0eb88f2029
to be compatible with symbol versioning support as implemented by GNU libc and documented by http://people.redhat.com/~drepper/symbol-versioning and LSB 3.0. Implement dlvsym() function to allow lookups for a specific version of a given symbol.
582 lines
14 KiB
C
582 lines
14 KiB
C
/* $NetBSD: ppc_reloc.c,v 1.10 2001/09/10 06:09:41 mycroft Exp $ */
|
|
|
|
/*-
|
|
* Copyright (C) 1998 Tsubai Masanari
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <machine/cpu.h>
|
|
|
|
#include "debug.h"
|
|
#include "rtld.h"
|
|
|
|
#define _ppc_ha(x) ((((u_int32_t)(x) & 0x8000) ? \
|
|
((u_int32_t)(x) + 0x10000) : (u_int32_t)(x)) >> 16)
|
|
#define _ppc_la(x) ((u_int32_t)(x) & 0xffff)
|
|
|
|
/*
|
|
* Process the R_PPC_COPY relocations
|
|
*/
|
|
int
|
|
do_copy_relocations(Obj_Entry *dstobj)
|
|
{
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
|
|
/*
|
|
* COPY relocs are invalid outside of the main program
|
|
*/
|
|
assert(dstobj->mainprog);
|
|
|
|
relalim = (const Elf_Rela *) ((caddr_t) dstobj->rela +
|
|
dstobj->relasize);
|
|
for (rela = dstobj->rela; rela < relalim; rela++) {
|
|
void *dstaddr;
|
|
const Elf_Sym *dstsym;
|
|
const char *name;
|
|
unsigned long hash;
|
|
size_t size;
|
|
const void *srcaddr;
|
|
const Elf_Sym *srcsym = NULL;
|
|
Obj_Entry *srcobj;
|
|
const Ver_Entry *ve;
|
|
|
|
if (ELF_R_TYPE(rela->r_info) != R_PPC_COPY) {
|
|
continue;
|
|
}
|
|
|
|
dstaddr = (void *) (dstobj->relocbase + rela->r_offset);
|
|
dstsym = dstobj->symtab + ELF_R_SYM(rela->r_info);
|
|
name = dstobj->strtab + dstsym->st_name;
|
|
hash = elf_hash(name);
|
|
size = dstsym->st_size;
|
|
ve = fetch_ventry(dstobj, ELF_R_SYM(rela->r_info));
|
|
|
|
for (srcobj = dstobj->next; srcobj != NULL;
|
|
srcobj = srcobj->next) {
|
|
if ((srcsym = symlook_obj(name, hash, srcobj, ve, 0))
|
|
!= NULL) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (srcobj == NULL) {
|
|
_rtld_error("Undefined symbol \"%s\" "
|
|
" referenced from COPY"
|
|
" relocation in %s", name, dstobj->path);
|
|
return (-1);
|
|
}
|
|
|
|
srcaddr = (const void *) (srcobj->relocbase+srcsym->st_value);
|
|
memcpy(dstaddr, srcaddr, size);
|
|
dbg("copy_reloc: src=%p,dst=%p,size=%d\n",srcaddr,dstaddr,size);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform early relocation of the run-time linker image
|
|
*/
|
|
void
|
|
reloc_non_plt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
|
|
{
|
|
const Elf_Rela *rela = 0, *relalim;
|
|
Elf_Addr relasz = 0;
|
|
Elf_Addr *where;
|
|
|
|
/*
|
|
* Extract the rela/relasz values from the dynamic section
|
|
*/
|
|
for (; dynp->d_tag != DT_NULL; dynp++) {
|
|
switch (dynp->d_tag) {
|
|
case DT_RELA:
|
|
rela = (const Elf_Rela *)(relocbase+dynp->d_un.d_ptr);
|
|
break;
|
|
case DT_RELASZ:
|
|
relasz = dynp->d_un.d_val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Relocate these values
|
|
*/
|
|
relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
|
|
for (; rela < relalim; rela++) {
|
|
where = (Elf_Addr *)(relocbase + rela->r_offset);
|
|
*where = (Elf_Addr)(relocbase + rela->r_addend);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Relocate a non-PLT object with addend.
|
|
*/
|
|
static int
|
|
reloc_nonplt_object(Obj_Entry *obj_rtld, Obj_Entry *obj, const Elf_Rela *rela,
|
|
SymCache *cache)
|
|
{
|
|
Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
Elf_Addr tmp;
|
|
|
|
switch (ELF_R_TYPE(rela->r_info)) {
|
|
|
|
case R_PPC_NONE:
|
|
break;
|
|
|
|
case R_PPC_ADDR32: /* word32 S + A */
|
|
case R_PPC_GLOB_DAT: /* word32 S + A */
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
if (def == NULL) {
|
|
return (-1);
|
|
}
|
|
|
|
tmp = (Elf_Addr)(defobj->relocbase + def->st_value +
|
|
rela->r_addend);
|
|
|
|
/* Don't issue write if unnecessary; avoid COW page fault */
|
|
if (*where != tmp) {
|
|
*where = tmp;
|
|
}
|
|
break;
|
|
|
|
case R_PPC_RELATIVE: /* word32 B + A */
|
|
tmp = (Elf_Addr)(obj->relocbase + rela->r_addend);
|
|
|
|
/* As above, don't issue write unnecessarily */
|
|
if (*where != tmp) {
|
|
*where = tmp;
|
|
}
|
|
break;
|
|
|
|
case R_PPC_COPY:
|
|
/*
|
|
* These are deferred until all other relocations
|
|
* have been done. All we do here is make sure
|
|
* that the COPY relocation is not in a shared
|
|
* library. They are allowed only in executable
|
|
* files.
|
|
*/
|
|
if (!obj->mainprog) {
|
|
_rtld_error("%s: Unexpected R_COPY "
|
|
" relocation in shared library",
|
|
obj->path);
|
|
return (-1);
|
|
}
|
|
break;
|
|
|
|
case R_PPC_JMP_SLOT:
|
|
/*
|
|
* These will be handled by the plt/jmpslot routines
|
|
*/
|
|
break;
|
|
|
|
case R_PPC_DTPMOD32:
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
|
|
if (def == NULL)
|
|
return (-1);
|
|
|
|
*where = (Elf_Addr) defobj->tlsindex;
|
|
|
|
break;
|
|
|
|
case R_PPC_TPREL32:
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
|
|
if (def == NULL)
|
|
return (-1);
|
|
|
|
/*
|
|
* We lazily allocate offsets for static TLS as we
|
|
* see the first relocation that references the
|
|
* TLS block. This allows us to support (small
|
|
* amounts of) static TLS in dynamically loaded
|
|
* modules. If we run out of space, we generate an
|
|
* error.
|
|
*/
|
|
if (!defobj->tls_done) {
|
|
if (!allocate_tls_offset((Obj_Entry*) defobj)) {
|
|
_rtld_error("%s: No space available for static "
|
|
"Thread Local Storage", obj->path);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
*(Elf_Addr **)where = *where * sizeof(Elf_Addr)
|
|
+ (Elf_Addr *)(def->st_value + rela->r_addend
|
|
+ defobj->tlsoffset - TLS_TP_OFFSET - TLS_TCB_SIZE);
|
|
|
|
break;
|
|
|
|
case R_PPC_DTPREL32:
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
|
|
if (def == NULL)
|
|
return (-1);
|
|
|
|
*where += (Elf_Addr)(def->st_value + rela->r_addend
|
|
- TLS_DTV_OFFSET);
|
|
|
|
break;
|
|
|
|
default:
|
|
_rtld_error("%s: Unsupported relocation type %d"
|
|
" in non-PLT relocations\n", obj->path,
|
|
ELF_R_TYPE(rela->r_info));
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Process non-PLT relocations
|
|
*/
|
|
int
|
|
reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld)
|
|
{
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
SymCache *cache;
|
|
int bytes = obj->nchains * sizeof(SymCache);
|
|
int r = -1;
|
|
|
|
/*
|
|
* The dynamic loader may be called from a thread, we have
|
|
* limited amounts of stack available so we cannot use alloca().
|
|
*/
|
|
cache = mmap(NULL, bytes, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
|
|
if (cache == MAP_FAILED)
|
|
cache = NULL;
|
|
|
|
/*
|
|
* From the SVR4 PPC ABI:
|
|
* "The PowerPC family uses only the Elf32_Rela relocation
|
|
* entries with explicit addends."
|
|
*/
|
|
relalim = (const Elf_Rela *)((caddr_t)obj->rela + obj->relasize);
|
|
for (rela = obj->rela; rela < relalim; rela++) {
|
|
if (reloc_nonplt_object(obj_rtld, obj, rela, cache) < 0)
|
|
goto done;
|
|
}
|
|
r = 0;
|
|
done:
|
|
if (cache) {
|
|
munmap(cache, bytes);
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialise a PLT slot to the resolving trampoline
|
|
*/
|
|
static int
|
|
reloc_plt_object(Obj_Entry *obj, const Elf_Rela *rela)
|
|
{
|
|
Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
|
|
Elf_Addr *pltresolve;
|
|
Elf_Addr distance;
|
|
int reloff;
|
|
|
|
reloff = rela - obj->pltrela;
|
|
|
|
if ((reloff < 0) || (reloff >= 0x8000)) {
|
|
return (-1);
|
|
}
|
|
|
|
pltresolve = obj->pltgot + 8;
|
|
|
|
distance = (Elf_Addr)pltresolve - (Elf_Addr)(where + 1);
|
|
|
|
dbg(" reloc_plt_object: where=%p,pltres=%p,reloff=%x,distance=%x",
|
|
(void *)where, (void *)pltresolve, reloff, distance);
|
|
|
|
/* li r11,reloff */
|
|
/* b pltresolve */
|
|
where[0] = 0x39600000 | reloff;
|
|
where[1] = 0x48000000 | (distance & 0x03fffffc);
|
|
|
|
/*
|
|
* The icache will be sync'd in init_pltgot, which is called
|
|
* after all the slots have been updated
|
|
*/
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Process the PLT relocations.
|
|
*/
|
|
int
|
|
reloc_plt(Obj_Entry *obj)
|
|
{
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
|
|
if (obj->pltrelasize != 0) {
|
|
|
|
relalim = (const Elf_Rela *)((char *)obj->pltrela +
|
|
obj->pltrelasize);
|
|
for (rela = obj->pltrela; rela < relalim; rela++) {
|
|
assert(ELF_R_TYPE(rela->r_info) == R_PPC_JMP_SLOT);
|
|
|
|
if (reloc_plt_object(obj, rela) < 0) {
|
|
return (-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* LD_BIND_NOW was set - force relocation for all jump slots
|
|
*/
|
|
int
|
|
reloc_jmpslots(Obj_Entry *obj)
|
|
{
|
|
const Obj_Entry *defobj;
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
const Elf_Sym *def;
|
|
Elf_Addr *where;
|
|
Elf_Addr target;
|
|
|
|
relalim = (const Elf_Rela *)((char *)obj->pltrela + obj->pltrelasize);
|
|
for (rela = obj->pltrela; rela < relalim; rela++) {
|
|
assert(ELF_R_TYPE(rela->r_info) == R_PPC_JMP_SLOT);
|
|
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
true, NULL);
|
|
if (def == NULL) {
|
|
dbg("reloc_jmpslots: sym not found");
|
|
return (-1);
|
|
}
|
|
|
|
target = (Elf_Addr)(defobj->relocbase + def->st_value);
|
|
|
|
#if 0
|
|
/* PG XXX */
|
|
dbg("\"%s\" in \"%s\" --> %p in \"%s\"",
|
|
defobj->strtab + def->st_name, basename(obj->path),
|
|
(void *)target, basename(defobj->path));
|
|
#endif
|
|
|
|
reloc_jmpslot(where, target, defobj, obj,
|
|
(const Elf_Rel *) rela);
|
|
}
|
|
|
|
obj->jmpslots_done = true;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Update the value of a PLT jump slot. Branch directly to the target if
|
|
* it is within +/- 32Mb, otherwise go indirectly via the pltcall
|
|
* trampoline call and jump table.
|
|
*/
|
|
Elf_Addr
|
|
reloc_jmpslot(Elf_Addr *wherep, Elf_Addr target, const Obj_Entry *defobj,
|
|
const Obj_Entry *obj, const Elf_Rel *rel)
|
|
{
|
|
Elf_Addr offset;
|
|
const Elf_Rela *rela = (const Elf_Rela *) rel;
|
|
|
|
dbg(" reloc_jmpslot: where=%p, target=%p",
|
|
(void *)wherep, (void *)target);
|
|
|
|
/*
|
|
* At the PLT entry pointed at by `wherep', construct
|
|
* a direct transfer to the now fully resolved function
|
|
* address.
|
|
*/
|
|
offset = target - (Elf_Addr)wherep;
|
|
|
|
if (abs(offset) < 32*1024*1024) { /* inside 32MB? */
|
|
/* b value # branch directly */
|
|
*wherep = 0x48000000 | (offset & 0x03fffffc);
|
|
__syncicache(wherep, 4);
|
|
} else {
|
|
Elf_Addr *pltcall, *jmptab;
|
|
int distance;
|
|
int N = obj->pltrelasize / sizeof(Elf_Rela);
|
|
int reloff = rela - obj->pltrela;
|
|
|
|
if ((reloff < 0) || (reloff >= 0x8000)) {
|
|
return (-1);
|
|
}
|
|
|
|
pltcall = obj->pltgot;
|
|
|
|
dbg(" reloc_jmpslot: indir, reloff=%d, N=%d\n",
|
|
reloff, N);
|
|
|
|
jmptab = obj->pltgot + 18 + N * 2;
|
|
jmptab[reloff] = target;
|
|
|
|
distance = (Elf_Addr)pltcall - (Elf_Addr)(wherep + 1);
|
|
|
|
/* li r11,reloff */
|
|
/* b pltcall # use indirect pltcall routine */
|
|
wherep[0] = 0x39600000 | reloff;
|
|
wherep[1] = 0x48000000 | (distance & 0x03fffffc);
|
|
__syncicache(wherep, 8);
|
|
}
|
|
|
|
return (target);
|
|
}
|
|
|
|
|
|
/*
|
|
* Setup the plt glue routines.
|
|
*/
|
|
#define PLTCALL_SIZE 20
|
|
#define PLTRESOLVE_SIZE 24
|
|
|
|
void
|
|
init_pltgot(Obj_Entry *obj)
|
|
{
|
|
Elf_Word *pltcall, *pltresolve;
|
|
Elf_Word *jmptab;
|
|
int N = obj->pltrelasize / sizeof(Elf_Rela);
|
|
|
|
pltcall = obj->pltgot;
|
|
|
|
if (pltcall == NULL) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* From the SVR4 PPC ABI:
|
|
*
|
|
* 'The first 18 words (72 bytes) of the PLT are reserved for
|
|
* use by the dynamic linker.
|
|
* ...
|
|
* 'If the executable or shared object requires N procedure
|
|
* linkage table entries, the link editor shall reserve 3*N
|
|
* words (12*N bytes) following the 18 reserved words. The
|
|
* first 2*N of these words are the procedure linkage table
|
|
* entries themselves. The static linker directs calls to bytes
|
|
* (72 + (i-1)*8), for i between 1 and N inclusive. The remaining
|
|
* N words (4*N bytes) are reserved for use by the dynamic linker.'
|
|
*/
|
|
|
|
/*
|
|
* Copy the absolute-call assembler stub into the first part of
|
|
* the reserved PLT area.
|
|
*/
|
|
memcpy(pltcall, _rtld_powerpc_pltcall, PLTCALL_SIZE);
|
|
|
|
/*
|
|
* Determine the address of the jumptable, which is the dyn-linker
|
|
* reserved area after the call cells. Write the absolute address
|
|
* of the jumptable into the absolute-call assembler code so it
|
|
* can determine this address.
|
|
*/
|
|
jmptab = pltcall + 18 + N * 2;
|
|
pltcall[1] |= _ppc_ha(jmptab); /* addis 11,11,jmptab@ha */
|
|
pltcall[2] |= _ppc_la(jmptab); /* lwz 11,jmptab@l(11) */
|
|
|
|
/*
|
|
* Skip down 32 bytes into the initial reserved area and copy
|
|
* in the standard resolving assembler call. Into this assembler,
|
|
* insert the absolute address of the _rtld_bind_start routine
|
|
* and the address of the relocation object.
|
|
*/
|
|
pltresolve = obj->pltgot + 8;
|
|
|
|
memcpy(pltresolve, _rtld_powerpc_pltresolve, PLTRESOLVE_SIZE);
|
|
pltresolve[0] |= _ppc_ha(_rtld_bind_start);
|
|
pltresolve[1] |= _ppc_la(_rtld_bind_start);
|
|
pltresolve[3] |= _ppc_ha(obj);
|
|
pltresolve[4] |= _ppc_la(obj);
|
|
|
|
/*
|
|
* Sync the icache for the byte range represented by the
|
|
* trampoline routines and call slots.
|
|
*/
|
|
__syncicache(pltcall, 72 + N * 8);
|
|
}
|
|
|
|
void
|
|
allocate_initial_tls(Obj_Entry *list)
|
|
{
|
|
register Elf_Addr **tp __asm__("r2");
|
|
Elf_Addr **_tp;
|
|
|
|
/*
|
|
* Fix the size of the static TLS block by using the maximum
|
|
* offset allocated so far and adding a bit for dynamic modules to
|
|
* use.
|
|
*/
|
|
|
|
tls_static_space = tls_last_offset + tls_last_size + RTLD_STATIC_TLS_EXTRA;
|
|
|
|
_tp = (Elf_Addr **) ((char *) allocate_tls(list, 0, 8, 8)
|
|
+ TLS_TP_OFFSET + TLS_TCB_SIZE);
|
|
|
|
/*
|
|
* XXX gcc seems to ignore 'tp = _tp;'
|
|
*/
|
|
|
|
__asm __volatile("mr %0,%1" : "=r"(tp) : "r"(_tp));
|
|
}
|
|
|
|
void*
|
|
__tls_get_addr(tls_index* ti)
|
|
{
|
|
register Elf_Addr **tp __asm__("r2");
|
|
char *p;
|
|
|
|
p = tls_get_addr_common((Elf_Addr**)((Elf_Addr)tp - TLS_TP_OFFSET
|
|
- TLS_TCB_SIZE), ti->ti_module, ti->ti_offset);
|
|
|
|
return (p + TLS_DTV_OFFSET);
|
|
}
|