freebsd-dev/sys/cam/scsi/scsi_pt.c
Alexander Motin 227d67aa54 Merge CAM locking changes from the projects/camlock branch to radically
reduce lock congestion and improve SMP scalability of the SCSI/ATA stack,
preparing the ground for the coming next GEOM direct dispatch support.

Replace big per-SIM locks with bunch of smaller ones:
 - per-LUN locks to protect device and peripheral drivers state;
 - per-target locks to protect list of LUNs on target;
 - per-bus locks to protect reference counting;
 - per-send queue locks to protect queue of CCBs to be sent;
 - per-done queue locks to protect queue of completed CCBs;
 - remaining per-SIM locks now protect only HBA driver internals.

While holding LUN lock it is allowed (while not recommended for performance
reasons) to take SIM lock.  The opposite acquisition order is forbidden.
All the other locks are leaf locks, that can be taken anywhere, but should
not be cascaded.  Many functions, such as: xpt_action(), xpt_done(),
xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM
lock to be held.

To keep compatibility and solve cases where SIM lock can't be dropped, all
xpt_async() calls in addition to xpt_done() calls are queued to completion
threads for async processing in clean environment without SIM lock held.

Instead of single CAM SWI thread, used for commands completion processing
before, use multiple (depending on number of CPUs) threads.  Load balanced
between them using "hash" of the device B:T:L address.

HBA drivers that can drop SIM lock during completion processing and have
sufficient number of completion threads to efficiently scale to multiple
CPUs can use new function xpt_done_direct() to avoid extra context switch.
Make ahci(4) driver to use this mechanism depending on hardware setup.

Sponsored by:	iXsystems, Inc.
MFC after:	2 months
2013-10-21 12:00:26 +00:00

632 lines
15 KiB
C

/*-
* Implementation of SCSI Processor Target Peripheral driver for CAM.
*
* Copyright (c) 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/types.h>
#include <sys/bio.h>
#include <sys/devicestat.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/ptio.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_pt.h>
#include "opt_pt.h"
typedef enum {
PT_STATE_PROBE,
PT_STATE_NORMAL
} pt_state;
typedef enum {
PT_FLAG_NONE = 0x00,
PT_FLAG_OPEN = 0x01,
PT_FLAG_DEVICE_INVALID = 0x02,
PT_FLAG_RETRY_UA = 0x04
} pt_flags;
typedef enum {
PT_CCB_BUFFER_IO = 0x01,
PT_CCB_RETRY_UA = 0x04,
PT_CCB_BUFFER_IO_UA = PT_CCB_BUFFER_IO|PT_CCB_RETRY_UA
} pt_ccb_state;
/* Offsets into our private area for storing information */
#define ccb_state ppriv_field0
#define ccb_bp ppriv_ptr1
struct pt_softc {
struct bio_queue_head bio_queue;
struct devstat *device_stats;
LIST_HEAD(, ccb_hdr) pending_ccbs;
pt_state state;
pt_flags flags;
union ccb saved_ccb;
int io_timeout;
struct cdev *dev;
};
static d_open_t ptopen;
static d_close_t ptclose;
static d_strategy_t ptstrategy;
static periph_init_t ptinit;
static void ptasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
static periph_ctor_t ptctor;
static periph_oninv_t ptoninvalidate;
static periph_dtor_t ptdtor;
static periph_start_t ptstart;
static void ptdone(struct cam_periph *periph,
union ccb *done_ccb);
static d_ioctl_t ptioctl;
static int pterror(union ccb *ccb, u_int32_t cam_flags,
u_int32_t sense_flags);
void scsi_send_receive(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int tag_action, int readop, u_int byte2,
u_int32_t xfer_len, u_int8_t *data_ptr,
u_int8_t sense_len, u_int32_t timeout);
static struct periph_driver ptdriver =
{
ptinit, "pt",
TAILQ_HEAD_INITIALIZER(ptdriver.units), /* generation */ 0
};
PERIPHDRIVER_DECLARE(pt, ptdriver);
static struct cdevsw pt_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = ptopen,
.d_close = ptclose,
.d_read = physread,
.d_write = physwrite,
.d_ioctl = ptioctl,
.d_strategy = ptstrategy,
.d_name = "pt",
};
#ifndef SCSI_PT_DEFAULT_TIMEOUT
#define SCSI_PT_DEFAULT_TIMEOUT 60
#endif
static int
ptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct cam_periph *periph;
struct pt_softc *softc;
int error = 0;
periph = (struct cam_periph *)dev->si_drv1;
if (cam_periph_acquire(periph) != CAM_REQ_CMP)
return (ENXIO);
softc = (struct pt_softc *)periph->softc;
cam_periph_lock(periph);
if (softc->flags & PT_FLAG_DEVICE_INVALID) {
cam_periph_release_locked(periph);
cam_periph_unlock(periph);
return(ENXIO);
}
if ((softc->flags & PT_FLAG_OPEN) == 0)
softc->flags |= PT_FLAG_OPEN;
else {
error = EBUSY;
cam_periph_release(periph);
}
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
("ptopen: dev=%s\n", devtoname(dev)));
cam_periph_unlock(periph);
return (error);
}
static int
ptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
{
struct cam_periph *periph;
struct pt_softc *softc;
periph = (struct cam_periph *)dev->si_drv1;
if (periph == NULL)
return (ENXIO);
softc = (struct pt_softc *)periph->softc;
cam_periph_lock(periph);
softc->flags &= ~PT_FLAG_OPEN;
cam_periph_release_locked(periph);
cam_periph_unlock(periph);
return (0);
}
/*
* Actually translate the requested transfer into one the physical driver
* can understand. The transfer is described by a buf and will include
* only one physical transfer.
*/
static void
ptstrategy(struct bio *bp)
{
struct cam_periph *periph;
struct pt_softc *softc;
periph = (struct cam_periph *)bp->bio_dev->si_drv1;
bp->bio_resid = bp->bio_bcount;
if (periph == NULL) {
biofinish(bp, NULL, ENXIO);
return;
}
cam_periph_lock(periph);
softc = (struct pt_softc *)periph->softc;
/*
* If the device has been made invalid, error out
*/
if ((softc->flags & PT_FLAG_DEVICE_INVALID)) {
cam_periph_unlock(periph);
biofinish(bp, NULL, ENXIO);
return;
}
/*
* Place it in the queue of disk activities for this disk
*/
bioq_insert_tail(&softc->bio_queue, bp);
/*
* Schedule ourselves for performing the work.
*/
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
cam_periph_unlock(periph);
return;
}
static void
ptinit(void)
{
cam_status status;
/*
* Install a global async callback. This callback will
* receive async callbacks like "new device found".
*/
status = xpt_register_async(AC_FOUND_DEVICE, ptasync, NULL, NULL);
if (status != CAM_REQ_CMP) {
printf("pt: Failed to attach master async callback "
"due to status 0x%x!\n", status);
}
}
static cam_status
ptctor(struct cam_periph *periph, void *arg)
{
struct pt_softc *softc;
struct ccb_getdev *cgd;
struct ccb_pathinq cpi;
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL) {
printf("ptregister: no getdev CCB, can't register device\n");
return(CAM_REQ_CMP_ERR);
}
softc = (struct pt_softc *)malloc(sizeof(*softc),M_DEVBUF,M_NOWAIT);
if (softc == NULL) {
printf("daregister: Unable to probe new device. "
"Unable to allocate softc\n");
return(CAM_REQ_CMP_ERR);
}
bzero(softc, sizeof(*softc));
LIST_INIT(&softc->pending_ccbs);
softc->state = PT_STATE_NORMAL;
bioq_init(&softc->bio_queue);
softc->io_timeout = SCSI_PT_DEFAULT_TIMEOUT * 1000;
periph->softc = softc;
bzero(&cpi, sizeof(cpi));
xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
cam_periph_unlock(periph);
softc->device_stats = devstat_new_entry("pt",
periph->unit_number, 0,
DEVSTAT_NO_BLOCKSIZE,
SID_TYPE(&cgd->inq_data) |
XPORT_DEVSTAT_TYPE(cpi.transport),
DEVSTAT_PRIORITY_OTHER);
softc->dev = make_dev(&pt_cdevsw, periph->unit_number, UID_ROOT,
GID_OPERATOR, 0600, "%s%d", periph->periph_name,
periph->unit_number);
cam_periph_lock(periph);
softc->dev->si_drv1 = periph;
/*
* Add async callbacks for bus reset and
* bus device reset calls. I don't bother
* checking if this fails as, in most cases,
* the system will function just fine without
* them and the only alternative would be to
* not attach the device on failure.
*/
xpt_register_async(AC_SENT_BDR | AC_BUS_RESET | AC_LOST_DEVICE,
ptasync, periph, periph->path);
/* Tell the user we've attached to the device */
xpt_announce_periph(periph, NULL);
return(CAM_REQ_CMP);
}
static void
ptoninvalidate(struct cam_periph *periph)
{
struct pt_softc *softc;
softc = (struct pt_softc *)periph->softc;
/*
* De-register any async callbacks.
*/
xpt_register_async(0, ptasync, periph, periph->path);
softc->flags |= PT_FLAG_DEVICE_INVALID;
/*
* Return all queued I/O with ENXIO.
* XXX Handle any transactions queued to the card
* with XPT_ABORT_CCB.
*/
bioq_flush(&softc->bio_queue, NULL, ENXIO);
}
static void
ptdtor(struct cam_periph *periph)
{
struct pt_softc *softc;
softc = (struct pt_softc *)periph->softc;
devstat_remove_entry(softc->device_stats);
cam_periph_unlock(periph);
destroy_dev(softc->dev);
cam_periph_lock(periph);
free(softc, M_DEVBUF);
}
static void
ptasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
{
struct cam_periph *periph;
periph = (struct cam_periph *)callback_arg;
switch (code) {
case AC_FOUND_DEVICE:
{
struct ccb_getdev *cgd;
cam_status status;
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL)
break;
if (cgd->protocol != PROTO_SCSI)
break;
if (SID_TYPE(&cgd->inq_data) != T_PROCESSOR)
break;
/*
* Allocate a peripheral instance for
* this device and start the probe
* process.
*/
status = cam_periph_alloc(ptctor, ptoninvalidate, ptdtor,
ptstart, "pt", CAM_PERIPH_BIO,
path, ptasync,
AC_FOUND_DEVICE, cgd);
if (status != CAM_REQ_CMP
&& status != CAM_REQ_INPROG)
printf("ptasync: Unable to attach to new device "
"due to status 0x%x\n", status);
break;
}
case AC_SENT_BDR:
case AC_BUS_RESET:
{
struct pt_softc *softc;
struct ccb_hdr *ccbh;
softc = (struct pt_softc *)periph->softc;
/*
* Don't fail on the expected unit attention
* that will occur.
*/
softc->flags |= PT_FLAG_RETRY_UA;
LIST_FOREACH(ccbh, &softc->pending_ccbs, periph_links.le)
ccbh->ccb_state |= PT_CCB_RETRY_UA;
}
/* FALLTHROUGH */
default:
cam_periph_async(periph, code, path, arg);
break;
}
}
static void
ptstart(struct cam_periph *periph, union ccb *start_ccb)
{
struct pt_softc *softc;
struct bio *bp;
softc = (struct pt_softc *)periph->softc;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("ptstart\n"));
/*
* See if there is a buf with work for us to do..
*/
bp = bioq_first(&softc->bio_queue);
if (bp == NULL) {
xpt_release_ccb(start_ccb);
} else {
bioq_remove(&softc->bio_queue, bp);
devstat_start_transaction_bio(softc->device_stats, bp);
scsi_send_receive(&start_ccb->csio,
/*retries*/4,
ptdone,
MSG_SIMPLE_Q_TAG,
bp->bio_cmd == BIO_READ,
/*byte2*/0,
bp->bio_bcount,
bp->bio_data,
/*sense_len*/SSD_FULL_SIZE,
/*timeout*/softc->io_timeout);
start_ccb->ccb_h.ccb_state = PT_CCB_BUFFER_IO_UA;
/*
* Block out any asynchronous callbacks
* while we touch the pending ccb list.
*/
LIST_INSERT_HEAD(&softc->pending_ccbs, &start_ccb->ccb_h,
periph_links.le);
start_ccb->ccb_h.ccb_bp = bp;
bp = bioq_first(&softc->bio_queue);
xpt_action(start_ccb);
if (bp != NULL) {
/* Have more work to do, so ensure we stay scheduled */
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
}
}
}
static void
ptdone(struct cam_periph *periph, union ccb *done_ccb)
{
struct pt_softc *softc;
struct ccb_scsiio *csio;
softc = (struct pt_softc *)periph->softc;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("ptdone\n"));
csio = &done_ccb->csio;
switch (csio->ccb_h.ccb_state) {
case PT_CCB_BUFFER_IO:
case PT_CCB_BUFFER_IO_UA:
{
struct bio *bp;
bp = (struct bio *)done_ccb->ccb_h.ccb_bp;
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
int error;
int sf;
if ((csio->ccb_h.ccb_state & PT_CCB_RETRY_UA) != 0)
sf = SF_RETRY_UA;
else
sf = 0;
error = pterror(done_ccb, CAM_RETRY_SELTO, sf);
if (error == ERESTART) {
/*
* A retry was scheuled, so
* just return.
*/
return;
}
if (error != 0) {
if (error == ENXIO) {
/*
* Catastrophic error. Mark our device
* as invalid.
*/
xpt_print(periph->path,
"Invalidating device\n");
softc->flags |= PT_FLAG_DEVICE_INVALID;
}
/*
* return all queued I/O with EIO, so that
* the client can retry these I/Os in the
* proper order should it attempt to recover.
*/
bioq_flush(&softc->bio_queue, NULL, EIO);
bp->bio_error = error;
bp->bio_resid = bp->bio_bcount;
bp->bio_flags |= BIO_ERROR;
} else {
bp->bio_resid = csio->resid;
bp->bio_error = 0;
if (bp->bio_resid != 0) {
/* Short transfer ??? */
bp->bio_flags |= BIO_ERROR;
}
}
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
} else {
bp->bio_resid = csio->resid;
if (bp->bio_resid != 0)
bp->bio_flags |= BIO_ERROR;
}
/*
* Block out any asynchronous callbacks
* while we touch the pending ccb list.
*/
LIST_REMOVE(&done_ccb->ccb_h, periph_links.le);
biofinish(bp, softc->device_stats, 0);
break;
}
}
xpt_release_ccb(done_ccb);
}
static int
pterror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
{
struct pt_softc *softc;
struct cam_periph *periph;
periph = xpt_path_periph(ccb->ccb_h.path);
softc = (struct pt_softc *)periph->softc;
return(cam_periph_error(ccb, cam_flags, sense_flags,
&softc->saved_ccb));
}
static int
ptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
{
struct cam_periph *periph;
struct pt_softc *softc;
int error = 0;
periph = (struct cam_periph *)dev->si_drv1;
if (periph == NULL)
return(ENXIO);
softc = (struct pt_softc *)periph->softc;
cam_periph_lock(periph);
switch(cmd) {
case PTIOCGETTIMEOUT:
if (softc->io_timeout >= 1000)
*(int *)addr = softc->io_timeout / 1000;
else
*(int *)addr = 0;
break;
case PTIOCSETTIMEOUT:
if (*(int *)addr < 1) {
error = EINVAL;
break;
}
softc->io_timeout = *(int *)addr * 1000;
break;
default:
error = cam_periph_ioctl(periph, cmd, addr, pterror);
break;
}
cam_periph_unlock(periph);
return(error);
}
void
scsi_send_receive(struct ccb_scsiio *csio, u_int32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
u_int tag_action, int readop, u_int byte2,
u_int32_t xfer_len, u_int8_t *data_ptr, u_int8_t sense_len,
u_int32_t timeout)
{
struct scsi_send_receive *scsi_cmd;
scsi_cmd = (struct scsi_send_receive *)&csio->cdb_io.cdb_bytes;
scsi_cmd->opcode = readop ? RECEIVE : SEND;
scsi_cmd->byte2 = byte2;
scsi_ulto3b(xfer_len, scsi_cmd->xfer_len);
scsi_cmd->control = 0;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/readop ? CAM_DIR_IN : CAM_DIR_OUT,
tag_action,
data_ptr,
xfer_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
}