freebsd-dev/sys/dev/random/nehemiah.c
Mark Murray 10cb24248a This is the much-discussed major upgrade to the random(4) device, known to you all as /dev/random.
This code has had an extensive rewrite and a good series of reviews, both by the author and other parties. This means a lot of code has been simplified. Pluggable structures for high-rate entropy generators are available, and it is most definitely not the case that /dev/random can be driven by only a hardware souce any more. This has been designed out of the device. Hardware sources are stirred into the CSPRNG (Yarrow, Fortuna) like any other entropy source. Pluggable modules may be written by third parties for additional sources.

The harvesting structures and consequently the locking have been simplified. Entropy harvesting is done in a more general way (the documentation for this will follow). There is some GREAT entropy to be had in the UMA allocator, but it is disabled for now as messing with that is likely to annoy many people.

The venerable (but effective) Yarrow algorithm, which is no longer supported by its authors now has an alternative, Fortuna. For now, Yarrow is retained as the default algorithm, but this may be changed using a kernel option. It is intended to make Fortuna the default algorithm for 11.0. Interested parties are encouraged to read ISBN 978-0-470-47424-2 "Cryptography Engineering" By Ferguson, Schneier and Kohno for Fortuna's gory details. Heck, read it anyway.

Many thanks to Arthur Mesh who did early grunt work, and who got caught in the crossfire rather more than he deserved to.

My thanks also to folks who helped me thresh this out on whiteboards and in the odd "Hallway track", or otherwise.

My Nomex pants are on. Let the feedback commence!

Reviewed by:	trasz,des(partial),imp(partial?),rwatson(partial?)
Approved by:	so(des)
2014-10-30 21:21:53 +00:00

161 lines
4.1 KiB
C

/*-
* Copyright (c) 2013 Mark R V Murray
* Copyright (c) 2013 David E. O'Brien <obrien@NUXI.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/random.h>
#include <sys/systm.h>
#include <machine/segments.h>
#include <machine/pcb.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include <dev/random/randomdev.h>
#include <dev/random/randomdev_soft.h>
#include <dev/random/random_adaptors.h>
#include <dev/random/live_entropy_sources.h>
static void random_nehemiah_init(void);
static void random_nehemiah_deinit(void);
static u_int random_nehemiah_read(void *, u_int);
static struct live_entropy_source random_nehemiah = {
.les_ident = "VIA Nehemiah Padlock RNG",
.les_source = RANDOM_PURE_NEHEMIAH,
.les_read = random_nehemiah_read
};
/* XXX: FIX? Now that the Davies-Meyer hash is gone and we only use
* the 'xstore' instruction, do we still need to preserve the
* FPU state with fpu_kern_(enter|leave)() ?
*/
static struct fpu_kern_ctx *fpu_ctx_save;
/* This H/W source never stores more than 8 bytes in one go */
/* ARGSUSED */
static __inline size_t
VIA_RNG_store(void *buf)
{
uint32_t retval = 0;
uint32_t rate = 0;
#ifdef __GNUCLIKE_ASM
__asm __volatile(
"movl $0,%%edx\n\t"
"xstore"
: "=a" (retval), "+d" (rate), "+D" (buf)
:
: "memory"
);
#endif
if (rate == 0)
return (retval&0x1f);
return (0);
}
static void
random_nehemiah_init(void)
{
fpu_ctx_save = fpu_kern_alloc_ctx(FPU_KERN_NORMAL);
}
static void
random_nehemiah_deinit(void)
{
fpu_kern_free_ctx(fpu_ctx_save);
}
/* It is specifically allowed that buf is a multiple of sizeof(long) */
static u_int
random_nehemiah_read(void *buf, u_int c)
{
uint8_t *b;
size_t count, ret;
uint64_t tmp;
if ((fpu_kern_enter(curthread, fpu_ctx_save, FPU_KERN_NORMAL) == 0)) {
b = buf;
for (count = c; count > 0; count -= ret) {
ret = MIN(VIA_RNG_store(&tmp), count);
memcpy(b, &tmp, ret);
b += ret;
}
fpu_kern_leave(curthread, fpu_ctx_save);
}
else
c = 0;
return (c);
}
static int
nehemiah_modevent(module_t mod, int type, void *unused)
{
int error = 0;
switch (type) {
case MOD_LOAD:
if (via_feature_rng & VIA_HAS_RNG) {
live_entropy_source_register(&random_nehemiah);
printf("random: live provider: \"%s\"\n", random_nehemiah.les_ident);
random_nehemiah_init();
}
break;
case MOD_UNLOAD:
if (via_feature_rng & VIA_HAS_RNG)
random_nehemiah_deinit();
live_entropy_source_deregister(&random_nehemiah);
break;
case MOD_SHUTDOWN:
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(nehemiah, nehemiah_modevent, NULL);
MODULE_VERSION(nehemiah, 1);
MODULE_DEPEND(nehemiah, random_adaptors, 1, 1, 1);