqno;
int ret;
dev_priv = dev->dev_private;
if (atomic_load_acq_int(&dev_priv->mm.wedged))
return (-EIO);
file_priv = file->driver_priv;
recent_enough = ticks - (20 * hz / 1000);
ring = NULL;
seqno = 0;
mtx_lock(&file_priv->mm.lck);
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
if (time_after_eq(request->emitted_jiffies, recent_enough))
break;
ring = request->ring;
seqno = request->seqno;
}
mtx_unlock(&file_priv->mm.lck);
if (seqno == 0)
return (0);
ret = __wait_seqno(ring, seqno, true);
if (ret == 0)
taskqueue_enqueue_timeout(dev_priv->tq,
&dev_priv->mm.retire_task, 0);
return (ret);
}
int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
return (i915_gem_ring_throttle(dev, file_priv));
}
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_madvise *args;
struct drm_i915_gem_object *obj;
int ret;
args = data;
switch (args->madv) {
case I915_MADV_DONTNEED:
case I915_MADV_WILLNEED:
break;
default:
return (-EINVAL);
}
ret = i915_mutex_lock_interruptible(dev);
if (ret != 0)
return (ret);
obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->pin_count != 0) {
ret = -EINVAL;
goto out;
}
if (obj->madv != I915_MADV_PURGED_INTERNAL)
obj->madv = args->madv;
if (i915_gem_object_is_purgeable(obj) && obj->gtt_space == NULL)
i915_gem_object_truncate(obj);
args->retained = obj->madv != I915_MADV_PURGED_INTERNAL;
out:
drm_gem_object_unreference(&obj->base);
unlock:
DRM_UNLOCK(dev);
return (ret);
}
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv;
struct intel_ring_buffer *ring;
int i;
dev_priv = dev->dev_private;
for_each_ring(ring, dev_priv, i)
intel_cleanup_ring_buffer(ring);
}
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv;
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return (0);
dev_priv = dev->dev_private;
if (atomic_load_acq_int(&dev_priv->mm.wedged) != 0) {
DRM_ERROR("Reenabling wedged hardware, good luck\n");
atomic_store_rel_int(&dev_priv->mm.wedged, 0);
}
DRM_LOCK(dev);
dev_priv->mm.suspended = 0;
ret = i915_gem_init_hw(dev);
if (ret != 0) {
DRM_UNLOCK(dev);
return (ret);
}
KASSERT(list_empty(&dev_priv->mm.active_list), ("active list"));
KASSERT(list_empty(&dev_priv->mm.flushing_list), ("flushing list"));
KASSERT(list_empty(&dev_priv->mm.inactive_list), ("inactive list"));
DRM_UNLOCK(dev);
ret = drm_irq_install(dev);
if (ret)
goto cleanup_ringbuffer;
return (0);
cleanup_ringbuffer:
DRM_LOCK(dev);
i915_gem_cleanup_ringbuffer(dev);
dev_priv->mm.suspended = 1;
DRM_UNLOCK(dev);
return (ret);
}
int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
drm_irq_uninstall(dev);
return (i915_gem_idle(dev));
}
int
i915_gem_create(struct drm_file *file, struct drm_device *dev, uint64_t size,
uint32_t *handle_p)
{
struct drm_i915_gem_object *obj;
uint32_t handle;
int ret;
size = roundup(size, PAGE_SIZE);
if (size == 0)
return (-EINVAL);
obj = i915_gem_alloc_object(dev, size);
if (obj == NULL)
return (-ENOMEM);
ret = drm_gem_handle_create(file, &obj->base, &handle);
if (ret != 0) {
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
free(obj, DRM_I915_GEM);
return (ret);
}
/* drop reference from allocate - handle holds it now */
drm_gem_object_unreference(&obj->base);
CTR2(KTR_DRM, "object_create %p %x", obj, size);
*handle_p = handle;
return (0);
}
int
i915_gem_dumb_create(struct drm_file *file, struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
/* have to work out size/pitch and return them */
args->pitch = roundup2(args->width * ((args->bpp + 7) / 8), 64);
args->size = args->pitch * args->height;
return (i915_gem_create(file, dev, args->size, &args->handle));
}
int
i915_gem_dumb_destroy(struct drm_file *file, struct drm_device *dev,
uint32_t handle)
{
return (drm_gem_handle_delete(file, handle));
}
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_create *args = data;
return (i915_gem_create(file, dev, args->size, &args->handle));
}
#define __user
#define __force
#define __iomem
#define to_user_ptr(x) ((void *)(uintptr_t)(x))
#define offset_in_page(x) ((x) & PAGE_MASK)
#define page_to_phys(x) VM_PAGE_TO_PHYS(x)
static inline int
__copy_to_user_inatomic(void __user *to, const void *from, unsigned n)
{
return (copyout_nofault(from, to, n) != 0 ? n : 0);
}
static inline unsigned long
__copy_from_user_inatomic_nocache(void *to, const void __user *from,
unsigned long n)
{
/*
* XXXKIB. Equivalent Linux function is implemented using
* MOVNTI for aligned moves. For unaligned head and tail,
* normal move is performed. As such, it is not incorrect, if
* only somewhat slower, to use normal copyin. All uses
* except shmem_pwrite_fast() have the destination mapped WC.
*/
return ((copyin_nofault(__DECONST(void *, from), to, n) != 0 ? n : 0));
}
static inline int
fault_in_multipages_readable(const char __user *uaddr, int size)
{
char c;
int ret = 0;
const char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return ret;
while (uaddr <= end) {
ret = -copyin(uaddr, &c, 1);
if (ret != 0)
return -EFAULT;
uaddr += PAGE_SIZE;
}
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & ~PAGE_MASK) ==
((unsigned long)end & ~PAGE_MASK)) {
ret = -copyin(end, &c, 1);
}
return ret;
}
static inline int
fault_in_multipages_writeable(char __user *uaddr, int size)
{
int ret = 0;
char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return ret;
/*
* Writing zeroes into userspace here is OK, because we know that if
* the zero gets there, we'll be overwriting it.
*/
while (uaddr <= end) {
ret = subyte(uaddr, 0);
if (ret != 0)
return -EFAULT;
uaddr += PAGE_SIZE;
}
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & ~PAGE_MASK) ==
((unsigned long)end & ~PAGE_MASK))
ret = subyte(end, 0);
return ret;
}
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
const char *gpu_vaddr, int gpu_offset,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = roundup2(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_to_user(cpu_vaddr + cpu_offset,
gpu_vaddr + swizzled_gpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
static inline int
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
const char __user *cpu_vaddr,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = roundup2(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
cpu_vaddr + cpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
static int
i915_gem_phys_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
char __user *user_data = to_user_ptr(args->data_ptr);
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
unsigned long unwritten;
/* The physical object once assigned is fixed for the lifetime
* of the obj, so we can safely drop the lock and continue
* to access vaddr.
*/
DRM_UNLOCK(dev);
unwritten = copy_from_user(vaddr, user_data, args->size);
DRM_LOCK(dev);
if (unwritten)
return -EFAULT;
}
i915_gem_chipset_flush(dev);
return 0;
}
/* Per-page copy function for the shmem pread fastpath.
* Flushes invalid cachelines before reading the target if
* needs_clflush is set. */
static int
shmem_pread_fast(vm_page_t page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
struct sf_buf *sf;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
sched_pin();
sf = sf_buf_alloc(page, SFB_NOWAIT | SFB_CPUPRIVATE);
if (sf == NULL) {
sched_unpin();
return (-EFAULT);
}
vaddr = (char *)sf_buf_kva(sf);
if (needs_clflush)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_to_user_inatomic(user_data,
vaddr + shmem_page_offset,
page_length);
sf_buf_free(sf);
sched_unpin();
return ret ? -EFAULT : 0;
}
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
bool swizzled)
{
if (unlikely(swizzled)) {
unsigned long start = (unsigned long) addr;
unsigned long end = (unsigned long) addr + length;
/* For swizzling simply ensure that we always flush both
* channels. Lame, but simple and it works. Swizzled
* pwrite/pread is far from a hotpath - current userspace
* doesn't use it at all. */
start = rounddown2(start, 128);
end = roundup2(end, 128);
drm_clflush_virt_range((void *)start, end - start);
} else {
drm_clflush_virt_range(addr, length);
}
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(vm_page_t page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
struct sf_buf *sf;
int ret;
sf = sf_buf_alloc(page, 0);
vaddr = (char *)sf_buf_kva(sf);
if (needs_clflush)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_to_user_swizzled(user_data,
vaddr, shmem_page_offset,
page_length);
else
ret = __copy_to_user(user_data,
vaddr + shmem_page_offset,
page_length);
sf_buf_free(sf);
return ret ? - EFAULT : 0;
}
static int
i915_gem_shmem_pread(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pread *args,
struct drm_file *file)
{
char __user *user_data;
ssize_t remain, sremain;
off_t offset, soffset;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int prefaulted = 0;
int needs_clflush = 0;
user_data = to_user_ptr(args->data_ptr);
sremain = remain = args->size;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
/* If we're not in the cpu read domain, set ourself into the gtt
* read domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will dirty the data
* anyway again before the next pread happens. */
needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
ret = i915_gem_object_set_to_gtt_domain(obj, false);
if (ret)
return ret;
}
soffset = offset = args->offset;
ret = i915_gem_object_get_pages_range(obj, soffset, soffset + sremain);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
VM_OBJECT_WLOCK(obj->base.vm_obj);
for (vm_page_t page = vm_page_find_least(obj->base.vm_obj,
OFF_TO_IDX(offset));; page = vm_page_next(page)) {
VM_OBJECT_WUNLOCK(obj->base.vm_obj);
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pread_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
if (ret == 0)
goto next_page;
DRM_UNLOCK(dev);
if (likely(!i915_prefault_disable) && !prefaulted) {
ret = fault_in_multipages_writeable(user_data, remain);
/* Userspace is tricking us, but we've already clobbered
* its pages with the prefault and promised to write the
* data up to the first fault. Hence ignore any errors
* and just continue. */
(void)ret;
prefaulted = 1;
}
ret = shmem_pread_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
DRM_LOCK(dev);
next_page:
vm_page_reference(page);
if (ret)
goto out;
remain -= page_length;
user_data += page_length;
offset += page_length;
VM_OBJECT_WLOCK(obj->base.vm_obj);
}
out:
i915_gem_object_unpin_pages(obj);
i915_gem_object_put_pages_range(obj, soffset, soffset + sremain);
return ret;
}
/**
* Reads data from the object referenced by handle.
*
* On error, the contents of *data are undefined.
*/
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pread *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
if (args->size == 0)
return 0;
if (!useracc(to_user_ptr(args->data_ptr), args->size, VM_PROT_WRITE))
return -EFAULT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check source. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
#if 1
KIB_NOTYET();
#else
/* prime objects have no backing filp to GEM pread/pwrite
* pages from.
*/
if (!obj->base.filp) {
ret = -EINVAL;
goto out;
}
#endif
CTR3(KTR_DRM, "pread %p %jx %jx", obj, args->offset, args->size);
ret = i915_gem_shmem_pread(dev, obj, args, file);
out:
drm_gem_object_unreference(&obj->base);
unlock:
DRM_UNLOCK(dev);
return ret;
}
/* This is the fast write path which cannot handle
* page faults in the source data
*/
static inline int
fast_user_write(struct drm_device *dev,
off_t page_base, int page_offset,
char __user *user_data,
int length)
{
void __iomem *vaddr_atomic;
void *vaddr;
unsigned long unwritten;
vaddr_atomic = pmap_mapdev_attr(dev->agp->base + page_base,
length, PAT_WRITE_COMBINING);
/* We can use the cpu mem copy function because this is X86. */
vaddr = (char *)vaddr_atomic + page_offset;
unwritten = __copy_from_user_inatomic_nocache(vaddr,
user_data, length);
pmap_unmapdev((vm_offset_t)vaddr_atomic, length);
return unwritten;
}
/**
* This is the fast pwrite path, where we copy the data directly from the
* user into the GTT, uncached.
*/
static int
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
ssize_t remain;
off_t offset, page_base;
char __user *user_data;
int page_offset, page_length, ret;
ret = i915_gem_object_pin(obj, 0, true);
/* XXXKIB ret = i915_gem_obj_ggtt_pin(obj, 0, true, true); */
if (ret != 0)
goto out;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
goto out_unpin;
ret = i915_gem_object_put_fence(obj);
if (ret)
goto out_unpin;
user_data = to_user_ptr(args->data_ptr);
remain = args->size;
offset = obj->gtt_offset + args->offset;
while (remain > 0) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_base = offset & ~PAGE_MASK;
page_offset = offset_in_page(offset);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
*/
if (fast_user_write(dev, page_base,
page_offset, user_data, page_length)) {
ret = -EFAULT;
goto out_unpin;
}
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out_unpin:
i915_gem_object_unpin(obj);
out:
return ret;
}
/* Per-page copy function for the shmem pwrite fastpath.
* Flushes invalid cachelines before writing to the target if
* needs_clflush_before is set and flushes out any written cachelines after
* writing if needs_clflush is set. */
static int
shmem_pwrite_fast(vm_page_t page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
struct sf_buf *sf;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
sched_pin();
sf = sf_buf_alloc(page, SFB_NOWAIT | SFB_CPUPRIVATE);
if (sf == NULL) {
sched_unpin();
return (-EFAULT);
}
vaddr = (char *)sf_buf_kva(sf);
if (needs_clflush_before)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
user_data,
page_length);
if (needs_clflush_after)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
sf_buf_free(sf);
sched_unpin();
return ret ? -EFAULT : 0;
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pwrite_slow(vm_page_t page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
struct sf_buf *sf;
int ret;
sf = sf_buf_alloc(page, 0);
vaddr = (char *)sf_buf_kva(sf);
if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
user_data,
page_length);
else
ret = __copy_from_user(vaddr + shmem_page_offset,
user_data,
page_length);
if (needs_clflush_after)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
sf_buf_free(sf);
return ret ? -EFAULT : 0;
}
static int
i915_gem_shmem_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
ssize_t remain, sremain;
off_t offset, soffset;
char __user *user_data;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int hit_slowpath = 0;
int needs_clflush_after = 0;
int needs_clflush_before = 0;
user_data = to_user_ptr(args->data_ptr);
sremain = remain = args->size;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
/* If we're not in the cpu write domain, set ourself into the gtt
* write domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will use the data
* right away and we therefore have to clflush anyway. */
needs_clflush_after = cpu_write_needs_clflush(obj);
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
return ret;
}
/* Same trick applies to invalidate partially written cachelines read
* before writing. */
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
needs_clflush_before =
!cpu_cache_is_coherent(dev, obj->cache_level);
soffset = offset = args->offset;
ret = i915_gem_object_get_pages_range(obj, soffset, soffset + sremain);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
obj->dirty = 1;
VM_OBJECT_WLOCK(obj->base.vm_obj);
for (vm_page_t page = vm_page_find_least(obj->base.vm_obj,
OFF_TO_IDX(offset));; page = vm_page_next(page)) {
VM_OBJECT_WUNLOCK(obj->base.vm_obj);
int partial_cacheline_write;
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
/* If we don't overwrite a cacheline completely we need to be
* careful to have up-to-date data by first clflushing. Don't
* overcomplicate things and flush the entire patch. */
partial_cacheline_write = needs_clflush_before &&
((shmem_page_offset | page_length)
& (cpu_clflush_line_size - 1));
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush_after);
if (ret == 0)
goto next_page;
hit_slowpath = 1;
DRM_UNLOCK(dev);
ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush_after);
DRM_LOCK(dev);
next_page:
vm_page_dirty(page);
vm_page_reference(page);
if (ret)
goto out;
remain -= page_length;
user_data += page_length;
offset += page_length;
VM_OBJECT_WLOCK(obj->base.vm_obj);
}
out:
i915_gem_object_unpin_pages(obj);
i915_gem_object_put_pages_range(obj, soffset, soffset + sremain);
if (hit_slowpath) {
/*
* Fixup: Flush cpu caches in case we didn't flush the dirty
* cachelines in-line while writing and the object moved
* out of the cpu write domain while we've dropped the lock.
*/
if (!needs_clflush_after &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
i915_gem_clflush_object(obj);
i915_gem_chipset_flush(dev);
}
}
if (needs_clflush_after)
i915_gem_chipset_flush(dev);
return ret;
}
/**
* Writes data to the object referenced by handle.
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pwrite *args = data;
struct drm_i915_gem_object *obj;
int ret;
if (args->size == 0)
return 0;
if (!useracc(to_user_ptr(args->data_ptr), args->size, VM_PROT_READ))
return -EFAULT;
if (likely(!i915_prefault_disable)) {
ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
args->size);
if (ret)
return -EFAULT;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check destination. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
#if 1
KIB_NOTYET();
#else
/* prime objects have no backing filp to GEM pread/pwrite
* pages from.
*/
if (!obj->base.filp) {
ret = -EINVAL;
goto out;
}
#endif
CTR3(KTR_DRM, "pwrite %p %jx %jx", obj, args->offset, args->size);
ret = -EFAULT;
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (obj->phys_obj) {
ret = i915_gem_phys_pwrite(dev, obj, args, file);
goto out;
}
if (obj->tiling_mode == I915_TILING_NONE &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
cpu_write_needs_clflush(obj)) {
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
/* Note that the gtt paths might fail with non-page-backed user
* pointers (e.g. gtt mappings when moving data between
* textures). Fallback to the shmem path in that case. */
}
if (ret == -EFAULT || ret == -ENOSPC)
ret = i915_gem_shmem_pwrite(dev, obj, args, file);
out:
drm_gem_object_unreference(&obj->base);
unlock:
DRM_UNLOCK(dev);
return ret;
}
#undef __user
#undef __force
#undef __iomem
#undef to_user_ptr
#undef offset_in_page
#undef page_to_phys
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_set_domain *args;
struct drm_i915_gem_object *obj;
uint32_t read_domains;
uint32_t write_domain;
int ret;
args = data;
read_domains = args->read_domains;
write_domain = args->write_domain;
if ((write_domain & I915_GEM_GPU_DOMAINS) != 0 ||
(read_domains & I915_GEM_GPU_DOMAINS) != 0 ||
(write_domain != 0 && read_domains != write_domain))
return (-EINVAL);
ret = i915_mutex_lock_interruptible(dev);
if (ret != 0)
return (ret);
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if ((read_domains & I915_GEM_DOMAIN_GTT) != 0) {
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
if (ret == -EINVAL)
ret = 0;
} else
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
drm_gem_object_unreference(&obj->base);
unlock:
DRM_UNLOCK(dev);
return (ret);
}
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_sw_finish *args;
struct drm_i915_gem_object *obj;
int ret;
args = data;
ret = i915_mutex_lock_interruptible(dev);
if (ret != 0)
return (ret);
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->pin_count != 0)
i915_gem_object_flush_cpu_write_domain(obj);
drm_gem_object_unreference(&obj->base);
unlock:
DRM_UNLOCK(dev);
return (ret);
}
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap *args;
struct drm_gem_object *obj;
struct proc *p;
vm_map_t map;
vm_offset_t addr;
vm_size_t size;
int error, rv;
args = data;
obj = drm_gem_object_lookup(dev, file, args->handle);
if (obj == NULL)
return (-ENOENT);
error = 0;
if (args->size == 0)
goto out;
p = curproc;
map = &p->p_vmspace->vm_map;
size = round_page(args->size);
PROC_LOCK(p);
if (map->size + size > lim_cur_proc(p, RLIMIT_VMEM)) {
PROC_UNLOCK(p);
error = -ENOMEM;
goto out;
}
PROC_UNLOCK(p);
addr = 0;
vm_object_reference(obj->vm_obj);
rv = vm_map_find(map, obj->vm_obj, args->offset, &addr, args->size, 0,
VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
VM_PROT_READ | VM_PROT_WRITE, MAP_INHERIT_SHARE);
if (rv != KERN_SUCCESS) {
vm_object_deallocate(obj->vm_obj);
error = -vm_mmap_to_errno(rv);
} else {
args->addr_ptr = (uint64_t)addr;
}
out:
drm_gem_object_unreference(obj);
return (error);
}
static int
i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
vm_ooffset_t foff, struct ucred *cred, u_short *color)
{
*color = 0; /* XXXKIB */
return (0);
}
int i915_intr_pf;
static int
i915_gem_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
vm_page_t *mres)
{
struct drm_gem_object *gem_obj;
struct drm_i915_gem_object *obj;
struct drm_device *dev;
drm_i915_private_t *dev_priv;
vm_page_t m, oldm;
int cause, ret;
bool write;
gem_obj = vm_obj->handle;
obj = to_intel_bo(gem_obj);
dev = obj->base.dev;
dev_priv = dev->dev_private;
#if 0
write = (prot & VM_PROT_WRITE) != 0;
#else
write = true;
#endif
vm_object_pip_add(vm_obj, 1);
/*
* Remove the placeholder page inserted by vm_fault() from the
* object before dropping the object lock. If
* i915_gem_release_mmap() is active in parallel on this gem
* object, then it owns the drm device sx and might find the
* placeholder already. Then, since the page is busy,
* i915_gem_release_mmap() sleeps waiting for the busy state
* of the page cleared. We will be not able to acquire drm
* device lock until i915_gem_release_mmap() is able to make a
* progress.
*/
if (*mres != NULL) {
oldm = *mres;
vm_page_lock(oldm);
vm_page_remove(oldm);
vm_page_unlock(oldm);
*mres = NULL;
} else
oldm = NULL;
VM_OBJECT_WUNLOCK(vm_obj);
retry:
cause = ret = 0;
m = NULL;
if (i915_intr_pf) {
ret = i915_mutex_lock_interruptible(dev);
if (ret != 0) {
cause = 10;
goto out;
}
} else
DRM_LOCK(dev);
/*
* Since the object lock was dropped, other thread might have
* faulted on the same GTT address and instantiated the
* mapping for the page. Recheck.
*/
VM_OBJECT_WLOCK(vm_obj);
m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
if (m != NULL) {
if (vm_page_busied(m)) {
DRM_UNLOCK(dev);
vm_page_lock(m);
VM_OBJECT_WUNLOCK(vm_obj);
vm_page_busy_sleep(m, "915pee");
goto retry;
}
goto have_page;
} else
VM_OBJECT_WUNLOCK(vm_obj);
/* Now bind it into the GTT if needed */
if (!obj->map_and_fenceable) {
ret = i915_gem_object_unbind(obj);
if (ret != 0) {
cause = 20;
goto unlock;
}
}
if (!obj->gtt_space) {
ret = i915_gem_object_bind_to_gtt(obj, 0, true);
if (ret != 0) {
cause = 30;
goto unlock;
}
ret = i915_gem_object_set_to_gtt_domain(obj, write);
if (ret != 0) {
cause = 40;
goto unlock;
}
}
if (!obj->has_global_gtt_mapping)
i915_gem_gtt_bind_object(obj, obj->cache_level);
ret = i915_gem_object_get_fence(obj);
if (ret != 0) {
cause = 50;
goto unlock;
}
if (i915_gem_object_is_inactive(obj))
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
obj->fault_mappable = true;
VM_OBJECT_WLOCK(vm_obj);
m = PHYS_TO_VM_PAGE(dev->agp->base + obj->gtt_offset + offset);
KASSERT((m->flags & PG_FICTITIOUS) != 0,
("physical address %#jx not fictitious",
(uintmax_t)(dev->agp->base + obj->gtt_offset + offset)));
if (m == NULL) {
VM_OBJECT_WUNLOCK(vm_obj);
cause = 60;
ret = -EFAULT;
goto unlock;
}
KASSERT((m->flags & PG_FICTITIOUS) != 0,
("not fictitious %p", m));
KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
if (vm_page_busied(m)) {
DRM_UNLOCK(dev);
vm_page_lock(m);
VM_OBJECT_WUNLOCK(vm_obj);
vm_page_busy_sleep(m, "915pbs");
goto retry;
}
if (vm_page_insert(m, vm_obj, OFF_TO_IDX(offset))) {
DRM_UNLOCK(dev);
VM_OBJECT_WUNLOCK(vm_obj);
VM_WAIT;
goto retry;
}
m->valid = VM_PAGE_BITS_ALL;
have_page:
*mres = m;
vm_page_xbusy(m);
CTR4(KTR_DRM, "fault %p %jx %x phys %x", gem_obj, offset, prot,
m->phys_addr);
DRM_UNLOCK(dev);
if (oldm != NULL) {
vm_page_lock(oldm);
vm_page_free(oldm);
vm_page_unlock(oldm);
}
vm_object_pip_wakeup(vm_obj);
return (VM_PAGER_OK);
unlock:
DRM_UNLOCK(dev);
out:
KASSERT(ret != 0, ("i915_gem_pager_fault: wrong return"));
CTR5(KTR_DRM, "fault_fail %p %jx %x err %d %d", gem_obj, offset, prot,
-ret, cause);
if (ret == -EAGAIN || ret == -EIO || ret == -EINTR) {
kern_yield(PRI_USER);
goto retry;
}
VM_OBJECT_WLOCK(vm_obj);
vm_object_pip_wakeup(vm_obj);
return (VM_PAGER_ERROR);
}
static void
i915_gem_pager_dtor(void *handle)
{
struct drm_gem_object *obj;
struct drm_device *dev;
obj = handle;
dev = obj->dev;
DRM_LOCK(dev);
drm_gem_free_mmap_offset(obj);
i915_gem_release_mmap(to_intel_bo(obj));
drm_gem_object_unreference(obj);
DRM_UNLOCK(dev);
}
struct cdev_pager_ops i915_gem_pager_ops = {
.cdev_pg_fault = i915_gem_pager_fault,
.cdev_pg_ctor = i915_gem_pager_ctor,
.cdev_pg_dtor = i915_gem_pager_dtor
};
int
i915_gem_mmap_gtt(struct drm_file *file, struct drm_device *dev,
uint32_t handle, uint64_t *offset)
{
struct drm_i915_private *dev_priv;
struct drm_i915_gem_object *obj;
int ret;
dev_priv = dev->dev_private;
ret = i915_mutex_lock_interruptible(dev);
if (ret != 0)
return (ret);
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
ret = -E2BIG;
goto out;
}
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to mmap a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
ret = drm_gem_create_mmap_offset(&obj->base);
if (ret != 0)
goto out;
*offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
DRM_GEM_MAPPING_KEY;
out:
drm_gem_object_unreference(&obj->base);
unlock:
DRM_UNLOCK(dev);
return (ret);
}
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv;
struct drm_i915_gem_mmap_gtt *args;
dev_priv = dev->dev_private;
args = data;
return (i915_gem_mmap_gtt(file, dev, args->handle, &args->offset));
}
struct drm_i915_gem_object *
i915_gem_alloc_object(struct drm_device *dev, size_t size)
{
struct drm_i915_private *dev_priv;
struct drm_i915_gem_object *obj;
dev_priv = dev->dev_private;
obj = malloc(sizeof(*obj), DRM_I915_GEM, M_WAITOK | M_ZERO);
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
free(obj, DRM_I915_GEM);
return (NULL);
}
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
if (HAS_LLC(dev))
obj->cache_level = I915_CACHE_LLC;
else
obj->cache_level = I915_CACHE_NONE;
obj->base.driver_private = NULL;
obj->fence_reg = I915_FENCE_REG_NONE;
INIT_LIST_HEAD(&obj->mm_list);
INIT_LIST_HEAD(&obj->gtt_list);
INIT_LIST_HEAD(&obj->ring_list);
INIT_LIST_HEAD(&obj->exec_list);
INIT_LIST_HEAD(&obj->gpu_write_list);
obj->madv = I915_MADV_WILLNEED;
/* Avoid an unnecessary call to unbind on the first bind. */
obj->map_and_fenceable = true;
i915_gem_info_add_obj(dev_priv, size);
return (obj);
}
void
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
{
/* If we don't have a page list set up, then we're not pinned
* to GPU, and we can ignore the cache flush because it'll happen
* again at bind time.
*/
if (obj->pages == NULL)
return;
/* If the GPU is snooping the contents of the CPU cache,
* we do not need to manually clear the CPU cache lines. However,
* the caches are only snooped when the render cache is
* flushed/invalidated. As we always have to emit invalidations
* and flushes when moving into and out of the RENDER domain, correct
* snooping behaviour occurs naturally as the result of our domain
* tracking.
*/
if (obj->cache_level != I915_CACHE_NONE)
return;
CTR1(KTR_DRM, "object_clflush %p", obj);
drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
}
static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
return;
i915_gem_clflush_object(obj);
intel_gtt_chipset_flush();
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
CTR3(KTR_DRM, "object_change_domain flush_cpu_write %p %x %x", obj,
obj->base.read_domains, old_write_domain);
}
static int
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
{
if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
return (0);
return (i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain));
}
static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
return;
wmb();
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
CTR3(KTR_DRM, "object_change_domain flush gtt_write %p %x %x", obj,
obj->base.read_domains, old_write_domain);
}
int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
{
drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
uint32_t old_write_domain, old_read_domains;
int ret;
if (obj->gtt_space == NULL)
return (-EINVAL);
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
return 0;
ret = i915_gem_object_flush_gpu_write_domain(obj);
if (ret != 0)
return (ret);
if (obj->pending_gpu_write || write) {
ret = i915_gem_object_wait_rendering(obj);
if (ret != 0)
return (ret);
}
i915_gem_object_flush_cpu_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
KASSERT((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) == 0,
("In GTT write domain"));
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
obj->dirty = 1;
}
/* And bump the LRU for this access */
if (i915_gem_object_is_inactive(obj))
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
CTR3(KTR_DRM, "object_change_domain set_to_gtt %p %x %x", obj,
old_read_domains, old_write_domain);
return (0);
}
int
i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
struct drm_device *dev;
drm_i915_private_t *dev_priv;
int ret;
if (obj->cache_level == cache_level)
return 0;
if (obj->pin_count) {
DRM_DEBUG("can not change the cache level of pinned objects\n");
return (-EBUSY);
}
dev = obj->base.dev;
dev_priv = dev->dev_private;
if (obj->gtt_space) {
ret = i915_gem_object_finish_gpu(obj);
if (ret != 0)
return (ret);
i915_gem_object_finish_gtt(obj);
/* Before SandyBridge, you could not use tiling or fence
* registers with snooped memory, so relinquish any fences
* currently pointing to our region in the aperture.
*/
if (INTEL_INFO(obj->base.dev)->gen < 6) {
ret = i915_gem_object_put_fence(obj);
if (ret != 0)
return (ret);
}
if (obj->has_global_gtt_mapping)
i915_gem_gtt_bind_object(obj, cache_level);
if (obj->has_aliasing_ppgtt_mapping)
i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
obj, cache_level);
}
if (cache_level == I915_CACHE_NONE) {
u32 old_read_domains, old_write_domain;
/* If we're coming from LLC cached, then we haven't
* actually been tracking whether the data is in the
* CPU cache or not, since we only allow one bit set
* in obj->write_domain and have been skipping the clflushes.
* Just set it to the CPU cache for now.
*/
KASSERT((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) == 0,
("obj %p in CPU write domain", obj));
KASSERT((obj->base.read_domains & ~I915_GEM_DOMAIN_CPU) == 0,
("obj %p in CPU read domain", obj));
old_read_domains = obj->base.read_domains;
old_write_domain = obj->base.write_domain;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
CTR3(KTR_DRM, "object_change_domain set_cache_level %p %x %x",
obj, old_read_domains, old_write_domain);
}
obj->cache_level = cache_level;
return (0);
}
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
/* There are 3 sources that pin objects:
* 1. The display engine (scanouts, sprites, cursors);
* 2. Reservations for execbuffer;
* 3. The user.
*
* We can ignore reservations as we hold the struct_mutex and
* are only called outside of the reservation path. The user
* can only increment pin_count once, and so if after
* subtracting the potential reference by the user, any pin_count
* remains, it must be due to another use by the display engine.
*/
return obj->pin_count - !!obj->user_pin_count;
}
int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
u32 alignment, struct intel_ring_buffer *pipelined)
{
u32 old_read_domains, old_write_domain;
int ret;
ret = i915_gem_object_flush_gpu_write_domain(obj);
if (ret != 0)
return (ret);
if (pipelined != obj->ring) {
ret = i915_gem_object_sync(obj, pipelined);
if (ret)
return (ret);
}
obj->pin_display = true;
ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
if (ret != 0)
goto err_unpin_display;
ret = i915_gem_object_pin(obj, alignment, true);
if (ret != 0)
goto err_unpin_display;
i915_gem_object_flush_cpu_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
KASSERT((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) == 0,
("obj %p in GTT write domain", obj));
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
CTR3(KTR_DRM, "object_change_domain pin_to_display_plan %p %x %x",
obj, old_read_domains, obj->base.write_domain);
return (0);
err_unpin_display:
obj->pin_display = is_pin_display(obj);
return ret;
}
void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
i915_gem_object_unpin(obj);
obj->pin_display = is_pin_display(obj);
}
int
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
{
int ret;
if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
return (0);
if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
if (ret != 0)
return (ret);
}
ret = i915_gem_object_wait_rendering(obj);
if (ret != 0)
return (ret);
obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
return (0);
}
int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
{
uint32_t old_write_domain, old_read_domains;
int ret;
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
return 0;
ret = i915_gem_object_flush_gpu_write_domain(obj);
if (ret != 0)
return (ret);
if (write || obj->pending_gpu_write) {
ret = i915_gem_object_wait_rendering(obj);
if (ret != 0)
return (ret);
}
i915_gem_object_flush_gtt_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj);
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
}
KASSERT((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) == 0,
("In cpu write domain"));
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
CTR3(KTR_DRM, "object_change_domain set_to_cpu %p %x %x", obj,
old_read_domains, old_write_domain);
return (0);
}
static uint32_t
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
{
uint32_t gtt_size;
if (INTEL_INFO(dev)->gen >= 4 ||
tiling_mode == I915_TILING_NONE)
return (size);
/* Previous chips need a power-of-two fence region when tiling */
if (INTEL_INFO(dev)->gen == 3)
gtt_size = 1024*1024;
else
gtt_size = 512*1024;
while (gtt_size < size)
gtt_size <<= 1;
return (gtt_size);
}
/**
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
* @obj: object to check
*
* Return the required GTT alignment for an object, taking into account
* potential fence register mapping.
*/
static uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
int tiling_mode)
{
/*
* Minimum alignment is 4k (GTT page size), but might be greater
* if a fence register is needed for the object.
*/
if (INTEL_INFO(dev)->gen >= 4 ||
tiling_mode == I915_TILING_NONE)
return (4096);
/*
* Previous chips need to be aligned to the size of the smallest
* fence register that can contain the object.
*/
return (i915_gem_get_gtt_size(dev, size, tiling_mode));
}
uint32_t
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev, uint32_t size,
int tiling_mode)
{
if (tiling_mode == I915_TILING_NONE)
return (4096);
/*
* Minimum alignment is 4k (GTT page size) for sane hw.
*/
if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev))
return (4096);
/*
* Previous hardware however needs to be aligned to a power-of-two
* tile height. The simplest method for determining this is to reuse
* the power-of-tile object size.
*/
return (i915_gem_get_gtt_size(dev, size, tiling_mode));
}
static int
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
unsigned alignment, bool map_and_fenceable)
{
struct drm_device *dev;
struct drm_i915_private *dev_priv;
struct drm_mm_node *free_space;
uint32_t size, fence_size, fence_alignment, unfenced_alignment;
bool mappable, fenceable;
int ret;
dev = obj->base.dev;
dev_priv = dev->dev_private;
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to bind a purgeable object\n");
return (-EINVAL);
}
fence_size = i915_gem_get_gtt_size(dev, obj->base.size,
obj->tiling_mode);
fence_alignment = i915_gem_get_gtt_alignment(dev, obj->base.size,
obj->tiling_mode);
unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(dev,
obj->base.size, obj->tiling_mode);
if (alignment == 0)
alignment = map_and_fenceable ? fence_alignment :
unfenced_alignment;
if (map_and_fenceable && (alignment & (fence_alignment - 1)) != 0) {
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
return (-EINVAL);
}
size = map_and_fenceable ? fence_size : obj->base.size;
/* If the object is bigger than the entire aperture, reject it early
* before evicting everything in a vain attempt to find space.
*/
if (obj->base.size > (map_and_fenceable ?
dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
DRM_ERROR(
"Attempting to bind an object larger than the aperture\n");
return (-E2BIG);
}
search_free:
if (map_and_fenceable)
free_space = drm_mm_search_free_in_range(
&dev_priv->mm.gtt_space, size, alignment, 0,
dev_priv->mm.gtt_mappable_end, 0);
else
free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
size, alignment, 0);
if (free_space != NULL) {
if (map_and_fenceable)
obj->gtt_space = drm_mm_get_block_range_generic(
free_space, size, alignment, 0, 0,
dev_priv->mm.gtt_mappable_end, 1);
else
obj->gtt_space = drm_mm_get_block_generic(free_space,
size, alignment, 0, 1);
}
if (obj->gtt_space == NULL) {
ret = i915_gem_evict_something(dev, size, alignment,
map_and_fenceable);
if (ret != 0)
return (ret);
goto search_free;
}
ret = i915_gem_object_get_pages_gtt(obj, 0);
if (ret != 0) {
drm_mm_put_block(obj->gtt_space);
obj->gtt_space = NULL;
/*
* i915_gem_object_get_pages_gtt() cannot return
* ENOMEM, since we use vm_page_grab().
*/
return (ret);
}
ret = i915_gem_gtt_prepare_object(obj);
if (ret != 0) {
i915_gem_object_put_pages_gtt(obj);
drm_mm_put_block(obj->gtt_space);
obj->gtt_space = NULL;
if (i915_gem_evict_everything(dev, false))
return (ret);
goto search_free;
}
if (!dev_priv->mm.aliasing_ppgtt)
i915_gem_gtt_bind_object(obj, obj->cache_level);
list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
KASSERT((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0,
("Object in gpu read domain"));
KASSERT((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0,
("Object in gpu write domain"));
obj->gtt_offset = obj->gtt_space->start;
fenceable =
obj->gtt_space->size == fence_size &&
(obj->gtt_space->start & (fence_alignment - 1)) == 0;
mappable =
obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
obj->map_and_fenceable = mappable && fenceable;
CTR4(KTR_DRM, "object_bind %p %x %x %d", obj, obj->gtt_offset,
obj->base.size, map_and_fenceable);
return (0);
}
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *to)
{
struct intel_ring_buffer *from = obj->ring;
u32 seqno;
int ret, idx;
if (from == NULL || to == from)
return 0;
if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
return i915_gem_object_wait_rendering(obj);
idx = intel_ring_sync_index(from, to);
seqno = obj->last_rendering_seqno;
if (seqno <= from->sync_seqno[idx])
return 0;
if (seqno == from->outstanding_lazy_request) {
struct drm_i915_gem_request *request;
request = malloc(sizeof(*request), DRM_I915_GEM,
M_WAITOK | M_ZERO);
ret = i915_add_request(from, NULL, request);
if (ret) {
free(request, DRM_I915_GEM);
return ret;
}
seqno = request->seqno;
}
ret = to->sync_to(to, from, seqno);
if (!ret)
from->sync_seqno[idx] = seqno;
return ret;
}
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
u32 old_write_domain, old_read_domains;
/* Act a barrier for all accesses through the GTT */
mb();
/* Force a pagefault for domain tracking on next user access */
i915_gem_release_mmap(obj);
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
return;
old_read_domains = obj->base.read_domains;
old_write_domain = obj->base.write_domain;
obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
CTR3(KTR_DRM, "object_change_domain finish gtt %p %x %x",
obj, old_read_domains, old_write_domain);
}
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv;
int ret;
dev_priv = obj->base.dev->dev_private;
ret = 0;
if (obj->gtt_space == NULL)
return (0);
if (obj->pin_count != 0) {
DRM_ERROR("Attempting to unbind pinned buffer\n");
return (-EINVAL);
}
ret = i915_gem_object_finish_gpu(obj);
if (ret == -ERESTARTSYS || ret == -EINTR)
return (ret);
i915_gem_object_finish_gtt(obj);
if (ret == 0)
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret == -ERESTARTSYS || ret == -EINTR)
return (ret);
if (ret != 0) {
i915_gem_clflush_object(obj);
obj->base.read_domains = obj->base.write_domain =
I915_GEM_DOMAIN_CPU;
}
ret = i915_gem_object_put_fence(obj);
if (ret)
return (ret);
if (obj->has_global_gtt_mapping)
i915_gem_gtt_unbind_object(obj);
if (obj->has_aliasing_ppgtt_mapping) {
i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
obj->has_aliasing_ppgtt_mapping = 0;
}
i915_gem_gtt_finish_object(obj);
i915_gem_object_put_pages_gtt(obj);
list_del_init(&obj->gtt_list);
list_del_init(&obj->mm_list);
obj->map_and_fenceable = true;
drm_mm_put_block(obj->gtt_space);
obj->gtt_space = NULL;
obj->gtt_offset = 0;
if (i915_gem_object_is_purgeable(obj))
i915_gem_object_truncate(obj);
CTR1(KTR_DRM, "object_unbind %p", obj);
return (ret);
}
static void
i915_gem_object_put_pages_range_locked(struct drm_i915_gem_object *obj,
vm_pindex_t si, vm_pindex_t ei)
{
vm_object_t vm_obj;
vm_page_t m;
vm_pindex_t i;
vm_obj = obj->base.vm_obj;
VM_OBJECT_ASSERT_LOCKED(vm_obj);
for (i = si, m = vm_page_lookup(vm_obj, i); i < ei;
m = vm_page_next(m), i++) {
KASSERT(m->pindex == i, ("pindex %jx %jx",
(uintmax_t)m->pindex, (uintmax_t)i));
vm_page_lock(m);
vm_page_unwire(m, PQ_INACTIVE);
if (m->wire_count == 0)
atomic_add_long(&i915_gem_wired_pages_cnt, -1);
vm_page_unlock(m);
}
}
static void
i915_gem_object_put_pages_range(struct drm_i915_gem_object *obj,
off_t start, off_t end)
{
vm_object_t vm_obj;
vm_obj = obj->base.vm_obj;
VM_OBJECT_WLOCK(vm_obj);
i915_gem_object_put_pages_range_locked(obj,
OFF_TO_IDX(trunc_page(start)), OFF_TO_IDX(round_page(end)));
VM_OBJECT_WUNLOCK(vm_obj);
}
static int
i915_gem_object_get_pages_range(struct drm_i915_gem_object *obj,
off_t start, off_t end)
{
vm_object_t vm_obj;
vm_page_t m;
vm_pindex_t si, ei, i;
bool need_swizzle, fresh;
need_swizzle = i915_gem_object_needs_bit17_swizzle(obj) != 0;
vm_obj = obj->base.vm_obj;
si = OFF_TO_IDX(trunc_page(start));
ei = OFF_TO_IDX(round_page(end));
VM_OBJECT_WLOCK(vm_obj);
for (i = si; i < ei; i++) {
m = i915_gem_wire_page(vm_obj, i, &fresh);
if (m == NULL)
goto failed;
if (need_swizzle && fresh)
i915_gem_object_do_bit_17_swizzle_page(obj, m);
}
VM_OBJECT_WUNLOCK(vm_obj);
return (0);
failed:
i915_gem_object_put_pages_range_locked(obj, si, i);
VM_OBJECT_WUNLOCK(vm_obj);
return (-EIO);
}
static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
int flags)
{
struct drm_device *dev;
vm_object_t vm_obj;
vm_page_t m;
vm_pindex_t i, page_count;
int res;
dev = obj->base.dev;
KASSERT(obj->pages == NULL, ("Obj already has pages"));
page_count = OFF_TO_IDX(obj->base.size);
obj->pages = malloc(page_count * sizeof(vm_page_t), DRM_I915_GEM,
M_WAITOK);
res = i915_gem_object_get_pages_range(obj, 0, obj->base.size);
if (res != 0) {
free(obj->pages, DRM_I915_GEM);
obj->pages = NULL;
return (res);
}
vm_obj = obj->base.vm_obj;
VM_OBJECT_WLOCK(vm_obj);
for (i = 0, m = vm_page_lookup(vm_obj, 0); i < page_count;
i++, m = vm_page_next(m)) {
KASSERT(m->pindex == i, ("pindex %jx %jx",
(uintmax_t)m->pindex, (uintmax_t)i));
obj->pages[i] = m;
}
VM_OBJECT_WUNLOCK(vm_obj);
return (0);
}
#define GEM_PARANOID_CHECK_GTT 0
#if GEM_PARANOID_CHECK_GTT
static void
i915_gem_assert_pages_not_mapped(struct drm_device *dev, vm_page_t *ma,
int page_count)
{
struct drm_i915_private *dev_priv;
vm_paddr_t pa;
unsigned long start, end;
u_int i;
int j;
dev_priv = dev->dev_private;
start = OFF_TO_IDX(dev_priv->mm.gtt_start);
end = OFF_TO_IDX(dev_priv->mm.gtt_end);
for (i = start; i < end; i++) {
pa = intel_gtt_read_pte_paddr(i);
for (j = 0; j < page_count; j++) {
if (pa == VM_PAGE_TO_PHYS(ma[j])) {
panic("Page %p in GTT pte index %d pte %x",
ma[i], i, intel_gtt_read_pte(i));
}
}
}
}
#endif
static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
{
vm_page_t m;
int page_count, i;
KASSERT(obj->madv != I915_MADV_PURGED_INTERNAL, ("Purged object"));
if (obj->tiling_mode != I915_TILING_NONE)
i915_gem_object_save_bit_17_swizzle(obj);
if (obj->madv == I915_MADV_DONTNEED)
obj->dirty = 0;
page_count = obj->base.size / PAGE_SIZE;
VM_OBJECT_WLOCK(obj->base.vm_obj);
#if GEM_PARANOID_CHECK_GTT
i915_gem_assert_pages_not_mapped(obj->base.dev, obj->pages, page_count);
#endif
for (i = 0; i < page_count; i++) {
m = obj->pages[i];
if (obj->dirty)
vm_page_dirty(m);
if (obj->madv == I915_MADV_WILLNEED)
vm_page_reference(m);
vm_page_lock(m);
vm_page_unwire(obj->pages[i], PQ_ACTIVE);
vm_page_unlock(m);
atomic_add_long(&i915_gem_wired_pages_cnt, -1);
}
VM_OBJECT_WUNLOCK(obj->base.vm_obj);
obj->dirty = 0;
free(obj->pages, DRM_I915_GEM);
obj->pages = NULL;
}
void
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
{
vm_object_t devobj;
vm_page_t m;
int i, page_count;
if (!obj->fault_mappable)
return;
CTR3(KTR_DRM, "release_mmap %p %x %x", obj, obj->gtt_offset,
OFF_TO_IDX(obj->base.size));
devobj = cdev_pager_lookup(obj);
if (devobj != NULL) {
page_count = OFF_TO_IDX(obj->base.size);
VM_OBJECT_WLOCK(devobj);
retry:
for (i = 0; i < page_count; i++) {
m = vm_page_lookup(devobj, i);
if (m == NULL)
continue;
if (vm_page_sleep_if_busy(m, "915unm"))
goto retry;
cdev_pager_free_page(devobj, m);
}
VM_OBJECT_WUNLOCK(devobj);
vm_object_deallocate(devobj);
}
obj->fault_mappable = false;
}
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
{
int ret;
KASSERT((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0,
("In GPU write domain"));
CTR5(KTR_DRM, "object_wait_rendering %p %s %x %d %d", obj,
obj->ring != NULL ? obj->ring->name : "none", obj->gtt_offset,
obj->active, obj->last_rendering_seqno);
if (obj->active) {
ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
if (ret != 0)
return (ret);
i915_gem_retire_requests_ring(obj->ring);
}
return (0);
}
void
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *ring, uint32_t seqno)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg;
obj->ring = ring;
KASSERT(ring != NULL, ("NULL ring"));
/* Add a reference if we're newly entering the active list. */
if (!obj->active) {
drm_gem_object_reference(&obj->base);
obj->active = 1;
}
/* Move from whatever list we were on to the tail of execution. */
list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
list_move_tail(&obj->ring_list, &ring->active_list);
obj->last_rendering_seqno = seqno;
if (obj->fenced_gpu_access) {
obj->last_fenced_seqno = seqno;
/* Bump MRU to take account of the delayed flush */
if (obj->fence_reg != I915_FENCE_REG_NONE) {
reg = &dev_priv->fence_regs[obj->fence_reg];
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
}
}
}
static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
list_del_init(&obj->ring_list);
obj->last_rendering_seqno = 0;
obj->last_fenced_seqno = 0;
}
static void
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
KASSERT(obj->active, ("Object not active"));
list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
i915_gem_object_move_off_active(obj);
}
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
KASSERT(list_empty(&obj->gpu_write_list), ("On gpu_write_list"));
KASSERT(obj->active, ("Object not active"));
obj->ring = NULL;
i915_gem_object_move_off_active(obj);
obj->fenced_gpu_access = false;
obj->active = 0;
obj->pending_gpu_write = false;
drm_gem_object_unreference(&obj->base);
#if 1
KIB_NOTYET();
#else
WARN_ON(i915_verify_lists(dev));
#endif
}
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
{
vm_object_t vm_obj;
vm_obj = obj->base.vm_obj;
VM_OBJECT_WLOCK(vm_obj);
vm_object_page_remove(vm_obj, 0, 0, false);
VM_OBJECT_WUNLOCK(vm_obj);
drm_gem_free_mmap_offset(&obj->base);
obj->madv = I915_MADV_PURGED_INTERNAL;
}
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
return (obj->madv == I915_MADV_DONTNEED);
}
static void
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
uint32_t flush_domains)
{
struct drm_i915_gem_object *obj, *next;
uint32_t old_write_domain;
list_for_each_entry_safe(obj, next, &ring->gpu_write_list,
gpu_write_list) {
if (obj->base.write_domain & flush_domains) {
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
list_del_init(&obj->gpu_write_list);
i915_gem_object_move_to_active(obj, ring,
i915_gem_next_request_seqno(ring));
CTR3(KTR_DRM, "object_change_domain process_flush %p %x %x",
obj, obj->base.read_domains, old_write_domain);
}
}
}
static int
i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv;
dev_priv = obj->base.dev->dev_private;
return (dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
obj->tiling_mode != I915_TILING_NONE);
}
static vm_page_t
i915_gem_wire_page(vm_object_t object, vm_pindex_t pindex, bool *fresh)
{
vm_page_t m;
int rv;
VM_OBJECT_ASSERT_WLOCKED(object);
m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
if (m->valid != VM_PAGE_BITS_ALL) {
if (vm_pager_has_page(object, pindex, NULL, NULL)) {
rv = vm_pager_get_pages(object, &m, 1, 0);
if (rv != VM_PAGER_OK) {
vm_page_lock(m);
vm_page_free(m);
vm_page_unlock(m);
return (NULL);
}
if (fresh != NULL)
*fresh = true;
} else {
pmap_zero_page(m);
m->valid = VM_PAGE_BITS_ALL;
m->dirty = 0;
if (fresh != NULL)
*fresh = false;
}
} else if (fresh != NULL) {
*fresh = false;
}
vm_page_lock(m);
vm_page_wire(m);
vm_page_unlock(m);
vm_page_xunbusy(m);
atomic_add_long(&i915_gem_wired_pages_cnt, 1);
return (m);
}
int
i915_gem_flush_ring(struct intel_ring_buffer *ring, uint32_t invalidate_domains,
uint32_t flush_domains)
{
int ret;
if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
return 0;
CTR3(KTR_DRM, "ring_flush %s %x %x", ring->name, invalidate_domains,
flush_domains);
ret = ring->flush(ring, invalidate_domains, flush_domains);
if (ret)
return ret;
if (flush_domains & I915_GEM_GPU_DOMAINS)
i915_gem_process_flushing_list(ring, flush_domains);
return 0;
}
static int
i915_ring_idle(struct intel_ring_buffer *ring)
{
int ret;
if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
return 0;
if (!list_empty(&ring->gpu_write_list)) {
ret = i915_gem_flush_ring(ring, I915_GEM_GPU_DOMAINS,
I915_GEM_GPU_DOMAINS);
if (ret != 0)
return ret;
}
return (i915_wait_request(ring, i915_gem_next_request_seqno(ring)));
}
int
i915_gpu_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i;
/* Flush everything onto the inactive list. */
for_each_ring(ring, dev_priv, i) {
ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
if (ret)
return ret;
ret = i915_ring_idle(ring);
if (ret)
return ret;
/* Is the device fubar? */
if (!list_empty(&ring->gpu_write_list))
return -EBUSY;
}
return 0;
}
static int
i915_gem_check_wedge(struct drm_i915_private *dev_priv)
{
DRM_LOCK_ASSERT(dev_priv->dev);
if (atomic_load_acq_int(&dev_priv->mm.wedged) != 0) {
bool recovery_complete;
/* Give the error handler a chance to run. */
mtx_lock(&dev_priv->error_completion_lock);
recovery_complete = (&dev_priv->error_completion) > 0;
mtx_unlock(&dev_priv->error_completion_lock);
return (recovery_complete ? -EIO : -EAGAIN);
}
return 0;
}
/*
* Compare seqno against outstanding lazy request. Emit a request if they are
* equal.
*/
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
int ret = 0;
DRM_LOCK_ASSERT(ring->dev);
if (seqno == ring->outstanding_lazy_request) {
struct drm_i915_gem_request *request;
request = malloc(sizeof(*request), DRM_I915_GEM,
M_WAITOK | M_ZERO);
ret = i915_add_request(ring, NULL, request);
if (ret != 0) {
free(request, DRM_I915_GEM);
return (ret);
}
MPASS(seqno == request->seqno);
}
return ret;
}
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
bool interruptible)
{
drm_i915_private_t *dev_priv = ring->dev->dev_private;
int ret = 0, flags;
if (i915_seqno_passed(ring->get_seqno(ring), seqno))
return 0;
CTR2(KTR_DRM, "request_wait_begin %s %d", ring->name, seqno);
mtx_lock(&dev_priv->irq_lock);
if (!ring->irq_get(ring)) {
mtx_unlock(&dev_priv->irq_lock);
return (-ENODEV);
}
flags = interruptible ? PCATCH : 0;
while (!i915_seqno_passed(ring->get_seqno(ring), seqno)
&& !atomic_load_acq_int(&dev_priv->mm.wedged) &&
ret == 0) {
ret = -msleep(ring, &dev_priv->irq_lock, flags, "915gwr", 0);
if (ret == -ERESTART)
ret = -ERESTARTSYS;
}
ring->irq_put(ring);
mtx_unlock(&dev_priv->irq_lock);
CTR3(KTR_DRM, "request_wait_end %s %d %d", ring->name, seqno, ret);
return ret;
}
int
i915_wait_request(struct intel_ring_buffer *ring, uint32_t seqno)
{
drm_i915_private_t *dev_priv;
int ret;
KASSERT(seqno != 0, ("Zero seqno"));
dev_priv = ring->dev->dev_private;
ret = 0;
ret = i915_gem_check_wedge(dev_priv);
if (ret)
return ret;
ret = i915_gem_check_olr(ring, seqno);
if (ret)
return ret;
ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
if (atomic_load_acq_int(&dev_priv->mm.wedged))
ret = -EAGAIN;
return (ret);
}
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 seqno = dev_priv->next_seqno;
/* reserve 0 for non-seqno */
if (++dev_priv->next_seqno == 0)
dev_priv->next_seqno = 1;
return seqno;
}
u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
if (ring->outstanding_lazy_request == 0)
ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
return ring->outstanding_lazy_request;
}
int
i915_add_request(struct intel_ring_buffer *ring, struct drm_file *file,
struct drm_i915_gem_request *request)
{
drm_i915_private_t *dev_priv;
struct drm_i915_file_private *file_priv;
uint32_t seqno;
u32 request_ring_position;
int was_empty;
int ret;
KASSERT(request != NULL, ("NULL request in add"));
DRM_LOCK_ASSERT(ring->dev);
dev_priv = ring->dev->dev_private;
seqno = i915_gem_next_request_seqno(ring);
request_ring_position = intel_ring_get_tail(ring);
ret = ring->add_request(ring, &seqno);
if (ret != 0)
return ret;
CTR2(KTR_DRM, "request_add %s %d", ring->name, seqno);
request->seqno = seqno;
request->ring = ring;
request->tail = request_ring_position;
request->emitted_jiffies = ticks;
was_empty = list_empty(&ring->request_list);
list_add_tail(&request->list, &ring->request_list);
if (file != NULL) {
file_priv = file->driver_priv;
mtx_lock(&file_priv->mm.lck);
request->file_priv = file_priv;
list_add_tail(&request->client_list,
&file_priv->mm.request_list);
mtx_unlock(&file_priv->mm.lck);
}
ring->outstanding_lazy_request = 0;
if (!dev_priv->mm.suspended) {
if (i915_enable_hangcheck) {
callout_schedule(&dev_priv->hangcheck_timer,
DRM_I915_HANGCHECK_PERIOD);
}
if (was_empty)
taskqueue_enqueue_timeout(dev_priv->tq,
&dev_priv->mm.retire_task, hz);
}
return (0);
}
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
struct drm_i915_file_private *file_priv = request->file_priv;
if (!file_priv)
return;
DRM_LOCK_ASSERT(request->ring->dev);
mtx_lock(&file_priv->mm.lck);
if (request->file_priv != NULL) {
list_del(&request->client_list);
request->file_priv = NULL;
}
mtx_unlock(&file_priv->mm.lck);
}
void
i915_gem_release(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv;
struct drm_i915_gem_request *request;
file_priv = file->driver_priv;
/* Clean up our request list when the client is going away, so that
* later retire_requests won't dereference our soon-to-be-gone
* file_priv.
*/
mtx_lock(&file_priv->mm.lck);
while (!list_empty(&file_priv->mm.request_list)) {
request = list_first_entry(&file_priv->mm.request_list,
struct drm_i915_gem_request,
client_list);
list_del(&request->client_list);
request->file_priv = NULL;
}
mtx_unlock(&file_priv->mm.lck);
}
static void
i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
struct intel_ring_buffer *ring)
{
if (ring->dev != NULL)
DRM_LOCK_ASSERT(ring->dev);
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request, list);
list_del(&request->list);
i915_gem_request_remove_from_client(request);
free(request, DRM_I915_GEM);
}
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object, ring_list);
obj->base.write_domain = 0;
list_del_init(&obj->gpu_write_list);
i915_gem_object_move_to_inactive(obj);
}
}
static void
i915_gem_reset_fences(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
i915_gem_write_fence(dev, i, NULL);
if (reg->obj)
i915_gem_object_fence_lost(reg->obj);
reg->pin_count = 0;
reg->obj = NULL;
INIT_LIST_HEAD(&reg->lru_list);
}
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
}
void
i915_gem_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct intel_ring_buffer *ring;
int i;
for_each_ring(ring, dev_priv, i)
i915_gem_reset_ring_lists(dev_priv, ring);
/* Remove anything from the flushing lists. The GPU cache is likely
* to be lost on reset along with the data, so simply move the
* lost bo to the inactive list.
*/
while (!list_empty(&dev_priv->mm.flushing_list)) {
obj = list_first_entry(&dev_priv->mm.flushing_list,
struct drm_i915_gem_object,
mm_list);
obj->base.write_domain = 0;
list_del_init(&obj->gpu_write_list);
i915_gem_object_move_to_inactive(obj);
}
/* Move everything out of the GPU domains to ensure we do any
* necessary invalidation upon reuse.
*/
list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list) {
obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
}
/* The fence registers are invalidated so clear them out */
i915_gem_reset_fences(dev);
}
/**
* This function clears the request list as sequence numbers are passed.
*/
void
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
{
uint32_t seqno;
int i;
if (list_empty(&ring->request_list))
return;
seqno = ring->get_seqno(ring);
CTR2(KTR_DRM, "retire_request_ring %s %d", ring->name, seqno);
for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
if (seqno >= ring->sync_seqno[i])
ring->sync_seqno[i] = 0;
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
if (!i915_seqno_passed(seqno, request->seqno))
break;
CTR2(KTR_DRM, "retire_request_seqno_passed %s %d",
ring->name, seqno);
ring->last_retired_head = request->tail;
list_del(&request->list);
i915_gem_request_remove_from_client(request);
free(request, DRM_I915_GEM);
}
/* Move any buffers on the active list that are no longer referenced
* by the ringbuffer to the flushing/inactive lists as appropriate.
*/
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list);
if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
break;
if (obj->base.write_domain != 0)
i915_gem_object_move_to_flushing(obj);
else
i915_gem_object_move_to_inactive(obj);
}
if (ring->trace_irq_seqno &&
i915_seqno_passed(seqno, ring->trace_irq_seqno)) {
struct drm_i915_private *dev_priv = ring->dev->dev_private;
mtx_lock(&dev_priv->irq_lock);
ring->irq_put(ring);
mtx_unlock(&dev_priv->irq_lock);
ring->trace_irq_seqno = 0;
}
}
void
i915_gem_retire_requests(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
for_each_ring(ring, dev_priv, i)
i915_gem_retire_requests_ring(ring);
}
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint64_t val;
if (obj) {
u32 size = obj->gtt_space->size;
val = (uint64_t)((obj->gtt_offset + size - 4096) &
0xfffff000) << 32;
val |= obj->gtt_offset & 0xfffff000;
val |= (uint64_t)((obj->stride / 128) - 1) <<
SANDYBRIDGE_FENCE_PITCH_SHIFT;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
}
static void i965_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint64_t val;
if (obj) {
u32 size = obj->gtt_space->size;
val = (uint64_t)((obj->gtt_offset + size - 4096) &
0xfffff000) << 32;
val |= obj->gtt_offset & 0xfffff000;
val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
POSTING_READ(FENCE_REG_965_0 + reg * 8);
}
static void i915_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 val;
if (obj) {
u32 size = obj->gtt_space->size;
int pitch_val;
int tile_width;
if ((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
(size & -size) != size ||
(obj->gtt_offset & (size - 1)))
printf(
"object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
obj->gtt_offset, obj->map_and_fenceable, size);
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
tile_width = 128;
else
tile_width = 512;
/* Note: pitch better be a power of two tile widths */
pitch_val = obj->stride / tile_width;
pitch_val = ffs(pitch_val) - 1;
val = obj->gtt_offset;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I915_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
if (reg < 8)
reg = FENCE_REG_830_0 + reg * 4;
else
reg = FENCE_REG_945_8 + (reg - 8) * 4;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static void i830_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t val;
if (obj) {
u32 size = obj->gtt_space->size;
uint32_t pitch_val;
if ((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
(size & -size) != size ||
(obj->gtt_offset & (size - 1)))
printf(
"object 0x%08x not 512K or pot-size 0x%08x aligned\n",
obj->gtt_offset, size);
pitch_val = obj->stride / 128;
pitch_val = ffs(pitch_val) - 1;
val = obj->gtt_offset;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I830_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
POSTING_READ(FENCE_REG_830_0 + reg * 4);
}
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
switch (INTEL_INFO(dev)->gen) {
case 7:
case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
case 5:
case 4: i965_write_fence_reg(dev, reg, obj); break;
case 3: i915_write_fence_reg(dev, reg, obj); break;
case 2: i830_write_fence_reg(dev, reg, obj); break;
default: break;
}
}
static inline int fence_number(struct drm_i915_private *dev_priv,
struct drm_i915_fence_reg *fence)
{
return fence - dev_priv->fence_regs;
}
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int reg = fence_number(dev_priv, fence);
i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
if (enable) {
obj->fence_reg = reg;
fence->obj = obj;
list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
} else {
obj->fence_reg = I915_FENCE_REG_NONE;
fence->obj = NULL;
list_del_init(&fence->lru_list);
}
}
static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
{
int ret;
if (obj->fenced_gpu_access) {
if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
ret = i915_gem_flush_ring(obj->ring,
0, obj->base.write_domain);
if (ret)
return ret;
}
obj->fenced_gpu_access = false;
}
if (obj->last_fenced_seqno) {
ret = i915_wait_request(obj->ring,
obj->last_fenced_seqno);
if (ret)
return ret;
obj->last_fenced_seqno = 0;
}
/* Ensure that all CPU reads are completed before installing a fence
* and all writes before removing the fence.
*/
if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
mb();
return 0;
}
int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int ret;
ret = i915_gem_object_flush_fence(obj);
if (ret)
return ret;
if (obj->fence_reg == I915_FENCE_REG_NONE)
return 0;
i915_gem_object_update_fence(obj,
&dev_priv->fence_regs[obj->fence_reg],
false);
i915_gem_object_fence_lost(obj);
return 0;
}
static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg, *avail;
int i;
/* First try to find a free reg */
avail = NULL;
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
reg = &dev_priv->fence_regs[i];
if (!reg->obj)
return reg;
if (!reg->pin_count)
avail = reg;
}
if (avail == NULL)
return NULL;
/* None available, try to steal one or wait for a user to finish */
list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
if (reg->pin_count)
continue;
return reg;
}
return NULL;
}
int
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool enable = obj->tiling_mode != I915_TILING_NONE;
struct drm_i915_fence_reg *reg;
int ret;
/* Have we updated the tiling parameters upon the object and so
* will need to serialise the write to the associated fence register?
*/
if (obj->fence_dirty) {
ret = i915_gem_object_flush_fence(obj);
if (ret)
return ret;
}
ret = 0;
if (obj->fence_reg != I915_FENCE_REG_NONE) {
reg = &dev_priv->fence_regs[obj->fence_reg];
if (!obj->fence_dirty) {
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
return 0;
}
} else if (enable) {
reg = i915_find_fence_reg(dev);
if (reg == NULL)
return -EDEADLK;
if (reg->obj) {
struct drm_i915_gem_object *old = reg->obj;
ret = i915_gem_object_flush_fence(old);
if (ret)
return ret;
i915_gem_object_fence_lost(old);
}
} else
return 0;
i915_gem_object_update_fence(obj, reg, enable);
obj->fence_dirty = false;
return 0;
}
int
i915_gem_init_object(struct drm_gem_object *obj)
{
printf("i915_gem_init_object called\n");
return (0);
}
static bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
{
return !obj->active;
}
static void
i915_gem_retire_task_handler(void *arg, int pending)
{
drm_i915_private_t *dev_priv;
struct drm_device *dev;
struct intel_ring_buffer *ring;
bool idle;
int i;
dev_priv = arg;
dev = dev_priv->dev;
/* Come back later if the device is busy... */
if (!sx_try_xlock(&dev->dev_struct_lock)) {
taskqueue_enqueue_timeout(dev_priv->tq,
&dev_priv->mm.retire_task, hz);
return;
}
CTR0(KTR_DRM, "retire_task");
i915_gem_retire_requests(dev);
/* Send a periodic flush down the ring so we don't hold onto GEM
* objects indefinitely.
*/
idle = true;
for_each_ring(ring, dev_priv, i) {
struct intel_ring_buffer *ring = &dev_priv->rings[i];
if (!list_empty(&ring->gpu_write_list)) {
struct drm_i915_gem_request *request;
int ret;
ret = i915_gem_flush_ring(ring,
0, I915_GEM_GPU_DOMAINS);
request = malloc(sizeof(*request), DRM_I915_GEM,
M_WAITOK | M_ZERO);
if (ret || request == NULL ||
i915_add_request(ring, NULL, request))
free(request, DRM_I915_GEM);
}
idle &= list_empty(&ring->request_list);
}
if (!dev_priv->mm.suspended && !idle)
taskqueue_enqueue_timeout(dev_priv->tq,
&dev_priv->mm.retire_task, hz);
DRM_UNLOCK(dev);
}
void
i915_gem_lastclose(struct drm_device *dev)
{
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return;
ret = i915_gem_idle(dev);
if (ret != 0)
DRM_ERROR("failed to idle hardware: %d\n", ret);
}
static int
i915_gem_init_phys_object(struct drm_device *dev, int id, int size, int align)
{
drm_i915_private_t *dev_priv;
struct drm_i915_gem_phys_object *phys_obj;
int ret;
dev_priv = dev->dev_private;
if (dev_priv->mm.phys_objs[id - 1] != NULL || size == 0)
return (0);
phys_obj = malloc(sizeof(struct drm_i915_gem_phys_object), DRM_I915_GEM,
M_WAITOK | M_ZERO);
phys_obj->id = id;
phys_obj->handle = drm_pci_alloc(dev, size, align, BUS_SPACE_MAXADDR);
if (phys_obj->handle == NULL) {
ret = -ENOMEM;
goto free_obj;
}
pmap_change_attr((vm_offset_t)phys_obj->handle->vaddr,
size / PAGE_SIZE, PAT_WRITE_COMBINING);
dev_priv->mm.phys_objs[id - 1] = phys_obj;
return (0);
free_obj:
free(phys_obj, DRM_I915_GEM);
return (ret);
}
static void
i915_gem_free_phys_object(struct drm_device *dev, int id)
{
drm_i915_private_t *dev_priv;
struct drm_i915_gem_phys_object *phys_obj;
dev_priv = dev->dev_private;
if (dev_priv->mm.phys_objs[id - 1] == NULL)
return;
phys_obj = dev_priv->mm.phys_objs[id - 1];
if (phys_obj->cur_obj != NULL)
i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
drm_pci_free(dev, phys_obj->handle);
free(phys_obj, DRM_I915_GEM);
dev_priv->mm.phys_objs[id - 1] = NULL;
}
void
i915_gem_free_all_phys_object(struct drm_device *dev)
{
int i;
for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
i915_gem_free_phys_object(dev, i);
}
void
i915_gem_detach_phys_object(struct drm_device *dev,
struct drm_i915_gem_object *obj)
{
vm_page_t m;
struct sf_buf *sf;
char *vaddr, *dst;
int i, page_count;
if (obj->phys_obj == NULL)
return;
vaddr = obj->phys_obj->handle->vaddr;
page_count = obj->base.size / PAGE_SIZE;
VM_OBJECT_WLOCK(obj->base.vm_obj);
for (i = 0; i < page_count; i++) {
m = i915_gem_wire_page(obj->base.vm_obj, i, NULL);
if (m == NULL)
continue; /* XXX */
VM_OBJECT_WUNLOCK(obj->base.vm_obj);
sf = sf_buf_alloc(m, 0);
if (sf != NULL) {
dst = (char *)sf_buf_kva(sf);
memcpy(dst, vaddr + IDX_TO_OFF(i), PAGE_SIZE);
sf_buf_free(sf);
}
drm_clflush_pages(&m, 1);
VM_OBJECT_WLOCK(obj->base.vm_obj);
vm_page_reference(m);
vm_page_lock(m);
vm_page_dirty(m);
vm_page_unwire(m, PQ_INACTIVE);
vm_page_unlock(m);
atomic_add_long(&i915_gem_wired_pages_cnt, -1);
}
VM_OBJECT_WUNLOCK(obj->base.vm_obj);
intel_gtt_chipset_flush();
obj->phys_obj->cur_obj = NULL;
obj->phys_obj = NULL;
}
int
i915_gem_attach_phys_object(struct drm_device *dev,
struct drm_i915_gem_object *obj, int id, int align)
{
drm_i915_private_t *dev_priv;
vm_page_t m;
struct sf_buf *sf;
char *dst, *src;
int i, page_count, ret;
if (id > I915_MAX_PHYS_OBJECT)
return (-EINVAL);
if (obj->phys_obj != NULL) {
if (obj->phys_obj->id == id)
return (0);
i915_gem_detach_phys_object(dev, obj);
}
dev_priv = dev->dev_private;
if (dev_priv->mm.phys_objs[id - 1] == NULL) {
ret = i915_gem_init_phys_object(dev, id, obj->base.size, align);
if (ret != 0) {
DRM_ERROR("failed to init phys object %d size: %zu\n",
id, obj->base.size);
return (ret);
}
}
/* bind to the object */
obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
obj->phys_obj->cur_obj = obj;
page_count = obj->base.size / PAGE_SIZE;
VM_OBJECT_WLOCK(obj->base.vm_obj);
ret = 0;
for (i = 0; i < page_count; i++) {
m = i915_gem_wire_page(obj->base.vm_obj, i, NULL);
if (m == NULL) {
ret = -EIO;
break;
}
VM_OBJECT_WUNLOCK(obj->base.vm_obj);
sf = sf_buf_alloc(m, 0);
src = (char *)sf_buf_kva(sf);
dst = (char *)obj->phys_obj->handle->vaddr + IDX_TO_OFF(i);
memcpy(dst, src, PAGE_SIZE);
sf_buf_free(sf);
VM_OBJECT_WLOCK(obj->base.vm_obj);
vm_page_reference(m);
vm_page_lock(m);
vm_page_unwire(m, PQ_INACTIVE);
vm_page_unlock(m);
atomic_add_long(&i915_gem_wired_pages_cnt, -1);
}
VM_OBJECT_WUNLOCK(obj->base.vm_obj);
return (ret);
}
static int
i915_gpu_is_active(struct drm_device *dev)
{
drm_i915_private_t *dev_priv;
dev_priv = dev->dev_private;
return (!list_empty(&dev_priv->mm.flushing_list) ||
!list_empty(&dev_priv->mm.active_list));
}
static void
i915_gem_lowmem(void *arg)
{
struct drm_device *dev;
struct drm_i915_private *dev_priv;
struct drm_i915_gem_object *obj, *next;
int cnt, cnt_fail, cnt_total;
dev = arg;
dev_priv = dev->dev_private;
if (!sx_try_xlock(&dev->dev_struct_lock))
return;
CTR0(KTR_DRM, "gem_lowmem");
rescan:
/* first scan for clean buffers */
i915_gem_retire_requests(dev);
cnt_total = cnt_fail = cnt = 0;
list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
mm_list) {
if (i915_gem_object_is_purgeable(obj)) {
if (i915_gem_object_unbind(obj) != 0)
cnt_total++;
} else
cnt_total++;
}
/* second pass, evict/count anything still on the inactive list */
list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list,
mm_list) {
if (i915_gem_object_unbind(obj) == 0)
cnt++;
else
cnt_fail++;
}
if (cnt_fail > cnt_total / 100 && i915_gpu_is_active(dev)) {
/*
* We are desperate for pages, so as a last resort, wait
* for the GPU to finish and discard whatever we can.
* This has a dramatic impact to reduce the number of
* OOM-killer events whilst running the GPU aggressively.
*/
if (i915_gpu_idle(dev) == 0)
goto rescan;
}
DRM_UNLOCK(dev);
}
void
i915_gem_unload(struct drm_device *dev)
{
struct drm_i915_private *dev_priv;
dev_priv = dev->dev_private;
EVENTHANDLER_DEREGISTER(vm_lowmem, dev_priv->mm.i915_lowmem);
}