freebsd-dev/sys/powerpc/aim/vm_machdep.c
Marcel Moolenaar 11e0f8e16d Change the second (and last) argument of cpu_set_upcall(). Previously
we were passing in a void* representing the PCB of the parent thread.
Now we pass a pointer to the parent thread itself.
The prime reason for this change is to allow cpu_set_upcall() to copy
(parts of) the trapframe instead of having it done in MI code in each
caller of cpu_set_upcall(). Copying the trapframe cannot always be
done with a simply bcopy() or may not always be optimal that way. On
ia64 specifically the trapframe contains information that is specific
to an entry into the kernel and can only be used by the corresponding
exit from the kernel. A trapframe copied verbatim from another frame
is in most cases useless without some additional normalization.

Note that this change removes the assignment to td->td_frame in some
implementations of cpu_set_upcall(). The assignment is redundant.
A previous call to cpu_thread_setup() already did the exact same
assignment. An added benefit of removing the redundant assignment is
that we can now change td_pcb without nasty side-effects.

This change officially marks the ability on ia64 for 1:1 threading.

Not tested on: amd64, powerpc
Compile & boot tested on: alpha, sparc64
Functionally tested on: i386, ia64
2003-06-04 21:13:21 +00:00

293 lines
7.3 KiB
C

/*-
* Copyright (c) 1982, 1986 The Regents of the University of California.
* Copyright (c) 1989, 1990 William Jolitz
* Copyright (c) 1994 John Dyson
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department, and William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
* Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
* $FreeBSD$
*/
/*
* Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Chris G. Demetriou
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/fpu.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <sys/user.h>
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the pcb, set up the stack so that the child
* ready to run and return to user mode.
*/
void
cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
{
struct proc *p1;
struct trapframe *tf;
struct callframe *cf;
struct pcb *pcb;
KASSERT(td1 == curthread || td1 == &thread0,
("cpu_fork: p1 not curproc and not proc0"));
CTR3(KTR_PROC, "cpu_fork: called td1=%08x p2=%08x flags=%x", (u_int)td1, (u_int)p2, flags);
if ((flags & RFPROC) == 0)
return;
p1 = td1->td_proc;
pcb = (struct pcb *)((td2->td_kstack + KSTACK_PAGES * PAGE_SIZE -
sizeof(struct pcb)) & ~0x2fU);
td2->td_pcb = pcb;
/* Copy the pcb */
bcopy(td1->td_pcb, pcb, sizeof(struct pcb));
/*
* Create a fresh stack for the new process.
* Copy the trap frame for the return to user mode as if from a
* syscall. This copies most of the user mode register values.
*/
tf = (struct trapframe *)pcb - 1;
bcopy(td1->td_frame, tf, sizeof(*tf));
/* Set up trap frame. */
tf->fixreg[FIRSTARG] = 0;
tf->fixreg[FIRSTARG + 1] = 0;
tf->cr &= ~0x10000000;
td2->td_frame = tf;
cf = (struct callframe *)tf - 1;
cf->cf_func = (register_t)fork_return;
cf->cf_arg0 = (register_t)td2;
cf->cf_arg1 = (register_t)tf;
pcb->pcb_sp = (register_t)cf;
pcb->pcb_lr = (register_t)fork_trampoline;
pcb->pcb_usr = kernel_pmap->pm_sr[USER_SR];
/*
* Now cpu_switch() can schedule the new process.
*/
}
/*
* Intercept the return address from a freshly forked process that has NOT
* been scheduled yet.
*
* This is needed to make kernel threads stay in kernel mode.
*/
void
cpu_set_fork_handler(td, func, arg)
struct thread *td;
void (*func)(void *);
void *arg;
{
struct callframe *cf;
CTR3(KTR_PROC, "cpu_set_fork_handler: called with td=%08x func=%08x arg=%08x",
(u_int)td, (u_int)func, (u_int)arg);
cf = (struct callframe *)td->td_pcb->pcb_sp;
cf->cf_func = (register_t)func;
cf->cf_arg0 = (register_t)arg;
}
/*
* cpu_exit is called as the last action during exit.
* We release the address space of the process, block interrupts,
* and call switch_exit. switch_exit switches to proc0's PCB and stack,
* then jumps into the middle of cpu_switch, as if it were switching
* from proc0.
*/
void
cpu_exit(td)
register struct thread *td;
{
}
void
cpu_sched_exit(td)
register struct thread *td;
{
}
void
cpu_wait(td)
struct proc *td;
{
}
/* Temporary helper */
void
cpu_throw(void)
{
cpu_switch();
panic("cpu_throw() didn't");
}
/*
* Reset back to firmware.
*/
void
cpu_reset()
{
OF_exit();
}
/*
* Software interrupt handler for queued VM system processing.
*/
void
swi_vm(void *dummy)
{
#if 0 /* XXX: Don't have busdma stuff yet */
if (busdma_swi_pending != 0)
busdma_swi();
#endif
}
/*
* Tell whether this address is in some physical memory region.
* Currently used by the kernel coredump code in order to avoid
* dumping the ``ISA memory hole'' which could cause indefinite hangs,
* or other unpredictable behaviour.
*/
int
is_physical_memory(addr)
vm_offset_t addr;
{
/*
* stuff other tests for known memory-mapped devices (PCI?)
* here
*/
return 1;
}
/*
* KSE functions
*/
void
cpu_thread_exit(struct thread *td)
{
return;
}
void
cpu_thread_clean(struct thread *td)
{
}
void
cpu_thread_setup(struct thread *td)
{
return;
}
void
cpu_set_upcall(struct thread *td, struct thread *td0)
{
return;
}
void
cpu_set_upcall_kse(struct thread *td, struct kse_upcall *ku)
{
return;
}