freebsd-dev/libexec/rtld-elf/rtld.c
Christian S.J. Peron d61e5aa4ed In the event a process is tainted (setuid/setgid binaries), un-set any
potentially dangerous environment variables all together. It should be
noted that the run-time linker will not honnor these environment variables
if the process is tainted currently. However, once a child of the tainted
process calls setuid(2), it's status as being tainted (as defined by
issetugid(2)) will be removed. This could be problematic because
subsequent activations of the run-time linker could honnor these
dangerous variables.

This is more of an anti foot-shot mechanism, there is nothing I am
aware of in base that does this, however there may be third party
utilities which do, and there is no real negative impact of clearing
these environment variables.

Discussed on:	secteam
Reviewed by:	cperciva
PR:		kern/109836
MFC after:	2 weeks
2007-05-17 18:00:27 +00:00

3375 lines
87 KiB
C

/*-
* Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
* Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Dynamic linker for ELF.
*
* John Polstra <jdp@polstra.com>.
*/
#ifndef __GNUC__
#error "GCC is needed to compile this file"
#endif
#include <sys/param.h>
#include <sys/mount.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <sys/ktrace.h>
#include <dlfcn.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "debug.h"
#include "rtld.h"
#include "libmap.h"
#include "rtld_tls.h"
#ifndef COMPAT_32BIT
#define PATH_RTLD "/libexec/ld-elf.so.1"
#else
#define PATH_RTLD "/libexec/ld-elf32.so.1"
#endif
/* Types. */
typedef void (*func_ptr_type)();
typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
/*
* This structure provides a reentrant way to keep a list of objects and
* check which ones have already been processed in some way.
*/
typedef struct Struct_DoneList {
const Obj_Entry **objs; /* Array of object pointers */
unsigned int num_alloc; /* Allocated size of the array */
unsigned int num_used; /* Number of array slots used */
} DoneList;
/*
* Function declarations.
*/
static const char *basename(const char *);
static void die(void) __dead2;
static void digest_dynamic(Obj_Entry *, int);
static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
static Obj_Entry *dlcheck(void *);
static Obj_Entry *do_load_object(int, const char *, char *, struct stat *);
static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
static bool donelist_check(DoneList *, const Obj_Entry *);
static void errmsg_restore(char *);
static char *errmsg_save(void);
static void *fill_search_info(const char *, size_t, void *);
static char *find_library(const char *, const Obj_Entry *);
static const char *gethints(void);
static void init_dag(Obj_Entry *);
static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
static void init_rtld(caddr_t);
static void initlist_add_neededs(Needed_Entry *, Objlist *);
static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
static bool is_exported(const Elf_Sym *);
static void linkmap_add(Obj_Entry *);
static void linkmap_delete(Obj_Entry *);
static int load_needed_objects(Obj_Entry *);
static int load_preload_objects(void);
static Obj_Entry *load_object(const char *, const Obj_Entry *);
static Obj_Entry *obj_from_addr(const void *);
static void objlist_call_fini(Objlist *);
static void objlist_call_init(Objlist *);
static void objlist_clear(Objlist *);
static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
static void objlist_init(Objlist *);
static void objlist_push_head(Objlist *, Obj_Entry *);
static void objlist_push_tail(Objlist *, Obj_Entry *);
static void objlist_remove(Objlist *, Obj_Entry *);
static void objlist_remove_unref(Objlist *);
static void *path_enumerate(const char *, path_enum_proc, void *);
static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
static int rtld_dirname(const char *, char *);
static void rtld_exit(void);
static char *search_library_path(const char *, const char *);
static const void **get_program_var_addr(const char *);
static void set_program_var(const char *, const void *);
static const Elf_Sym *symlook_default(const char *, unsigned long,
const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
const Obj_Entry **, const Ver_Entry *, int, DoneList *);
static const Elf_Sym *symlook_needed(const char *, unsigned long,
const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
int, DoneList *);
static void trace_loaded_objects(Obj_Entry *);
static void unlink_object(Obj_Entry *);
static void unload_object(Obj_Entry *);
static void unref_dag(Obj_Entry *);
static void ref_dag(Obj_Entry *);
static int rtld_verify_versions(const Objlist *);
static int rtld_verify_object_versions(Obj_Entry *);
static void object_add_name(Obj_Entry *, const char *);
static int object_match_name(const Obj_Entry *, const char *);
static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
void r_debug_state(struct r_debug *, struct link_map *);
/*
* Data declarations.
*/
static char *error_message; /* Message for dlerror(), or NULL */
struct r_debug r_debug; /* for GDB; */
static bool libmap_disable; /* Disable libmap */
static char *libmap_override; /* Maps to use in addition to libmap.conf */
static bool trust; /* False for setuid and setgid programs */
static bool dangerous_ld_env; /* True if environment variables have been
used to affect the libraries loaded */
static char *ld_bind_now; /* Environment variable for immediate binding */
static char *ld_debug; /* Environment variable for debugging */
static char *ld_library_path; /* Environment variable for search path */
static char *ld_preload; /* Environment variable for libraries to
load first */
static char *ld_tracing; /* Called from ldd to print libs */
static char *ld_utrace; /* Use utrace() to log events. */
static Obj_Entry *obj_list; /* Head of linked list of shared objects */
static Obj_Entry **obj_tail; /* Link field of last object in list */
static Obj_Entry *obj_main; /* The main program shared object */
static Obj_Entry obj_rtld; /* The dynamic linker shared object */
static unsigned int obj_count; /* Number of objects in obj_list */
static unsigned int obj_loads; /* Number of objects in obj_list */
static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
STAILQ_HEAD_INITIALIZER(list_global);
static Objlist list_main = /* Objects loaded at program startup */
STAILQ_HEAD_INITIALIZER(list_main);
static Objlist list_fini = /* Objects needing fini() calls */
STAILQ_HEAD_INITIALIZER(list_fini);
static Elf_Sym sym_zero; /* For resolving undefined weak refs. */
#define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m);
extern Elf_Dyn _DYNAMIC;
#pragma weak _DYNAMIC
#ifndef RTLD_IS_DYNAMIC
#define RTLD_IS_DYNAMIC() (&_DYNAMIC != NULL)
#endif
/*
* These are the functions the dynamic linker exports to application
* programs. They are the only symbols the dynamic linker is willing
* to export from itself.
*/
static func_ptr_type exports[] = {
(func_ptr_type) &_rtld_error,
(func_ptr_type) &dlclose,
(func_ptr_type) &dlerror,
(func_ptr_type) &dlopen,
(func_ptr_type) &dlsym,
(func_ptr_type) &dlvsym,
(func_ptr_type) &dladdr,
(func_ptr_type) &dllockinit,
(func_ptr_type) &dlinfo,
(func_ptr_type) &_rtld_thread_init,
#ifdef __i386__
(func_ptr_type) &___tls_get_addr,
#endif
(func_ptr_type) &__tls_get_addr,
(func_ptr_type) &_rtld_allocate_tls,
(func_ptr_type) &_rtld_free_tls,
(func_ptr_type) &dl_iterate_phdr,
NULL
};
/*
* Global declarations normally provided by crt1. The dynamic linker is
* not built with crt1, so we have to provide them ourselves.
*/
char *__progname;
char **environ;
/*
* Globals to control TLS allocation.
*/
size_t tls_last_offset; /* Static TLS offset of last module */
size_t tls_last_size; /* Static TLS size of last module */
size_t tls_static_space; /* Static TLS space allocated */
int tls_dtv_generation = 1; /* Used to detect when dtv size changes */
int tls_max_index = 1; /* Largest module index allocated */
/*
* Fill in a DoneList with an allocation large enough to hold all of
* the currently-loaded objects. Keep this as a macro since it calls
* alloca and we want that to occur within the scope of the caller.
*/
#define donelist_init(dlp) \
((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \
assert((dlp)->objs != NULL), \
(dlp)->num_alloc = obj_count, \
(dlp)->num_used = 0)
#define UTRACE_DLOPEN_START 1
#define UTRACE_DLOPEN_STOP 2
#define UTRACE_DLCLOSE_START 3
#define UTRACE_DLCLOSE_STOP 4
#define UTRACE_LOAD_OBJECT 5
#define UTRACE_UNLOAD_OBJECT 6
#define UTRACE_ADD_RUNDEP 7
#define UTRACE_PRELOAD_FINISHED 8
#define UTRACE_INIT_CALL 9
#define UTRACE_FINI_CALL 10
struct utrace_rtld {
char sig[4]; /* 'RTLD' */
int event;
void *handle;
void *mapbase; /* Used for 'parent' and 'init/fini' */
size_t mapsize;
int refcnt; /* Used for 'mode' */
char name[MAXPATHLEN];
};
#define LD_UTRACE(e, h, mb, ms, r, n) do { \
if (ld_utrace != NULL) \
ld_utrace_log(e, h, mb, ms, r, n); \
} while (0)
static void
ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
int refcnt, const char *name)
{
struct utrace_rtld ut;
ut.sig[0] = 'R';
ut.sig[1] = 'T';
ut.sig[2] = 'L';
ut.sig[3] = 'D';
ut.event = event;
ut.handle = handle;
ut.mapbase = mapbase;
ut.mapsize = mapsize;
ut.refcnt = refcnt;
bzero(ut.name, sizeof(ut.name));
if (name)
strlcpy(ut.name, name, sizeof(ut.name));
utrace(&ut, sizeof(ut));
}
/*
* Main entry point for dynamic linking. The first argument is the
* stack pointer. The stack is expected to be laid out as described
* in the SVR4 ABI specification, Intel 386 Processor Supplement.
* Specifically, the stack pointer points to a word containing
* ARGC. Following that in the stack is a null-terminated sequence
* of pointers to argument strings. Then comes a null-terminated
* sequence of pointers to environment strings. Finally, there is a
* sequence of "auxiliary vector" entries.
*
* The second argument points to a place to store the dynamic linker's
* exit procedure pointer and the third to a place to store the main
* program's object.
*
* The return value is the main program's entry point.
*/
func_ptr_type
_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
{
Elf_Auxinfo *aux_info[AT_COUNT];
int i;
int argc;
char **argv;
char **env;
Elf_Auxinfo *aux;
Elf_Auxinfo *auxp;
const char *argv0;
Objlist_Entry *entry;
Obj_Entry *obj;
Obj_Entry **preload_tail;
Objlist initlist;
int lockstate;
/*
* On entry, the dynamic linker itself has not been relocated yet.
* Be very careful not to reference any global data until after
* init_rtld has returned. It is OK to reference file-scope statics
* and string constants, and to call static and global functions.
*/
/* Find the auxiliary vector on the stack. */
argc = *sp++;
argv = (char **) sp;
sp += argc + 1; /* Skip over arguments and NULL terminator */
env = (char **) sp;
while (*sp++ != 0) /* Skip over environment, and NULL terminator */
;
aux = (Elf_Auxinfo *) sp;
/* Digest the auxiliary vector. */
for (i = 0; i < AT_COUNT; i++)
aux_info[i] = NULL;
for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
if (auxp->a_type < AT_COUNT)
aux_info[auxp->a_type] = auxp;
}
/* Initialize and relocate ourselves. */
assert(aux_info[AT_BASE] != NULL);
init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
__progname = obj_rtld.path;
argv0 = argv[0] != NULL ? argv[0] : "(null)";
environ = env;
trust = !issetugid();
ld_bind_now = getenv(LD_ "BIND_NOW");
/*
* If the process is tainted, then we un-set the dangerous environment
* variables. The process will be marked as tainted until setuid(2)
* is called. If any child process calls setuid(2) we do not want any
* future processes to honor the potentially un-safe variables.
*/
if (!trust) {
unsetenv(LD_ "PRELOAD");
unsetenv(LD_ "LIBMAP");
unsetenv(LD_ "LIBRARY_PATH");
unsetenv(LD_ "LIBMAP_DISABLE");
unsetenv(LD_ "DEBUG");
}
ld_debug = getenv(LD_ "DEBUG");
libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
libmap_override = getenv(LD_ "LIBMAP");
ld_library_path = getenv(LD_ "LIBRARY_PATH");
ld_preload = getenv(LD_ "PRELOAD");
dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
(ld_library_path != NULL) || (ld_preload != NULL);
ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
ld_utrace = getenv(LD_ "UTRACE");
if (ld_debug != NULL && *ld_debug != '\0')
debug = 1;
dbg("%s is initialized, base address = %p", __progname,
(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
dbg("RTLD dynamic = %p", obj_rtld.dynamic);
dbg("RTLD pltgot = %p", obj_rtld.pltgot);
/*
* Load the main program, or process its program header if it is
* already loaded.
*/
if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */
int fd = aux_info[AT_EXECFD]->a_un.a_val;
dbg("loading main program");
obj_main = map_object(fd, argv0, NULL);
close(fd);
if (obj_main == NULL)
die();
} else { /* Main program already loaded. */
const Elf_Phdr *phdr;
int phnum;
caddr_t entry;
dbg("processing main program's program header");
assert(aux_info[AT_PHDR] != NULL);
phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
assert(aux_info[AT_PHNUM] != NULL);
phnum = aux_info[AT_PHNUM]->a_un.a_val;
assert(aux_info[AT_PHENT] != NULL);
assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
assert(aux_info[AT_ENTRY] != NULL);
entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
die();
}
obj_main->path = xstrdup(argv0);
obj_main->mainprog = true;
/*
* Get the actual dynamic linker pathname from the executable if
* possible. (It should always be possible.) That ensures that
* gdb will find the right dynamic linker even if a non-standard
* one is being used.
*/
if (obj_main->interp != NULL &&
strcmp(obj_main->interp, obj_rtld.path) != 0) {
free(obj_rtld.path);
obj_rtld.path = xstrdup(obj_main->interp);
__progname = obj_rtld.path;
}
digest_dynamic(obj_main, 0);
linkmap_add(obj_main);
linkmap_add(&obj_rtld);
/* Link the main program into the list of objects. */
*obj_tail = obj_main;
obj_tail = &obj_main->next;
obj_count++;
obj_loads++;
/* Make sure we don't call the main program's init and fini functions. */
obj_main->init = obj_main->fini = (Elf_Addr)NULL;
/* Initialize a fake symbol for resolving undefined weak references. */
sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
sym_zero.st_shndx = SHN_UNDEF;
if (!libmap_disable)
libmap_disable = (bool)lm_init(libmap_override);
dbg("loading LD_PRELOAD libraries");
if (load_preload_objects() == -1)
die();
preload_tail = obj_tail;
dbg("loading needed objects");
if (load_needed_objects(obj_main) == -1)
die();
/* Make a list of all objects loaded at startup. */
for (obj = obj_list; obj != NULL; obj = obj->next) {
objlist_push_tail(&list_main, obj);
obj->refcount++;
}
dbg("checking for required versions");
if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
die();
if (ld_tracing) { /* We're done */
trace_loaded_objects(obj_main);
exit(0);
}
if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
dump_relocations(obj_main);
exit (0);
}
/* setup TLS for main thread */
dbg("initializing initial thread local storage");
STAILQ_FOREACH(entry, &list_main, link) {
/*
* Allocate all the initial objects out of the static TLS
* block even if they didn't ask for it.
*/
allocate_tls_offset(entry->obj);
}
allocate_initial_tls(obj_list);
if (relocate_objects(obj_main,
ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
die();
dbg("doing copy relocations");
if (do_copy_relocations(obj_main) == -1)
die();
if (getenv(LD_ "DUMP_REL_POST") != NULL) {
dump_relocations(obj_main);
exit (0);
}
dbg("initializing key program variables");
set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
set_program_var("environ", env);
dbg("initializing thread locks");
lockdflt_init();
/* Make a list of init functions to call. */
objlist_init(&initlist);
initlist_add_objects(obj_list, preload_tail, &initlist);
r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
objlist_call_init(&initlist);
lockstate = wlock_acquire(rtld_bind_lock);
objlist_clear(&initlist);
wlock_release(rtld_bind_lock, lockstate);
dbg("transferring control to program entry point = %p", obj_main->entry);
/* Return the exit procedure and the program entry point. */
*exit_proc = rtld_exit;
*objp = obj_main;
return (func_ptr_type) obj_main->entry;
}
Elf_Addr
_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
{
const Elf_Rel *rel;
const Elf_Sym *def;
const Obj_Entry *defobj;
Elf_Addr *where;
Elf_Addr target;
int lockstate;
lockstate = rlock_acquire(rtld_bind_lock);
if (obj->pltrel)
rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
else
rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
if (def == NULL)
die();
target = (Elf_Addr)(defobj->relocbase + def->st_value);
dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
defobj->strtab + def->st_name, basename(obj->path),
(void *)target, basename(defobj->path));
/*
* Write the new contents for the jmpslot. Note that depending on
* architecture, the value which we need to return back to the
* lazy binding trampoline may or may not be the target
* address. The value returned from reloc_jmpslot() is the value
* that the trampoline needs.
*/
target = reloc_jmpslot(where, target, defobj, obj, rel);
rlock_release(rtld_bind_lock, lockstate);
return target;
}
/*
* Error reporting function. Use it like printf. If formats the message
* into a buffer, and sets things up so that the next call to dlerror()
* will return the message.
*/
void
_rtld_error(const char *fmt, ...)
{
static char buf[512];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof buf, fmt, ap);
error_message = buf;
va_end(ap);
}
/*
* Return a dynamically-allocated copy of the current error message, if any.
*/
static char *
errmsg_save(void)
{
return error_message == NULL ? NULL : xstrdup(error_message);
}
/*
* Restore the current error message from a copy which was previously saved
* by errmsg_save(). The copy is freed.
*/
static void
errmsg_restore(char *saved_msg)
{
if (saved_msg == NULL)
error_message = NULL;
else {
_rtld_error("%s", saved_msg);
free(saved_msg);
}
}
static const char *
basename(const char *name)
{
const char *p = strrchr(name, '/');
return p != NULL ? p + 1 : name;
}
static void
die(void)
{
const char *msg = dlerror();
if (msg == NULL)
msg = "Fatal error";
errx(1, "%s", msg);
}
/*
* Process a shared object's DYNAMIC section, and save the important
* information in its Obj_Entry structure.
*/
static void
digest_dynamic(Obj_Entry *obj, int early)
{
const Elf_Dyn *dynp;
Needed_Entry **needed_tail = &obj->needed;
const Elf_Dyn *dyn_rpath = NULL;
const Elf_Dyn *dyn_soname = NULL;
int plttype = DT_REL;
obj->bind_now = false;
for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) {
switch (dynp->d_tag) {
case DT_REL:
obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
break;
case DT_RELSZ:
obj->relsize = dynp->d_un.d_val;
break;
case DT_RELENT:
assert(dynp->d_un.d_val == sizeof(Elf_Rel));
break;
case DT_JMPREL:
obj->pltrel = (const Elf_Rel *)
(obj->relocbase + dynp->d_un.d_ptr);
break;
case DT_PLTRELSZ:
obj->pltrelsize = dynp->d_un.d_val;
break;
case DT_RELA:
obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
break;
case DT_RELASZ:
obj->relasize = dynp->d_un.d_val;
break;
case DT_RELAENT:
assert(dynp->d_un.d_val == sizeof(Elf_Rela));
break;
case DT_PLTREL:
plttype = dynp->d_un.d_val;
assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
break;
case DT_SYMTAB:
obj->symtab = (const Elf_Sym *)
(obj->relocbase + dynp->d_un.d_ptr);
break;
case DT_SYMENT:
assert(dynp->d_un.d_val == sizeof(Elf_Sym));
break;
case DT_STRTAB:
obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
break;
case DT_STRSZ:
obj->strsize = dynp->d_un.d_val;
break;
case DT_VERNEED:
obj->verneed = (const Elf_Verneed *) (obj->relocbase +
dynp->d_un.d_val);
break;
case DT_VERNEEDNUM:
obj->verneednum = dynp->d_un.d_val;
break;
case DT_VERDEF:
obj->verdef = (const Elf_Verdef *) (obj->relocbase +
dynp->d_un.d_val);
break;
case DT_VERDEFNUM:
obj->verdefnum = dynp->d_un.d_val;
break;
case DT_VERSYM:
obj->versyms = (const Elf_Versym *)(obj->relocbase +
dynp->d_un.d_val);
break;
case DT_HASH:
{
const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
(obj->relocbase + dynp->d_un.d_ptr);
obj->nbuckets = hashtab[0];
obj->nchains = hashtab[1];
obj->buckets = hashtab + 2;
obj->chains = obj->buckets + obj->nbuckets;
}
break;
case DT_NEEDED:
if (!obj->rtld) {
Needed_Entry *nep = NEW(Needed_Entry);
nep->name = dynp->d_un.d_val;
nep->obj = NULL;
nep->next = NULL;
*needed_tail = nep;
needed_tail = &nep->next;
}
break;
case DT_PLTGOT:
obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
break;
case DT_TEXTREL:
obj->textrel = true;
break;
case DT_SYMBOLIC:
obj->symbolic = true;
break;
case DT_RPATH:
case DT_RUNPATH: /* XXX: process separately */
/*
* We have to wait until later to process this, because we
* might not have gotten the address of the string table yet.
*/
dyn_rpath = dynp;
break;
case DT_SONAME:
dyn_soname = dynp;
break;
case DT_INIT:
obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
break;
case DT_FINI:
obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
break;
case DT_DEBUG:
/* XXX - not implemented yet */
if (!early)
dbg("Filling in DT_DEBUG entry");
((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
break;
case DT_FLAGS:
if (dynp->d_un.d_val & DF_ORIGIN) {
obj->origin_path = xmalloc(PATH_MAX);
if (rtld_dirname(obj->path, obj->origin_path) == -1)
die();
}
if (dynp->d_un.d_val & DF_SYMBOLIC)
obj->symbolic = true;
if (dynp->d_un.d_val & DF_TEXTREL)
obj->textrel = true;
if (dynp->d_un.d_val & DF_BIND_NOW)
obj->bind_now = true;
if (dynp->d_un.d_val & DF_STATIC_TLS)
;
break;
default:
if (!early) {
dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
(long)dynp->d_tag);
}
break;
}
}
obj->traced = false;
if (plttype == DT_RELA) {
obj->pltrela = (const Elf_Rela *) obj->pltrel;
obj->pltrel = NULL;
obj->pltrelasize = obj->pltrelsize;
obj->pltrelsize = 0;
}
if (dyn_rpath != NULL)
obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
if (dyn_soname != NULL)
object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
}
/*
* Process a shared object's program header. This is used only for the
* main program, when the kernel has already loaded the main program
* into memory before calling the dynamic linker. It creates and
* returns an Obj_Entry structure.
*/
static Obj_Entry *
digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
{
Obj_Entry *obj;
const Elf_Phdr *phlimit = phdr + phnum;
const Elf_Phdr *ph;
int nsegs = 0;
obj = obj_new();
for (ph = phdr; ph < phlimit; ph++) {
switch (ph->p_type) {
case PT_PHDR:
if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
_rtld_error("%s: invalid PT_PHDR", path);
return NULL;
}
obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
obj->phsize = ph->p_memsz;
break;
case PT_INTERP:
obj->interp = (const char *) ph->p_vaddr;
break;
case PT_LOAD:
if (nsegs == 0) { /* First load segment */
obj->vaddrbase = trunc_page(ph->p_vaddr);
obj->mapbase = (caddr_t) obj->vaddrbase;
obj->relocbase = obj->mapbase - obj->vaddrbase;
obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
obj->vaddrbase;
} else { /* Last load segment */
obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
obj->vaddrbase;
}
nsegs++;
break;
case PT_DYNAMIC:
obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
break;
case PT_TLS:
obj->tlsindex = 1;
obj->tlssize = ph->p_memsz;
obj->tlsalign = ph->p_align;
obj->tlsinitsize = ph->p_filesz;
obj->tlsinit = (void*) ph->p_vaddr;
break;
}
}
if (nsegs < 1) {
_rtld_error("%s: too few PT_LOAD segments", path);
return NULL;
}
obj->entry = entry;
return obj;
}
static Obj_Entry *
dlcheck(void *handle)
{
Obj_Entry *obj;
for (obj = obj_list; obj != NULL; obj = obj->next)
if (obj == (Obj_Entry *) handle)
break;
if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
_rtld_error("Invalid shared object handle %p", handle);
return NULL;
}
return obj;
}
/*
* If the given object is already in the donelist, return true. Otherwise
* add the object to the list and return false.
*/
static bool
donelist_check(DoneList *dlp, const Obj_Entry *obj)
{
unsigned int i;
for (i = 0; i < dlp->num_used; i++)
if (dlp->objs[i] == obj)
return true;
/*
* Our donelist allocation should always be sufficient. But if
* our threads locking isn't working properly, more shared objects
* could have been loaded since we allocated the list. That should
* never happen, but we'll handle it properly just in case it does.
*/
if (dlp->num_used < dlp->num_alloc)
dlp->objs[dlp->num_used++] = obj;
return false;
}
/*
* Hash function for symbol table lookup. Don't even think about changing
* this. It is specified by the System V ABI.
*/
unsigned long
elf_hash(const char *name)
{
const unsigned char *p = (const unsigned char *) name;
unsigned long h = 0;
unsigned long g;
while (*p != '\0') {
h = (h << 4) + *p++;
if ((g = h & 0xf0000000) != 0)
h ^= g >> 24;
h &= ~g;
}
return h;
}
/*
* Find the library with the given name, and return its full pathname.
* The returned string is dynamically allocated. Generates an error
* message and returns NULL if the library cannot be found.
*
* If the second argument is non-NULL, then it refers to an already-
* loaded shared object, whose library search path will be searched.
*
* The search order is:
* LD_LIBRARY_PATH
* rpath in the referencing file
* ldconfig hints
* /lib:/usr/lib
*/
static char *
find_library(const char *xname, const Obj_Entry *refobj)
{
char *pathname;
char *name;
if (strchr(xname, '/') != NULL) { /* Hard coded pathname */
if (xname[0] != '/' && !trust) {
_rtld_error("Absolute pathname required for shared object \"%s\"",
xname);
return NULL;
}
return xstrdup(xname);
}
if (libmap_disable || (refobj == NULL) ||
(name = lm_find(refobj->path, xname)) == NULL)
name = (char *)xname;
dbg(" Searching for \"%s\"", name);
if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
(refobj != NULL &&
(pathname = search_library_path(name, refobj->rpath)) != NULL) ||
(pathname = search_library_path(name, gethints())) != NULL ||
(pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
return pathname;
if(refobj != NULL && refobj->path != NULL) {
_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
name, basename(refobj->path));
} else {
_rtld_error("Shared object \"%s\" not found", name);
}
return NULL;
}
/*
* Given a symbol number in a referencing object, find the corresponding
* definition of the symbol. Returns a pointer to the symbol, or NULL if
* no definition was found. Returns a pointer to the Obj_Entry of the
* defining object via the reference parameter DEFOBJ_OUT.
*/
const Elf_Sym *
find_symdef(unsigned long symnum, const Obj_Entry *refobj,
const Obj_Entry **defobj_out, int flags, SymCache *cache)
{
const Elf_Sym *ref;
const Elf_Sym *def;
const Obj_Entry *defobj;
const Ver_Entry *ventry;
const char *name;
unsigned long hash;
/*
* If we have already found this symbol, get the information from
* the cache.
*/
if (symnum >= refobj->nchains)
return NULL; /* Bad object */
if (cache != NULL && cache[symnum].sym != NULL) {
*defobj_out = cache[symnum].obj;
return cache[symnum].sym;
}
ref = refobj->symtab + symnum;
name = refobj->strtab + ref->st_name;
defobj = NULL;
/*
* We don't have to do a full scale lookup if the symbol is local.
* We know it will bind to the instance in this load module; to
* which we already have a pointer (ie ref). By not doing a lookup,
* we not only improve performance, but it also avoids unresolvable
* symbols when local symbols are not in the hash table. This has
* been seen with the ia64 toolchain.
*/
if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
_rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
symnum);
}
ventry = fetch_ventry(refobj, symnum);
hash = elf_hash(name);
def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
} else {
def = ref;
defobj = refobj;
}
/*
* If we found no definition and the reference is weak, treat the
* symbol as having the value zero.
*/
if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
def = &sym_zero;
defobj = obj_main;
}
if (def != NULL) {
*defobj_out = defobj;
/* Record the information in the cache to avoid subsequent lookups. */
if (cache != NULL) {
cache[symnum].sym = def;
cache[symnum].obj = defobj;
}
} else {
if (refobj != &obj_rtld)
_rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
}
return def;
}
/*
* Return the search path from the ldconfig hints file, reading it if
* necessary. Returns NULL if there are problems with the hints file,
* or if the search path there is empty.
*/
static const char *
gethints(void)
{
static char *hints;
if (hints == NULL) {
int fd;
struct elfhints_hdr hdr;
char *p;
/* Keep from trying again in case the hints file is bad. */
hints = "";
if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
return NULL;
if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
hdr.magic != ELFHINTS_MAGIC ||
hdr.version != 1) {
close(fd);
return NULL;
}
p = xmalloc(hdr.dirlistlen + 1);
if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
free(p);
close(fd);
return NULL;
}
hints = p;
close(fd);
}
return hints[0] != '\0' ? hints : NULL;
}
static void
init_dag(Obj_Entry *root)
{
DoneList donelist;
donelist_init(&donelist);
init_dag1(root, root, &donelist);
}
static void
init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
{
const Needed_Entry *needed;
if (donelist_check(dlp, obj))
return;
obj->refcount++;
objlist_push_tail(&obj->dldags, root);
objlist_push_tail(&root->dagmembers, obj);
for (needed = obj->needed; needed != NULL; needed = needed->next)
if (needed->obj != NULL)
init_dag1(root, needed->obj, dlp);
}
/*
* Initialize the dynamic linker. The argument is the address at which
* the dynamic linker has been mapped into memory. The primary task of
* this function is to relocate the dynamic linker.
*/
static void
init_rtld(caddr_t mapbase)
{
Obj_Entry objtmp; /* Temporary rtld object */
/*
* Conjure up an Obj_Entry structure for the dynamic linker.
*
* The "path" member can't be initialized yet because string constatns
* cannot yet be acessed. Below we will set it correctly.
*/
memset(&objtmp, 0, sizeof(objtmp));
objtmp.path = NULL;
objtmp.rtld = true;
objtmp.mapbase = mapbase;
#ifdef PIC
objtmp.relocbase = mapbase;
#endif
if (RTLD_IS_DYNAMIC()) {
objtmp.dynamic = rtld_dynamic(&objtmp);
digest_dynamic(&objtmp, 1);
assert(objtmp.needed == NULL);
assert(!objtmp.textrel);
/*
* Temporarily put the dynamic linker entry into the object list, so
* that symbols can be found.
*/
relocate_objects(&objtmp, true, &objtmp);
}
/* Initialize the object list. */
obj_tail = &obj_list;
/* Now that non-local variables can be accesses, copy out obj_rtld. */
memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
/* Replace the path with a dynamically allocated copy. */
obj_rtld.path = xstrdup(PATH_RTLD);
r_debug.r_brk = r_debug_state;
r_debug.r_state = RT_CONSISTENT;
}
/*
* Add the init functions from a needed object list (and its recursive
* needed objects) to "list". This is not used directly; it is a helper
* function for initlist_add_objects(). The write lock must be held
* when this function is called.
*/
static void
initlist_add_neededs(Needed_Entry *needed, Objlist *list)
{
/* Recursively process the successor needed objects. */
if (needed->next != NULL)
initlist_add_neededs(needed->next, list);
/* Process the current needed object. */
if (needed->obj != NULL)
initlist_add_objects(needed->obj, &needed->obj->next, list);
}
/*
* Scan all of the DAGs rooted in the range of objects from "obj" to
* "tail" and add their init functions to "list". This recurses over
* the DAGs and ensure the proper init ordering such that each object's
* needed libraries are initialized before the object itself. At the
* same time, this function adds the objects to the global finalization
* list "list_fini" in the opposite order. The write lock must be
* held when this function is called.
*/
static void
initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
{
if (obj->init_done)
return;
obj->init_done = true;
/* Recursively process the successor objects. */
if (&obj->next != tail)
initlist_add_objects(obj->next, tail, list);
/* Recursively process the needed objects. */
if (obj->needed != NULL)
initlist_add_neededs(obj->needed, list);
/* Add the object to the init list. */
if (obj->init != (Elf_Addr)NULL)
objlist_push_tail(list, obj);
/* Add the object to the global fini list in the reverse order. */
if (obj->fini != (Elf_Addr)NULL)
objlist_push_head(&list_fini, obj);
}
#ifndef FPTR_TARGET
#define FPTR_TARGET(f) ((Elf_Addr) (f))
#endif
static bool
is_exported(const Elf_Sym *def)
{
Elf_Addr value;
const func_ptr_type *p;
value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
for (p = exports; *p != NULL; p++)
if (FPTR_TARGET(*p) == value)
return true;
return false;
}
/*
* Given a shared object, traverse its list of needed objects, and load
* each of them. Returns 0 on success. Generates an error message and
* returns -1 on failure.
*/
static int
load_needed_objects(Obj_Entry *first)
{
Obj_Entry *obj;
for (obj = first; obj != NULL; obj = obj->next) {
Needed_Entry *needed;
for (needed = obj->needed; needed != NULL; needed = needed->next) {
needed->obj = load_object(obj->strtab + needed->name, obj);
if (needed->obj == NULL && !ld_tracing)
return -1;
}
}
return 0;
}
static int
load_preload_objects(void)
{
char *p = ld_preload;
static const char delim[] = " \t:;";
if (p == NULL)
return 0;
p += strspn(p, delim);
while (*p != '\0') {
size_t len = strcspn(p, delim);
char savech;
savech = p[len];
p[len] = '\0';
if (load_object(p, NULL) == NULL)
return -1; /* XXX - cleanup */
p[len] = savech;
p += len;
p += strspn(p, delim);
}
LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
return 0;
}
/*
* Load a shared object into memory, if it is not already loaded.
*
* Returns a pointer to the Obj_Entry for the object. Returns NULL
* on failure.
*/
static Obj_Entry *
load_object(const char *name, const Obj_Entry *refobj)
{
Obj_Entry *obj;
int fd = -1;
struct stat sb;
char *path;
for (obj = obj_list->next; obj != NULL; obj = obj->next)
if (object_match_name(obj, name))
return obj;
path = find_library(name, refobj);
if (path == NULL)
return NULL;
/*
* If we didn't find a match by pathname, open the file and check
* again by device and inode. This avoids false mismatches caused
* by multiple links or ".." in pathnames.
*
* To avoid a race, we open the file and use fstat() rather than
* using stat().
*/
if ((fd = open(path, O_RDONLY)) == -1) {
_rtld_error("Cannot open \"%s\"", path);
free(path);
return NULL;
}
if (fstat(fd, &sb) == -1) {
_rtld_error("Cannot fstat \"%s\"", path);
close(fd);
free(path);
return NULL;
}
for (obj = obj_list->next; obj != NULL; obj = obj->next) {
if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
close(fd);
break;
}
}
if (obj != NULL) {
object_add_name(obj, name);
free(path);
close(fd);
return obj;
}
/* First use of this object, so we must map it in */
obj = do_load_object(fd, name, path, &sb);
if (obj == NULL)
free(path);
close(fd);
return obj;
}
static Obj_Entry *
do_load_object(int fd, const char *name, char *path, struct stat *sbp)
{
Obj_Entry *obj;
struct statfs fs;
/*
* but first, make sure that environment variables haven't been
* used to circumvent the noexec flag on a filesystem.
*/
if (dangerous_ld_env) {
if (fstatfs(fd, &fs) != 0) {
_rtld_error("Cannot fstatfs \"%s\"", path);
return NULL;
}
if (fs.f_flags & MNT_NOEXEC) {
_rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
return NULL;
}
}
dbg("loading \"%s\"", path);
obj = map_object(fd, path, sbp);
if (obj == NULL)
return NULL;
object_add_name(obj, name);
obj->path = path;
digest_dynamic(obj, 0);
*obj_tail = obj;
obj_tail = &obj->next;
obj_count++;
obj_loads++;
linkmap_add(obj); /* for GDB & dlinfo() */
dbg(" %p .. %p: %s", obj->mapbase,
obj->mapbase + obj->mapsize - 1, obj->path);
if (obj->textrel)
dbg(" WARNING: %s has impure text", obj->path);
LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
obj->path);
return obj;
}
static Obj_Entry *
obj_from_addr(const void *addr)
{
Obj_Entry *obj;
for (obj = obj_list; obj != NULL; obj = obj->next) {
if (addr < (void *) obj->mapbase)
continue;
if (addr < (void *) (obj->mapbase + obj->mapsize))
return obj;
}
return NULL;
}
/*
* Call the finalization functions for each of the objects in "list"
* which are unreferenced. All of the objects are expected to have
* non-NULL fini functions.
*/
static void
objlist_call_fini(Objlist *list)
{
Objlist_Entry *elm;
char *saved_msg;
/*
* Preserve the current error message since a fini function might
* call into the dynamic linker and overwrite it.
*/
saved_msg = errmsg_save();
STAILQ_FOREACH(elm, list, link) {
if (elm->obj->refcount == 0) {
dbg("calling fini function for %s at %p", elm->obj->path,
(void *)elm->obj->fini);
LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
elm->obj->path);
call_initfini_pointer(elm->obj, elm->obj->fini);
}
}
errmsg_restore(saved_msg);
}
/*
* Call the initialization functions for each of the objects in
* "list". All of the objects are expected to have non-NULL init
* functions.
*/
static void
objlist_call_init(Objlist *list)
{
Objlist_Entry *elm;
char *saved_msg;
/*
* Preserve the current error message since an init function might
* call into the dynamic linker and overwrite it.
*/
saved_msg = errmsg_save();
STAILQ_FOREACH(elm, list, link) {
dbg("calling init function for %s at %p", elm->obj->path,
(void *)elm->obj->init);
LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
elm->obj->path);
call_initfini_pointer(elm->obj, elm->obj->init);
}
errmsg_restore(saved_msg);
}
static void
objlist_clear(Objlist *list)
{
Objlist_Entry *elm;
while (!STAILQ_EMPTY(list)) {
elm = STAILQ_FIRST(list);
STAILQ_REMOVE_HEAD(list, link);
free(elm);
}
}
static Objlist_Entry *
objlist_find(Objlist *list, const Obj_Entry *obj)
{
Objlist_Entry *elm;
STAILQ_FOREACH(elm, list, link)
if (elm->obj == obj)
return elm;
return NULL;
}
static void
objlist_init(Objlist *list)
{
STAILQ_INIT(list);
}
static void
objlist_push_head(Objlist *list, Obj_Entry *obj)
{
Objlist_Entry *elm;
elm = NEW(Objlist_Entry);
elm->obj = obj;
STAILQ_INSERT_HEAD(list, elm, link);
}
static void
objlist_push_tail(Objlist *list, Obj_Entry *obj)
{
Objlist_Entry *elm;
elm = NEW(Objlist_Entry);
elm->obj = obj;
STAILQ_INSERT_TAIL(list, elm, link);
}
static void
objlist_remove(Objlist *list, Obj_Entry *obj)
{
Objlist_Entry *elm;
if ((elm = objlist_find(list, obj)) != NULL) {
STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
free(elm);
}
}
/*
* Remove all of the unreferenced objects from "list".
*/
static void
objlist_remove_unref(Objlist *list)
{
Objlist newlist;
Objlist_Entry *elm;
STAILQ_INIT(&newlist);
while (!STAILQ_EMPTY(list)) {
elm = STAILQ_FIRST(list);
STAILQ_REMOVE_HEAD(list, link);
if (elm->obj->refcount == 0)
free(elm);
else
STAILQ_INSERT_TAIL(&newlist, elm, link);
}
*list = newlist;
}
/*
* Relocate newly-loaded shared objects. The argument is a pointer to
* the Obj_Entry for the first such object. All objects from the first
* to the end of the list of objects are relocated. Returns 0 on success,
* or -1 on failure.
*/
static int
relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
{
Obj_Entry *obj;
for (obj = first; obj != NULL; obj = obj->next) {
if (obj != rtldobj)
dbg("relocating \"%s\"", obj->path);
if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
obj->symtab == NULL || obj->strtab == NULL) {
_rtld_error("%s: Shared object has no run-time symbol table",
obj->path);
return -1;
}
if (obj->textrel) {
/* There are relocations to the write-protected text segment. */
if (mprotect(obj->mapbase, obj->textsize,
PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
_rtld_error("%s: Cannot write-enable text segment: %s",
obj->path, strerror(errno));
return -1;
}
}
/* Process the non-PLT relocations. */
if (reloc_non_plt(obj, rtldobj))
return -1;
if (obj->textrel) { /* Re-protected the text segment. */
if (mprotect(obj->mapbase, obj->textsize,
PROT_READ|PROT_EXEC) == -1) {
_rtld_error("%s: Cannot write-protect text segment: %s",
obj->path, strerror(errno));
return -1;
}
}
/* Process the PLT relocations. */
if (reloc_plt(obj) == -1)
return -1;
/* Relocate the jump slots if we are doing immediate binding. */
if (obj->bind_now || bind_now)
if (reloc_jmpslots(obj) == -1)
return -1;
/*
* Set up the magic number and version in the Obj_Entry. These
* were checked in the crt1.o from the original ElfKit, so we
* set them for backward compatibility.
*/
obj->magic = RTLD_MAGIC;
obj->version = RTLD_VERSION;
/* Set the special PLT or GOT entries. */
init_pltgot(obj);
}
return 0;
}
/*
* Cleanup procedure. It will be called (by the atexit mechanism) just
* before the process exits.
*/
static void
rtld_exit(void)
{
Obj_Entry *obj;
dbg("rtld_exit()");
/* Clear all the reference counts so the fini functions will be called. */
for (obj = obj_list; obj != NULL; obj = obj->next)
obj->refcount = 0;
objlist_call_fini(&list_fini);
/* No need to remove the items from the list, since we are exiting. */
if (!libmap_disable)
lm_fini();
}
static void *
path_enumerate(const char *path, path_enum_proc callback, void *arg)
{
#ifdef COMPAT_32BIT
const char *trans;
#endif
if (path == NULL)
return (NULL);
path += strspn(path, ":;");
while (*path != '\0') {
size_t len;
char *res;
len = strcspn(path, ":;");
#ifdef COMPAT_32BIT
trans = lm_findn(NULL, path, len);
if (trans)
res = callback(trans, strlen(trans), arg);
else
#endif
res = callback(path, len, arg);
if (res != NULL)
return (res);
path += len;
path += strspn(path, ":;");
}
return (NULL);
}
struct try_library_args {
const char *name;
size_t namelen;
char *buffer;
size_t buflen;
};
static void *
try_library_path(const char *dir, size_t dirlen, void *param)
{
struct try_library_args *arg;
arg = param;
if (*dir == '/' || trust) {
char *pathname;
if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
return (NULL);
pathname = arg->buffer;
strncpy(pathname, dir, dirlen);
pathname[dirlen] = '/';
strcpy(pathname + dirlen + 1, arg->name);
dbg(" Trying \"%s\"", pathname);
if (access(pathname, F_OK) == 0) { /* We found it */
pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
strcpy(pathname, arg->buffer);
return (pathname);
}
}
return (NULL);
}
static char *
search_library_path(const char *name, const char *path)
{
char *p;
struct try_library_args arg;
if (path == NULL)
return NULL;
arg.name = name;
arg.namelen = strlen(name);
arg.buffer = xmalloc(PATH_MAX);
arg.buflen = PATH_MAX;
p = path_enumerate(path, try_library_path, &arg);
free(arg.buffer);
return (p);
}
int
dlclose(void *handle)
{
Obj_Entry *root;
int lockstate;
lockstate = wlock_acquire(rtld_bind_lock);
root = dlcheck(handle);
if (root == NULL) {
wlock_release(rtld_bind_lock, lockstate);
return -1;
}
LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
root->path);
/* Unreference the object and its dependencies. */
root->dl_refcount--;
unref_dag(root);
if (root->refcount == 0) {
/*
* The object is no longer referenced, so we must unload it.
* First, call the fini functions with no locks held.
*/
wlock_release(rtld_bind_lock, lockstate);
objlist_call_fini(&list_fini);
lockstate = wlock_acquire(rtld_bind_lock);
objlist_remove_unref(&list_fini);
/* Finish cleaning up the newly-unreferenced objects. */
GDB_STATE(RT_DELETE,&root->linkmap);
unload_object(root);
GDB_STATE(RT_CONSISTENT,NULL);
}
LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
wlock_release(rtld_bind_lock, lockstate);
return 0;
}
const char *
dlerror(void)
{
char *msg = error_message;
error_message = NULL;
return msg;
}
/*
* This function is deprecated and has no effect.
*/
void
dllockinit(void *context,
void *(*lock_create)(void *context),
void (*rlock_acquire)(void *lock),
void (*wlock_acquire)(void *lock),
void (*lock_release)(void *lock),
void (*lock_destroy)(void *lock),
void (*context_destroy)(void *context))
{
static void *cur_context;
static void (*cur_context_destroy)(void *);
/* Just destroy the context from the previous call, if necessary. */
if (cur_context_destroy != NULL)
cur_context_destroy(cur_context);
cur_context = context;
cur_context_destroy = context_destroy;
}
void *
dlopen(const char *name, int mode)
{
Obj_Entry **old_obj_tail;
Obj_Entry *obj;
Objlist initlist;
int result, lockstate;
LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
if (ld_tracing != NULL)
environ = (char **)*get_program_var_addr("environ");
objlist_init(&initlist);
lockstate = wlock_acquire(rtld_bind_lock);
GDB_STATE(RT_ADD,NULL);
old_obj_tail = obj_tail;
obj = NULL;
if (name == NULL) {
obj = obj_main;
obj->refcount++;
} else {
obj = load_object(name, obj_main);
}
if (obj) {
obj->dl_refcount++;
if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
objlist_push_tail(&list_global, obj);
mode &= RTLD_MODEMASK;
if (*old_obj_tail != NULL) { /* We loaded something new. */
assert(*old_obj_tail == obj);
result = load_needed_objects(obj);
init_dag(obj);
if (result != -1)
result = rtld_verify_versions(&obj->dagmembers);
if (result != -1 && ld_tracing)
goto trace;
if (result == -1 ||
(relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
obj->dl_refcount--;
unref_dag(obj);
if (obj->refcount == 0)
unload_object(obj);
obj = NULL;
} else {
/* Make list of init functions to call. */
initlist_add_objects(obj, &obj->next, &initlist);
}
} else {
/* Bump the reference counts for objects on this DAG. */
ref_dag(obj);
if (ld_tracing)
goto trace;
}
}
LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
name);
GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
/* Call the init functions with no locks held. */
wlock_release(rtld_bind_lock, lockstate);
objlist_call_init(&initlist);
lockstate = wlock_acquire(rtld_bind_lock);
objlist_clear(&initlist);
wlock_release(rtld_bind_lock, lockstate);
return obj;
trace:
trace_loaded_objects(obj);
wlock_release(rtld_bind_lock, lockstate);
exit(0);
}
static void *
do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
int flags)
{
DoneList donelist;
const Obj_Entry *obj, *defobj;
const Elf_Sym *def;
unsigned long hash;
int lockstate;
hash = elf_hash(name);
def = NULL;
defobj = NULL;
flags |= SYMLOOK_IN_PLT;
lockstate = rlock_acquire(rtld_bind_lock);
if (handle == NULL || handle == RTLD_NEXT ||
handle == RTLD_DEFAULT || handle == RTLD_SELF) {
if ((obj = obj_from_addr(retaddr)) == NULL) {
_rtld_error("Cannot determine caller's shared object");
rlock_release(rtld_bind_lock, lockstate);
return NULL;
}
if (handle == NULL) { /* Just the caller's shared object. */
def = symlook_obj(name, hash, obj, ve, flags);
defobj = obj;
} else if (handle == RTLD_NEXT || /* Objects after caller's */
handle == RTLD_SELF) { /* ... caller included */
if (handle == RTLD_NEXT)
obj = obj->next;
for (; obj != NULL; obj = obj->next) {
if ((def = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
defobj = obj;
break;
}
}
} else {
assert(handle == RTLD_DEFAULT);
def = symlook_default(name, hash, obj, &defobj, ve, flags);
}
} else {
if ((obj = dlcheck(handle)) == NULL) {
rlock_release(rtld_bind_lock, lockstate);
return NULL;
}
donelist_init(&donelist);
if (obj->mainprog) {
/* Search main program and all libraries loaded by it. */
def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
&donelist);
} else {
Needed_Entry fake;
/* Search the whole DAG rooted at the given object. */
fake.next = NULL;
fake.obj = (Obj_Entry *)obj;
fake.name = 0;
def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
&donelist);
}
}
if (def != NULL) {
rlock_release(rtld_bind_lock, lockstate);
/*
* The value required by the caller is derived from the value
* of the symbol. For the ia64 architecture, we need to
* construct a function descriptor which the caller can use to
* call the function with the right 'gp' value. For other
* architectures and for non-functions, the value is simply
* the relocated value of the symbol.
*/
if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
return make_function_pointer(def, defobj);
else
return defobj->relocbase + def->st_value;
}
_rtld_error("Undefined symbol \"%s\"", name);
rlock_release(rtld_bind_lock, lockstate);
return NULL;
}
void *
dlsym(void *handle, const char *name)
{
return do_dlsym(handle, name, __builtin_return_address(0), NULL,
SYMLOOK_DLSYM);
}
void *
dlvsym(void *handle, const char *name, const char *version)
{
Ver_Entry ventry;
ventry.name = version;
ventry.file = NULL;
ventry.hash = elf_hash(version);
ventry.flags= 0;
return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
SYMLOOK_DLSYM);
}
int
dladdr(const void *addr, Dl_info *info)
{
const Obj_Entry *obj;
const Elf_Sym *def;
void *symbol_addr;
unsigned long symoffset;
int lockstate;
lockstate = rlock_acquire(rtld_bind_lock);
obj = obj_from_addr(addr);
if (obj == NULL) {
_rtld_error("No shared object contains address");
rlock_release(rtld_bind_lock, lockstate);
return 0;
}
info->dli_fname = obj->path;
info->dli_fbase = obj->mapbase;
info->dli_saddr = (void *)0;
info->dli_sname = NULL;
/*
* Walk the symbol list looking for the symbol whose address is
* closest to the address sent in.
*/
for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
def = obj->symtab + symoffset;
/*
* For skip the symbol if st_shndx is either SHN_UNDEF or
* SHN_COMMON.
*/
if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
continue;
/*
* If the symbol is greater than the specified address, or if it
* is further away from addr than the current nearest symbol,
* then reject it.
*/
symbol_addr = obj->relocbase + def->st_value;
if (symbol_addr > addr || symbol_addr < info->dli_saddr)
continue;
/* Update our idea of the nearest symbol. */
info->dli_sname = obj->strtab + def->st_name;
info->dli_saddr = symbol_addr;
/* Exact match? */
if (info->dli_saddr == addr)
break;
}
rlock_release(rtld_bind_lock, lockstate);
return 1;
}
int
dlinfo(void *handle, int request, void *p)
{
const Obj_Entry *obj;
int error, lockstate;
lockstate = rlock_acquire(rtld_bind_lock);
if (handle == NULL || handle == RTLD_SELF) {
void *retaddr;
retaddr = __builtin_return_address(0); /* __GNUC__ only */
if ((obj = obj_from_addr(retaddr)) == NULL)
_rtld_error("Cannot determine caller's shared object");
} else
obj = dlcheck(handle);
if (obj == NULL) {
rlock_release(rtld_bind_lock, lockstate);
return (-1);
}
error = 0;
switch (request) {
case RTLD_DI_LINKMAP:
*((struct link_map const **)p) = &obj->linkmap;
break;
case RTLD_DI_ORIGIN:
error = rtld_dirname(obj->path, p);
break;
case RTLD_DI_SERINFOSIZE:
case RTLD_DI_SERINFO:
error = do_search_info(obj, request, (struct dl_serinfo *)p);
break;
default:
_rtld_error("Invalid request %d passed to dlinfo()", request);
error = -1;
}
rlock_release(rtld_bind_lock, lockstate);
return (error);
}
int
dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
{
struct dl_phdr_info phdr_info;
const Obj_Entry *obj;
int error, lockstate;
lockstate = rlock_acquire(rtld_bind_lock);
error = 0;
for (obj = obj_list; obj != NULL; obj = obj->next) {
phdr_info.dlpi_addr = (Elf_Addr)obj->relocbase;
phdr_info.dlpi_name = STAILQ_FIRST(&obj->names) ?
STAILQ_FIRST(&obj->names)->name : obj->path;
phdr_info.dlpi_phdr = obj->phdr;
phdr_info.dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
phdr_info.dlpi_tls_modid = obj->tlsindex;
phdr_info.dlpi_tls_data = obj->tlsinit;
phdr_info.dlpi_adds = obj_loads;
phdr_info.dlpi_subs = obj_loads - obj_count;
if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
break;
}
rlock_release(rtld_bind_lock, lockstate);
return (error);
}
struct fill_search_info_args {
int request;
unsigned int flags;
Dl_serinfo *serinfo;
Dl_serpath *serpath;
char *strspace;
};
static void *
fill_search_info(const char *dir, size_t dirlen, void *param)
{
struct fill_search_info_args *arg;
arg = param;
if (arg->request == RTLD_DI_SERINFOSIZE) {
arg->serinfo->dls_cnt ++;
arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
} else {
struct dl_serpath *s_entry;
s_entry = arg->serpath;
s_entry->dls_name = arg->strspace;
s_entry->dls_flags = arg->flags;
strncpy(arg->strspace, dir, dirlen);
arg->strspace[dirlen] = '\0';
arg->strspace += dirlen + 1;
arg->serpath++;
}
return (NULL);
}
static int
do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
{
struct dl_serinfo _info;
struct fill_search_info_args args;
args.request = RTLD_DI_SERINFOSIZE;
args.serinfo = &_info;
_info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
_info.dls_cnt = 0;
path_enumerate(ld_library_path, fill_search_info, &args);
path_enumerate(obj->rpath, fill_search_info, &args);
path_enumerate(gethints(), fill_search_info, &args);
path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
if (request == RTLD_DI_SERINFOSIZE) {
info->dls_size = _info.dls_size;
info->dls_cnt = _info.dls_cnt;
return (0);
}
if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
return (-1);
}
args.request = RTLD_DI_SERINFO;
args.serinfo = info;
args.serpath = &info->dls_serpath[0];
args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
args.flags = LA_SER_LIBPATH;
if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
return (-1);
args.flags = LA_SER_RUNPATH;
if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
return (-1);
args.flags = LA_SER_CONFIG;
if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
return (-1);
args.flags = LA_SER_DEFAULT;
if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
return (-1);
return (0);
}
static int
rtld_dirname(const char *path, char *bname)
{
const char *endp;
/* Empty or NULL string gets treated as "." */
if (path == NULL || *path == '\0') {
bname[0] = '.';
bname[1] = '\0';
return (0);
}
/* Strip trailing slashes */
endp = path + strlen(path) - 1;
while (endp > path && *endp == '/')
endp--;
/* Find the start of the dir */
while (endp > path && *endp != '/')
endp--;
/* Either the dir is "/" or there are no slashes */
if (endp == path) {
bname[0] = *endp == '/' ? '/' : '.';
bname[1] = '\0';
return (0);
} else {
do {
endp--;
} while (endp > path && *endp == '/');
}
if (endp - path + 2 > PATH_MAX)
{
_rtld_error("Filename is too long: %s", path);
return(-1);
}
strncpy(bname, path, endp - path + 1);
bname[endp - path + 1] = '\0';
return (0);
}
static void
linkmap_add(Obj_Entry *obj)
{
struct link_map *l = &obj->linkmap;
struct link_map *prev;
obj->linkmap.l_name = obj->path;
obj->linkmap.l_addr = obj->mapbase;
obj->linkmap.l_ld = obj->dynamic;
#ifdef __mips__
/* GDB needs load offset on MIPS to use the symbols */
obj->linkmap.l_offs = obj->relocbase;
#endif
if (r_debug.r_map == NULL) {
r_debug.r_map = l;
return;
}
/*
* Scan to the end of the list, but not past the entry for the
* dynamic linker, which we want to keep at the very end.
*/
for (prev = r_debug.r_map;
prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
prev = prev->l_next)
;
/* Link in the new entry. */
l->l_prev = prev;
l->l_next = prev->l_next;
if (l->l_next != NULL)
l->l_next->l_prev = l;
prev->l_next = l;
}
static void
linkmap_delete(Obj_Entry *obj)
{
struct link_map *l = &obj->linkmap;
if (l->l_prev == NULL) {
if ((r_debug.r_map = l->l_next) != NULL)
l->l_next->l_prev = NULL;
return;
}
if ((l->l_prev->l_next = l->l_next) != NULL)
l->l_next->l_prev = l->l_prev;
}
/*
* Function for the debugger to set a breakpoint on to gain control.
*
* The two parameters allow the debugger to easily find and determine
* what the runtime loader is doing and to whom it is doing it.
*
* When the loadhook trap is hit (r_debug_state, set at program
* initialization), the arguments can be found on the stack:
*
* +8 struct link_map *m
* +4 struct r_debug *rd
* +0 RetAddr
*/
void
r_debug_state(struct r_debug* rd, struct link_map *m)
{
}
/*
* Get address of the pointer variable in the main program.
*/
static const void **
get_program_var_addr(const char *name)
{
const Obj_Entry *obj;
unsigned long hash;
hash = elf_hash(name);
for (obj = obj_main; obj != NULL; obj = obj->next) {
const Elf_Sym *def;
if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
const void **addr;
addr = (const void **)(obj->relocbase + def->st_value);
return addr;
}
}
return NULL;
}
/*
* Set a pointer variable in the main program to the given value. This
* is used to set key variables such as "environ" before any of the
* init functions are called.
*/
static void
set_program_var(const char *name, const void *value)
{
const void **addr;
if ((addr = get_program_var_addr(name)) != NULL) {
dbg("\"%s\": *%p <-- %p", name, addr, value);
*addr = value;
}
}
/*
* Given a symbol name in a referencing object, find the corresponding
* definition of the symbol. Returns a pointer to the symbol, or NULL if
* no definition was found. Returns a pointer to the Obj_Entry of the
* defining object via the reference parameter DEFOBJ_OUT.
*/
static const Elf_Sym *
symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
{
DoneList donelist;
const Elf_Sym *def;
const Elf_Sym *symp;
const Obj_Entry *obj;
const Obj_Entry *defobj;
const Objlist_Entry *elm;
def = NULL;
defobj = NULL;
donelist_init(&donelist);
/* Look first in the referencing object if linked symbolically. */
if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
symp = symlook_obj(name, hash, refobj, ventry, flags);
if (symp != NULL) {
def = symp;
defobj = refobj;
}
}
/* Search all objects loaded at program start up. */
if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
&donelist);
if (symp != NULL &&
(def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
def = symp;
defobj = obj;
}
}
/* Search all DAGs whose roots are RTLD_GLOBAL objects. */
STAILQ_FOREACH(elm, &list_global, link) {
if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
break;
symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
flags, &donelist);
if (symp != NULL &&
(def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
def = symp;
defobj = obj;
}
}
/* Search all dlopened DAGs containing the referencing object. */
STAILQ_FOREACH(elm, &refobj->dldags, link) {
if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
break;
symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
flags, &donelist);
if (symp != NULL &&
(def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
def = symp;
defobj = obj;
}
}
/*
* Search the dynamic linker itself, and possibly resolve the
* symbol from there. This is how the application links to
* dynamic linker services such as dlopen. Only the values listed
* in the "exports" array can be resolved from the dynamic linker.
*/
if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
if (symp != NULL && is_exported(symp)) {
def = symp;
defobj = &obj_rtld;
}
}
if (def != NULL)
*defobj_out = defobj;
return def;
}
static const Elf_Sym *
symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
DoneList *dlp)
{
const Elf_Sym *symp;
const Elf_Sym *def;
const Obj_Entry *defobj;
const Objlist_Entry *elm;
def = NULL;
defobj = NULL;
STAILQ_FOREACH(elm, objlist, link) {
if (donelist_check(dlp, elm->obj))
continue;
if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
def = symp;
defobj = elm->obj;
if (ELF_ST_BIND(def->st_info) != STB_WEAK)
break;
}
}
}
if (def != NULL)
*defobj_out = defobj;
return def;
}
/*
* Search the symbol table of a shared object and all objects needed
* by it for a symbol of the given name. Search order is
* breadth-first. Returns a pointer to the symbol, or NULL if no
* definition was found.
*/
static const Elf_Sym *
symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
DoneList *dlp)
{
const Elf_Sym *def, *def_w;
const Needed_Entry *n;
const Obj_Entry *obj, *defobj, *defobj1;
def = def_w = NULL;
defobj = NULL;
for (n = needed; n != NULL; n = n->next) {
if ((obj = n->obj) == NULL ||
donelist_check(dlp, obj) ||
(def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
continue;
defobj = obj;
if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
*defobj_out = defobj;
return (def);
}
}
/*
* There we come when either symbol definition is not found in
* directly needed objects, or found symbol is weak.
*/
for (n = needed; n != NULL; n = n->next) {
if ((obj = n->obj) == NULL)
continue;
def_w = symlook_needed(name, hash, obj->needed, &defobj1,
ventry, flags, dlp);
if (def_w == NULL)
continue;
if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
def = def_w;
defobj = defobj1;
}
if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
break;
}
if (def != NULL)
*defobj_out = defobj;
return (def);
}
/*
* Search the symbol table of a single shared object for a symbol of
* the given name and version, if requested. Returns a pointer to the
* symbol, or NULL if no definition was found.
*
* The symbol's hash value is passed in for efficiency reasons; that
* eliminates many recomputations of the hash value.
*/
const Elf_Sym *
symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
const Ver_Entry *ventry, int flags)
{
unsigned long symnum;
const Elf_Sym *vsymp;
Elf_Versym verndx;
int vcount;
if (obj->buckets == NULL)
return NULL;
vsymp = NULL;
vcount = 0;
symnum = obj->buckets[hash % obj->nbuckets];
for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
const Elf_Sym *symp;
const char *strp;
if (symnum >= obj->nchains)
return NULL; /* Bad object */
symp = obj->symtab + symnum;
strp = obj->strtab + symp->st_name;
switch (ELF_ST_TYPE(symp->st_info)) {
case STT_FUNC:
case STT_NOTYPE:
case STT_OBJECT:
if (symp->st_value == 0)
continue;
/* fallthrough */
case STT_TLS:
if (symp->st_shndx != SHN_UNDEF ||
((flags & SYMLOOK_IN_PLT) == 0 &&
ELF_ST_TYPE(symp->st_info) == STT_FUNC))
break;
/* fallthrough */
default:
continue;
}
if (name[0] != strp[0] || strcmp(name, strp) != 0)
continue;
if (ventry == NULL) {
if (obj->versyms != NULL) {
verndx = VER_NDX(obj->versyms[symnum]);
if (verndx > obj->vernum) {
_rtld_error("%s: symbol %s references wrong version %d",
obj->path, obj->strtab + symnum, verndx);
continue;
}
/*
* If we are not called from dlsym (i.e. this is a normal
* relocation from unversioned binary, accept the symbol
* immediately if it happens to have first version after
* this shared object became versioned. Otherwise, if
* symbol is versioned and not hidden, remember it. If it
* is the only symbol with this name exported by the
* shared object, it will be returned as a match at the
* end of the function. If symbol is global (verndx < 2)
* accept it unconditionally.
*/
if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
return symp;
else if (verndx >= VER_NDX_GIVEN) {
if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
if (vsymp == NULL)
vsymp = symp;
vcount ++;
}
continue;
}
}
return symp;
} else {
if (obj->versyms == NULL) {
if (object_match_name(obj, ventry->name)) {
_rtld_error("%s: object %s should provide version %s for "
"symbol %s", obj_rtld.path, obj->path, ventry->name,
obj->strtab + symnum);
continue;
}
} else {
verndx = VER_NDX(obj->versyms[symnum]);
if (verndx > obj->vernum) {
_rtld_error("%s: symbol %s references wrong version %d",
obj->path, obj->strtab + symnum, verndx);
continue;
}
if (obj->vertab[verndx].hash != ventry->hash ||
strcmp(obj->vertab[verndx].name, ventry->name)) {
/*
* Version does not match. Look if this is a global symbol
* and if it is not hidden. If global symbol (verndx < 2)
* is available, use it. Do not return symbol if we are
* called by dlvsym, because dlvsym looks for a specific
* version and default one is not what dlvsym wants.
*/
if ((flags & SYMLOOK_DLSYM) ||
(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
(verndx >= VER_NDX_GIVEN))
continue;
}
}
return symp;
}
}
return (vcount == 1) ? vsymp : NULL;
}
static void
trace_loaded_objects(Obj_Entry *obj)
{
char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
int c;
if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
main_local = "";
if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
fmt1 = "\t%o => %p (%x)\n";
if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
fmt2 = "\t%o (%x)\n";
list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
for (; obj; obj = obj->next) {
Needed_Entry *needed;
char *name, *path;
bool is_lib;
if (list_containers && obj->needed != NULL)
printf("%s:\n", obj->path);
for (needed = obj->needed; needed; needed = needed->next) {
if (needed->obj != NULL) {
if (needed->obj->traced && !list_containers)
continue;
needed->obj->traced = true;
path = needed->obj->path;
} else
path = "not found";
name = (char *)obj->strtab + needed->name;
is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */
fmt = is_lib ? fmt1 : fmt2;
while ((c = *fmt++) != '\0') {
switch (c) {
default:
putchar(c);
continue;
case '\\':
switch (c = *fmt) {
case '\0':
continue;
case 'n':
putchar('\n');
break;
case 't':
putchar('\t');
break;
}
break;
case '%':
switch (c = *fmt) {
case '\0':
continue;
case '%':
default:
putchar(c);
break;
case 'A':
printf("%s", main_local);
break;
case 'a':
printf("%s", obj_main->path);
break;
case 'o':
printf("%s", name);
break;
#if 0
case 'm':
printf("%d", sodp->sod_major);
break;
case 'n':
printf("%d", sodp->sod_minor);
break;
#endif
case 'p':
printf("%s", path);
break;
case 'x':
printf("%p", needed->obj ? needed->obj->mapbase : 0);
break;
}
break;
}
++fmt;
}
}
}
}
/*
* Unload a dlopened object and its dependencies from memory and from
* our data structures. It is assumed that the DAG rooted in the
* object has already been unreferenced, and that the object has a
* reference count of 0.
*/
static void
unload_object(Obj_Entry *root)
{
Obj_Entry *obj;
Obj_Entry **linkp;
assert(root->refcount == 0);
/*
* Pass over the DAG removing unreferenced objects from
* appropriate lists.
*/
unlink_object(root);
/* Unmap all objects that are no longer referenced. */
linkp = &obj_list->next;
while ((obj = *linkp) != NULL) {
if (obj->refcount == 0) {
LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
obj->path);
dbg("unloading \"%s\"", obj->path);
munmap(obj->mapbase, obj->mapsize);
linkmap_delete(obj);
*linkp = obj->next;
obj_count--;
obj_free(obj);
} else
linkp = &obj->next;
}
obj_tail = linkp;
}
static void
unlink_object(Obj_Entry *root)
{
Objlist_Entry *elm;
if (root->refcount == 0) {
/* Remove the object from the RTLD_GLOBAL list. */
objlist_remove(&list_global, root);
/* Remove the object from all objects' DAG lists. */
STAILQ_FOREACH(elm, &root->dagmembers, link) {
objlist_remove(&elm->obj->dldags, root);
if (elm->obj != root)
unlink_object(elm->obj);
}
}
}
static void
ref_dag(Obj_Entry *root)
{
Objlist_Entry *elm;
STAILQ_FOREACH(elm, &root->dagmembers, link)
elm->obj->refcount++;
}
static void
unref_dag(Obj_Entry *root)
{
Objlist_Entry *elm;
STAILQ_FOREACH(elm, &root->dagmembers, link)
elm->obj->refcount--;
}
/*
* Common code for MD __tls_get_addr().
*/
void *
tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
{
Elf_Addr* dtv = *dtvp;
int lockstate;
/* Check dtv generation in case new modules have arrived */
if (dtv[0] != tls_dtv_generation) {
Elf_Addr* newdtv;
int to_copy;
lockstate = wlock_acquire(rtld_bind_lock);
newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
to_copy = dtv[1];
if (to_copy > tls_max_index)
to_copy = tls_max_index;
memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
newdtv[0] = tls_dtv_generation;
newdtv[1] = tls_max_index;
free(dtv);
wlock_release(rtld_bind_lock, lockstate);
*dtvp = newdtv;
}
/* Dynamically allocate module TLS if necessary */
if (!dtv[index + 1]) {
/* Signal safe, wlock will block out signals. */
lockstate = wlock_acquire(rtld_bind_lock);
if (!dtv[index + 1])
dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
wlock_release(rtld_bind_lock, lockstate);
}
return (void*) (dtv[index + 1] + offset);
}
/* XXX not sure what variants to use for arm. */
#if defined(__ia64__) || defined(__powerpc__)
/*
* Allocate Static TLS using the Variant I method.
*/
void *
allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
{
Obj_Entry *obj;
char *tcb;
Elf_Addr **tls;
Elf_Addr *dtv;
Elf_Addr addr;
int i;
if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
return (oldtcb);
assert(tcbsize >= TLS_TCB_SIZE);
tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
if (oldtcb != NULL) {
memcpy(tls, oldtcb, tls_static_space);
free(oldtcb);
/* Adjust the DTV. */
dtv = tls[0];
for (i = 0; i < dtv[1]; i++) {
if (dtv[i+2] >= (Elf_Addr)oldtcb &&
dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
}
}
} else {
dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
tls[0] = dtv;
dtv[0] = tls_dtv_generation;
dtv[1] = tls_max_index;
for (obj = objs; obj; obj = obj->next) {
if (obj->tlsoffset) {
addr = (Elf_Addr)tls + obj->tlsoffset;
memset((void*) (addr + obj->tlsinitsize),
0, obj->tlssize - obj->tlsinitsize);
if (obj->tlsinit)
memcpy((void*) addr, obj->tlsinit,
obj->tlsinitsize);
dtv[obj->tlsindex + 1] = addr;
}
}
}
return (tcb);
}
void
free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
{
Elf_Addr *dtv;
Elf_Addr tlsstart, tlsend;
int dtvsize, i;
assert(tcbsize >= TLS_TCB_SIZE);
tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
tlsend = tlsstart + tls_static_space;
dtv = *(Elf_Addr **)tlsstart;
dtvsize = dtv[1];
for (i = 0; i < dtvsize; i++) {
if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
free((void*)dtv[i+2]);
}
}
free(dtv);
free(tcb);
}
#endif
#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
defined(__arm__)
/*
* Allocate Static TLS using the Variant II method.
*/
void *
allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
{
Obj_Entry *obj;
size_t size;
char *tls;
Elf_Addr *dtv, *olddtv;
Elf_Addr segbase, oldsegbase, addr;
int i;
size = round(tls_static_space, tcbalign);
assert(tcbsize >= 2*sizeof(Elf_Addr));
tls = calloc(1, size + tcbsize);
dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
segbase = (Elf_Addr)(tls + size);
((Elf_Addr*)segbase)[0] = segbase;
((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
dtv[0] = tls_dtv_generation;
dtv[1] = tls_max_index;
if (oldtls) {
/*
* Copy the static TLS block over whole.
*/
oldsegbase = (Elf_Addr) oldtls;
memcpy((void *)(segbase - tls_static_space),
(const void *)(oldsegbase - tls_static_space),
tls_static_space);
/*
* If any dynamic TLS blocks have been created tls_get_addr(),
* move them over.
*/
olddtv = ((Elf_Addr**)oldsegbase)[1];
for (i = 0; i < olddtv[1]; i++) {
if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
dtv[i+2] = olddtv[i+2];
olddtv[i+2] = 0;
}
}
/*
* We assume that this block was the one we created with
* allocate_initial_tls().
*/
free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
} else {
for (obj = objs; obj; obj = obj->next) {
if (obj->tlsoffset) {
addr = segbase - obj->tlsoffset;
memset((void*) (addr + obj->tlsinitsize),
0, obj->tlssize - obj->tlsinitsize);
if (obj->tlsinit)
memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
dtv[obj->tlsindex + 1] = addr;
}
}
}
return (void*) segbase;
}
void
free_tls(void *tls, size_t tcbsize, size_t tcbalign)
{
size_t size;
Elf_Addr* dtv;
int dtvsize, i;
Elf_Addr tlsstart, tlsend;
/*
* Figure out the size of the initial TLS block so that we can
* find stuff which ___tls_get_addr() allocated dynamically.
*/
size = round(tls_static_space, tcbalign);
dtv = ((Elf_Addr**)tls)[1];
dtvsize = dtv[1];
tlsend = (Elf_Addr) tls;
tlsstart = tlsend - size;
for (i = 0; i < dtvsize; i++) {
if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
free((void*) dtv[i+2]);
}
}
free((void*) tlsstart);
free((void*) dtv);
}
#endif
/*
* Allocate TLS block for module with given index.
*/
void *
allocate_module_tls(int index)
{
Obj_Entry* obj;
char* p;
for (obj = obj_list; obj; obj = obj->next) {
if (obj->tlsindex == index)
break;
}
if (!obj) {
_rtld_error("Can't find module with TLS index %d", index);
die();
}
p = malloc(obj->tlssize);
memcpy(p, obj->tlsinit, obj->tlsinitsize);
memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
return p;
}
bool
allocate_tls_offset(Obj_Entry *obj)
{
size_t off;
if (obj->tls_done)
return true;
if (obj->tlssize == 0) {
obj->tls_done = true;
return true;
}
if (obj->tlsindex == 1)
off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
else
off = calculate_tls_offset(tls_last_offset, tls_last_size,
obj->tlssize, obj->tlsalign);
/*
* If we have already fixed the size of the static TLS block, we
* must stay within that size. When allocating the static TLS, we
* leave a small amount of space spare to be used for dynamically
* loading modules which use static TLS.
*/
if (tls_static_space) {
if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
return false;
}
tls_last_offset = obj->tlsoffset = off;
tls_last_size = obj->tlssize;
obj->tls_done = true;
return true;
}
void
free_tls_offset(Obj_Entry *obj)
{
#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
defined(__arm__)
/*
* If we were the last thing to allocate out of the static TLS
* block, we give our space back to the 'allocator'. This is a
* simplistic workaround to allow libGL.so.1 to be loaded and
* unloaded multiple times. We only handle the Variant II
* mechanism for now - this really needs a proper allocator.
*/
if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
== calculate_tls_end(tls_last_offset, tls_last_size)) {
tls_last_offset -= obj->tlssize;
tls_last_size = 0;
}
#endif
}
void *
_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
{
void *ret;
int lockstate;
lockstate = wlock_acquire(rtld_bind_lock);
ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
wlock_release(rtld_bind_lock, lockstate);
return (ret);
}
void
_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
{
int lockstate;
lockstate = wlock_acquire(rtld_bind_lock);
free_tls(tcb, tcbsize, tcbalign);
wlock_release(rtld_bind_lock, lockstate);
}
static void
object_add_name(Obj_Entry *obj, const char *name)
{
Name_Entry *entry;
size_t len;
len = strlen(name);
entry = malloc(sizeof(Name_Entry) + len);
if (entry != NULL) {
strcpy(entry->name, name);
STAILQ_INSERT_TAIL(&obj->names, entry, link);
}
}
static int
object_match_name(const Obj_Entry *obj, const char *name)
{
Name_Entry *entry;
STAILQ_FOREACH(entry, &obj->names, link) {
if (strcmp(name, entry->name) == 0)
return (1);
}
return (0);
}
static Obj_Entry *
locate_dependency(const Obj_Entry *obj, const char *name)
{
const Objlist_Entry *entry;
const Needed_Entry *needed;
STAILQ_FOREACH(entry, &list_main, link) {
if (object_match_name(entry->obj, name))
return entry->obj;
}
for (needed = obj->needed; needed != NULL; needed = needed->next) {
if (needed->obj == NULL)
continue;
if (object_match_name(needed->obj, name))
return needed->obj;
}
_rtld_error("%s: Unexpected inconsistency: dependency %s not found",
obj->path, name);
die();
}
static int
check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
const Elf_Vernaux *vna)
{
const Elf_Verdef *vd;
const char *vername;
vername = refobj->strtab + vna->vna_name;
vd = depobj->verdef;
if (vd == NULL) {
_rtld_error("%s: version %s required by %s not defined",
depobj->path, vername, refobj->path);
return (-1);
}
for (;;) {
if (vd->vd_version != VER_DEF_CURRENT) {
_rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
depobj->path, vd->vd_version);
return (-1);
}
if (vna->vna_hash == vd->vd_hash) {
const Elf_Verdaux *aux = (const Elf_Verdaux *)
((char *)vd + vd->vd_aux);
if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
return (0);
}
if (vd->vd_next == 0)
break;
vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
}
if (vna->vna_flags & VER_FLG_WEAK)
return (0);
_rtld_error("%s: version %s required by %s not found",
depobj->path, vername, refobj->path);
return (-1);
}
static int
rtld_verify_object_versions(Obj_Entry *obj)
{
const Elf_Verneed *vn;
const Elf_Verdef *vd;
const Elf_Verdaux *vda;
const Elf_Vernaux *vna;
const Obj_Entry *depobj;
int maxvernum, vernum;
maxvernum = 0;
/*
* Walk over defined and required version records and figure out
* max index used by any of them. Do very basic sanity checking
* while there.
*/
vn = obj->verneed;
while (vn != NULL) {
if (vn->vn_version != VER_NEED_CURRENT) {
_rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
obj->path, vn->vn_version);
return (-1);
}
vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
for (;;) {
vernum = VER_NEED_IDX(vna->vna_other);
if (vernum > maxvernum)
maxvernum = vernum;
if (vna->vna_next == 0)
break;
vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
}
if (vn->vn_next == 0)
break;
vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
}
vd = obj->verdef;
while (vd != NULL) {
if (vd->vd_version != VER_DEF_CURRENT) {
_rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
obj->path, vd->vd_version);
return (-1);
}
vernum = VER_DEF_IDX(vd->vd_ndx);
if (vernum > maxvernum)
maxvernum = vernum;
if (vd->vd_next == 0)
break;
vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
}
if (maxvernum == 0)
return (0);
/*
* Store version information in array indexable by version index.
* Verify that object version requirements are satisfied along the
* way.
*/
obj->vernum = maxvernum + 1;
obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
vd = obj->verdef;
while (vd != NULL) {
if ((vd->vd_flags & VER_FLG_BASE) == 0) {
vernum = VER_DEF_IDX(vd->vd_ndx);
assert(vernum <= maxvernum);
vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
obj->vertab[vernum].hash = vd->vd_hash;
obj->vertab[vernum].name = obj->strtab + vda->vda_name;
obj->vertab[vernum].file = NULL;
obj->vertab[vernum].flags = 0;
}
if (vd->vd_next == 0)
break;
vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
}
vn = obj->verneed;
while (vn != NULL) {
depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
for (;;) {
if (check_object_provided_version(obj, depobj, vna))
return (-1);
vernum = VER_NEED_IDX(vna->vna_other);
assert(vernum <= maxvernum);
obj->vertab[vernum].hash = vna->vna_hash;
obj->vertab[vernum].name = obj->strtab + vna->vna_name;
obj->vertab[vernum].file = obj->strtab + vn->vn_file;
obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
VER_INFO_HIDDEN : 0;
if (vna->vna_next == 0)
break;
vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
}
if (vn->vn_next == 0)
break;
vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
}
return 0;
}
static int
rtld_verify_versions(const Objlist *objlist)
{
Objlist_Entry *entry;
int rc;
rc = 0;
STAILQ_FOREACH(entry, objlist, link) {
/*
* Skip dummy objects or objects that have their version requirements
* already checked.
*/
if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
continue;
if (rtld_verify_object_versions(entry->obj) == -1) {
rc = -1;
if (ld_tracing == NULL)
break;
}
}
if (rc == 0 || ld_tracing != NULL)
rc = rtld_verify_object_versions(&obj_rtld);
return rc;
}
const Ver_Entry *
fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
{
Elf_Versym vernum;
if (obj->vertab) {
vernum = VER_NDX(obj->versyms[symnum]);
if (vernum >= obj->vernum) {
_rtld_error("%s: symbol %s has wrong verneed value %d",
obj->path, obj->strtab + symnum, vernum);
} else if (obj->vertab[vernum].hash != 0) {
return &obj->vertab[vernum];
}
}
return NULL;
}