freebsd-dev/sys/i386/i386/sys_machdep.c
Robert Watson 9283578946 Instrument sysarch() MD privileged I/O access interfaces with a MAC
check, mac_check_sysarch_ioperm(), permitting MAC security policy
modules to control access to these interfaces.  Currently, they
protect access to IOPL on i386, and setting HAE on Alpha.
Additional checks might be required on other platforms to prevent
bypass of kernel security protections by unauthorized processes.

Obtained from:	TrustedBSD Project
Sponsored by:	DARPA, Network Associates Laboratories
2003-03-06 04:47:47 +00:00

564 lines
15 KiB
C

/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)sys_machdep.c 5.5 (Berkeley) 1/19/91
* $FreeBSD$
*
*/
#include "opt_kstack_pages.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/sysproto.h>
#include <sys/user.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <machine/cpu.h>
#include <machine/pcb_ext.h> /* pcb.h included by sys/user.h */
#include <machine/proc.h>
#include <machine/sysarch.h>
#include <vm/vm_kern.h> /* for kernel_map */
#define MAX_LD 8192
#define LD_PER_PAGE 512
#define NEW_MAX_LD(num) ((num + LD_PER_PAGE) & ~(LD_PER_PAGE-1))
#define SIZE_FROM_LARGEST_LD(num) (NEW_MAX_LD(num) << 3)
static int i386_get_ldt(struct thread *, char *);
static int i386_set_ldt(struct thread *, char *);
static int i386_get_ioperm(struct thread *, char *);
static int i386_set_ioperm(struct thread *, char *);
#ifdef SMP
static void set_user_ldt_rv(struct thread *);
#endif
#ifndef _SYS_SYSPROTO_H_
struct sysarch_args {
int op;
char *parms;
};
#endif
int
sysarch(td, uap)
struct thread *td;
register struct sysarch_args *uap;
{
int error = 0;
switch(uap->op) {
case I386_GET_LDT:
error = i386_get_ldt(td, uap->parms);
break;
case I386_SET_LDT:
error = i386_set_ldt(td, uap->parms);
break;
case I386_GET_IOPERM:
error = i386_get_ioperm(td, uap->parms);
break;
case I386_SET_IOPERM:
error = i386_set_ioperm(td, uap->parms);
break;
case I386_VM86:
error = vm86_sysarch(td, uap->parms);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
int
i386_extend_pcb(struct thread *td)
{
int i, offset;
u_long *addr;
struct pcb_ext *ext;
struct soft_segment_descriptor ssd = {
0, /* segment base address (overwritten) */
ctob(IOPAGES + 1) - 1, /* length */
SDT_SYS386TSS, /* segment type */
0, /* priority level */
1, /* descriptor present */
0, 0,
0, /* default 32 size */
0 /* granularity */
};
if (td->td_proc->p_flag & P_THREADED)
return (EINVAL); /* XXXKSE */
/* XXXKSE All the code below only works in 1:1 needs changing */
ext = (struct pcb_ext *)kmem_alloc(kernel_map, ctob(IOPAGES+1));
if (ext == 0)
return (ENOMEM);
bzero(ext, sizeof(struct pcb_ext));
/* -16 is so we can convert a trapframe into vm86trapframe inplace */
ext->ext_tss.tss_esp0 = td->td_kstack + ctob(KSTACK_PAGES) -
sizeof(struct pcb) - 16;
ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
/*
* The last byte of the i/o map must be followed by an 0xff byte.
* We arbitrarily allocate 16 bytes here, to keep the starting
* address on a doubleword boundary.
*/
offset = PAGE_SIZE - 16;
ext->ext_tss.tss_ioopt =
(offset - ((unsigned)&ext->ext_tss - (unsigned)ext)) << 16;
ext->ext_iomap = (caddr_t)ext + offset;
ext->ext_vm86.vm86_intmap = (caddr_t)ext + offset - 32;
addr = (u_long *)ext->ext_vm86.vm86_intmap;
for (i = 0; i < (ctob(IOPAGES) + 32 + 16) / sizeof(u_long); i++)
*addr++ = ~0;
ssd.ssd_base = (unsigned)&ext->ext_tss;
ssd.ssd_limit -= ((unsigned)&ext->ext_tss - (unsigned)ext);
ssdtosd(&ssd, &ext->ext_tssd);
KASSERT(td->td_proc == curthread->td_proc, ("giving TSS to !curproc"));
KASSERT(td->td_pcb->pcb_ext == 0, ("already have a TSS!"));
mtx_lock_spin(&sched_lock);
td->td_pcb->pcb_ext = ext;
/* switch to the new TSS after syscall completes */
td->td_flags |= TDF_NEEDRESCHED;
mtx_unlock_spin(&sched_lock);
return 0;
}
static int
i386_set_ioperm(td, args)
struct thread *td;
char *args;
{
int i, error;
struct i386_ioperm_args ua;
char *iomap;
if ((error = copyin(args, &ua, sizeof(struct i386_ioperm_args))) != 0)
return (error);
#ifdef MAC
if ((error = mac_check_sysarch_ioperm(td->td_ucred)) != 0)
return (error);
#endif
if ((error = suser(td)) != 0)
return (error);
if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
return (error);
/*
* XXX
* While this is restricted to root, we should probably figure out
* whether any other driver is using this i/o address, as so not to
* cause confusion. This probably requires a global 'usage registry'.
*/
if (td->td_pcb->pcb_ext == 0)
if ((error = i386_extend_pcb(td)) != 0)
return (error);
iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
if (ua.start + ua.length > IOPAGES * PAGE_SIZE * NBBY)
return (EINVAL);
for (i = ua.start; i < ua.start + ua.length; i++) {
if (ua.enable)
iomap[i >> 3] &= ~(1 << (i & 7));
else
iomap[i >> 3] |= (1 << (i & 7));
}
return (error);
}
static int
i386_get_ioperm(td, args)
struct thread *td;
char *args;
{
int i, state, error;
struct i386_ioperm_args ua;
char *iomap;
if ((error = copyin(args, &ua, sizeof(struct i386_ioperm_args))) != 0)
return (error);
if (ua.start >= IOPAGES * PAGE_SIZE * NBBY)
return (EINVAL);
if (td->td_pcb->pcb_ext == 0) {
ua.length = 0;
goto done;
}
iomap = (char *)td->td_pcb->pcb_ext->ext_iomap;
i = ua.start;
state = (iomap[i >> 3] >> (i & 7)) & 1;
ua.enable = !state;
ua.length = 1;
for (i = ua.start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) {
if (state != ((iomap[i >> 3] >> (i & 7)) & 1))
break;
ua.length++;
}
done:
error = copyout(&ua, args, sizeof(struct i386_ioperm_args));
return (error);
}
/*
* Update the GDT entry pointing to the LDT to point to the LDT of the
* current process.
*
* This must be called with sched_lock held. Unfortunately, we can't use a
* mtx_assert() here because cpu_switch() calls this function after changing
* curproc but before sched_lock's owner is updated in mi_switch().
*/
void
set_user_ldt(struct mdproc *mdp)
{
struct proc_ldt *pldt;
pldt = mdp->md_ldt;
#ifdef SMP
gdt[PCPU_GET(cpuid) * NGDT + GUSERLDT_SEL].sd = pldt->ldt_sd;
#else
gdt[GUSERLDT_SEL].sd = pldt->ldt_sd;
#endif
lldt(GSEL(GUSERLDT_SEL, SEL_KPL));
PCPU_SET(currentldt, GSEL(GUSERLDT_SEL, SEL_KPL));
}
#ifdef SMP
static void
set_user_ldt_rv(struct thread *td)
{
if (td != PCPU_GET(curthread))
return;
mtx_lock_spin(&sched_lock);
set_user_ldt(&td->td_proc->p_md);
mtx_unlock_spin(&sched_lock);
}
#endif
/*
* Must be called with either sched_lock free or held but not recursed.
* If it does not return NULL, it will return with it owned.
*/
struct proc_ldt *
user_ldt_alloc(struct mdproc *mdp, int len)
{
struct proc_ldt *pldt, *new_ldt;
if (mtx_owned(&sched_lock))
mtx_unlock_spin(&sched_lock);
mtx_assert(&sched_lock, MA_NOTOWNED);
MALLOC(new_ldt, struct proc_ldt *, sizeof(struct proc_ldt),
M_SUBPROC, M_WAITOK);
new_ldt->ldt_len = len = NEW_MAX_LD(len);
new_ldt->ldt_base = (caddr_t)kmem_alloc(kernel_map,
len * sizeof(union descriptor));
if (new_ldt->ldt_base == NULL) {
FREE(new_ldt, M_SUBPROC);
return NULL;
}
new_ldt->ldt_refcnt = 1;
new_ldt->ldt_active = 0;
mtx_lock_spin(&sched_lock);
gdt_segs[GUSERLDT_SEL].ssd_base = (unsigned)new_ldt->ldt_base;
gdt_segs[GUSERLDT_SEL].ssd_limit = len * sizeof(union descriptor) - 1;
ssdtosd(&gdt_segs[GUSERLDT_SEL], &new_ldt->ldt_sd);
if ((pldt = mdp->md_ldt)) {
if (len > pldt->ldt_len)
len = pldt->ldt_len;
bcopy(pldt->ldt_base, new_ldt->ldt_base,
len * sizeof(union descriptor));
} else {
bcopy(ldt, new_ldt->ldt_base, sizeof(ldt));
}
return new_ldt;
}
/*
* Must be called either with sched_lock free or held but not recursed.
* If md_ldt is not NULL, it will return with sched_lock released.
*/
void
user_ldt_free(struct thread *td)
{
struct mdproc *mdp = &td->td_proc->p_md;
struct proc_ldt *pldt = mdp->md_ldt;
if (pldt == NULL)
return;
if (!mtx_owned(&sched_lock))
mtx_lock_spin(&sched_lock);
mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
if (td == PCPU_GET(curthread)) {
lldt(_default_ldt);
PCPU_SET(currentldt, _default_ldt);
}
mdp->md_ldt = NULL;
if (--pldt->ldt_refcnt == 0) {
mtx_unlock_spin(&sched_lock);
kmem_free(kernel_map, (vm_offset_t)pldt->ldt_base,
pldt->ldt_len * sizeof(union descriptor));
FREE(pldt, M_SUBPROC);
} else
mtx_unlock_spin(&sched_lock);
}
static int
i386_get_ldt(td, args)
struct thread *td;
char *args;
{
int error = 0;
struct proc_ldt *pldt = td->td_proc->p_md.md_ldt;
int nldt, num;
union descriptor *lp;
struct i386_ldt_args ua, *uap = &ua;
if ((error = copyin(args, uap, sizeof(struct i386_ldt_args))) < 0)
return(error);
#ifdef DEBUG
printf("i386_get_ldt: start=%d num=%d descs=%p\n",
uap->start, uap->num, (void *)uap->descs);
#endif
/* verify range of LDTs exist */
if ((uap->start < 0) || (uap->num <= 0))
return(EINVAL);
if (pldt) {
nldt = pldt->ldt_len;
num = min(uap->num, nldt);
lp = &((union descriptor *)(pldt->ldt_base))[uap->start];
} else {
nldt = sizeof(ldt)/sizeof(ldt[0]);
num = min(uap->num, nldt);
lp = &ldt[uap->start];
}
if (uap->start + num > nldt)
return(EINVAL);
error = copyout(lp, uap->descs, num * sizeof(union descriptor));
if (!error)
td->td_retval[0] = num;
return(error);
}
static int
i386_set_ldt(td, args)
struct thread *td;
char *args;
{
int error = 0, i, n;
int largest_ld;
struct mdproc *mdp = &td->td_proc->p_md;
struct proc_ldt *pldt = mdp->md_ldt;
struct i386_ldt_args ua, *uap = &ua;
union descriptor *descs;
caddr_t old_ldt_base;
int descs_size, old_ldt_len;
register_t savecrit;
if ((error = copyin(args, uap, sizeof(struct i386_ldt_args))) < 0)
return(error);
#ifdef DEBUG
printf("i386_set_ldt: start=%d num=%d descs=%p\n",
uap->start, uap->num, (void *)uap->descs);
#endif
/* verify range of descriptors to modify */
if ((uap->start < 0) || (uap->start >= MAX_LD) || (uap->num < 0) ||
(uap->num > MAX_LD))
{
return(EINVAL);
}
largest_ld = uap->start + uap->num - 1;
if (largest_ld >= MAX_LD)
return(EINVAL);
/* allocate user ldt */
if (!pldt || largest_ld >= pldt->ldt_len) {
struct proc_ldt *new_ldt = user_ldt_alloc(mdp, largest_ld);
if (new_ldt == NULL)
return ENOMEM;
if (pldt) {
old_ldt_base = pldt->ldt_base;
old_ldt_len = pldt->ldt_len;
pldt->ldt_sd = new_ldt->ldt_sd;
pldt->ldt_base = new_ldt->ldt_base;
pldt->ldt_len = new_ldt->ldt_len;
mtx_unlock_spin(&sched_lock);
kmem_free(kernel_map, (vm_offset_t)old_ldt_base,
old_ldt_len * sizeof(union descriptor));
FREE(new_ldt, M_SUBPROC);
#ifndef SMP
mtx_lock_spin(&sched_lock);
#endif
} else {
mdp->md_ldt = pldt = new_ldt;
#ifdef SMP
mtx_unlock_spin(&sched_lock);
#endif
}
#ifdef SMP
/* signal other cpus to reload ldt */
smp_rendezvous(NULL, (void (*)(void *))set_user_ldt_rv,
NULL, td);
#else
set_user_ldt(mdp);
mtx_unlock_spin(&sched_lock);
#endif
}
descs_size = uap->num * sizeof(union descriptor);
descs = (union descriptor *)kmem_alloc(kernel_map, descs_size);
if (descs == NULL)
return (ENOMEM);
error = copyin(&uap->descs[0], descs, descs_size);
if (error) {
kmem_free(kernel_map, (vm_offset_t)descs, descs_size);
return (error);
}
/* Check descriptors for access violations */
for (i = 0, n = uap->start; i < uap->num; i++, n++) {
union descriptor *dp;
dp = &descs[i];
switch (dp->sd.sd_type) {
case SDT_SYSNULL: /* system null */
dp->sd.sd_p = 0;
break;
case SDT_SYS286TSS: /* system 286 TSS available */
case SDT_SYSLDT: /* system local descriptor table */
case SDT_SYS286BSY: /* system 286 TSS busy */
case SDT_SYSTASKGT: /* system task gate */
case SDT_SYS286IGT: /* system 286 interrupt gate */
case SDT_SYS286TGT: /* system 286 trap gate */
case SDT_SYSNULL2: /* undefined by Intel */
case SDT_SYS386TSS: /* system 386 TSS available */
case SDT_SYSNULL3: /* undefined by Intel */
case SDT_SYS386BSY: /* system 386 TSS busy */
case SDT_SYSNULL4: /* undefined by Intel */
case SDT_SYS386IGT: /* system 386 interrupt gate */
case SDT_SYS386TGT: /* system 386 trap gate */
case SDT_SYS286CGT: /* system 286 call gate */
case SDT_SYS386CGT: /* system 386 call gate */
/* I can't think of any reason to allow a user proc
* to create a segment of these types. They are
* for OS use only.
*/
kmem_free(kernel_map, (vm_offset_t)descs, descs_size);
return EACCES;
/*NOTREACHED*/
/* memory segment types */
case SDT_MEMEC: /* memory execute only conforming */
case SDT_MEMEAC: /* memory execute only accessed conforming */
case SDT_MEMERC: /* memory execute read conforming */
case SDT_MEMERAC: /* memory execute read accessed conforming */
/* Must be "present" if executable and conforming. */
if (dp->sd.sd_p == 0) {
kmem_free(kernel_map, (vm_offset_t)descs,
descs_size);
return (EACCES);
}
break;
case SDT_MEMRO: /* memory read only */
case SDT_MEMROA: /* memory read only accessed */
case SDT_MEMRW: /* memory read write */
case SDT_MEMRWA: /* memory read write accessed */
case SDT_MEMROD: /* memory read only expand dwn limit */
case SDT_MEMRODA: /* memory read only expand dwn lim accessed */
case SDT_MEMRWD: /* memory read write expand dwn limit */
case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */
case SDT_MEME: /* memory execute only */
case SDT_MEMEA: /* memory execute only accessed */
case SDT_MEMER: /* memory execute read */
case SDT_MEMERA: /* memory execute read accessed */
break;
default:
kmem_free(kernel_map, (vm_offset_t)descs, descs_size);
return(EINVAL);
/*NOTREACHED*/
}
/* Only user (ring-3) descriptors may be present. */
if ((dp->sd.sd_p != 0) && (dp->sd.sd_dpl != SEL_UPL)) {
kmem_free(kernel_map, (vm_offset_t)descs, descs_size);
return (EACCES);
}
}
/* Fill in range */
savecrit = intr_disable();
bcopy(descs,
&((union descriptor *)(pldt->ldt_base))[uap->start],
uap->num * sizeof(union descriptor));
td->td_retval[0] = uap->start;
intr_restore(savecrit);
kmem_free(kernel_map, (vm_offset_t)descs, descs_size);
return (0);
}