freebsd-dev/lib/libpthread/thread/thr_rwlock.c
Daniel Eischen e5106342c6 Add weak definitions for wrapped system calls. In general:
_foo - wrapped system call
	foo - weak definition to _foo

and for cancellation points:

	_foo - wrapped system call
	__foo - enter cancellation point, call _foo(), leave
	        cancellation point
	foo - weak definition to __foo

Change use of global _thread_run to call a function to get the
currently running thread.

Make all pthread_foo functions weak definitions to _pthread_foo,
where _pthread_foo is the implementation.  This allows an application
to provide its own pthread functions.

Provide slightly different versions of pthread_mutex_lock and
pthread_mutex_init so that we can tell the difference between
a libc mutex and an application mutex.  Threads holding mutexes
internal to libc should never be allowed to exit, call signal
handlers, or cancel.

Approved by:	-arch
2001-01-24 13:03:38 +00:00

342 lines
7.7 KiB
C

/*-
* Copyright (c) 1998 Alex Nash
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <pthread.h>
#include "pthread_private.h"
/* maximum number of times a read lock may be obtained */
#define MAX_READ_LOCKS (INT_MAX - 1)
#pragma weak pthread_rwlock_destroy=_pthread_rwlock_destroy
#pragma weak pthread_rwlock_init=_pthread_rwlock_init
#pragma weak pthread_rwlock_rdlock=_pthread_rwlock_rdlock
#pragma weak pthread_rwlock_tryrdlock=_pthread_rwlock_tryrdlock
#pragma weak pthread_rwlock_trywrlock=_pthread_rwlock_trywrlock
#pragma weak pthread_rwlock_unlock=_pthread_rwlock_unlock
#pragma weak pthread_rwlock_wrlock=_pthread_rwlock_wrlock
static int init_static (pthread_rwlock_t *rwlock);
static spinlock_t static_init_lock = _SPINLOCK_INITIALIZER;
static int
init_static (pthread_rwlock_t *rwlock)
{
int ret;
_SPINLOCK(&static_init_lock);
if (*rwlock == NULL)
ret = pthread_rwlock_init(rwlock, NULL);
else
ret = 0;
_SPINUNLOCK(&static_init_lock);
return(ret);
}
int
_pthread_rwlock_destroy (pthread_rwlock_t *rwlock)
{
int ret;
if (rwlock == NULL)
ret = EINVAL;
else {
pthread_rwlock_t prwlock;
prwlock = *rwlock;
pthread_mutex_destroy(&prwlock->lock);
pthread_cond_destroy(&prwlock->read_signal);
pthread_cond_destroy(&prwlock->write_signal);
free(prwlock);
*rwlock = NULL;
ret = 0;
}
return(ret);
}
int
_pthread_rwlock_init (pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr)
{
pthread_rwlock_t prwlock;
int ret;
/* allocate rwlock object */
prwlock = (pthread_rwlock_t)malloc(sizeof(struct pthread_rwlock));
if (prwlock == NULL)
return(ENOMEM);
/* initialize the lock */
if ((ret = pthread_mutex_init(&prwlock->lock, NULL)) != 0)
free(prwlock);
else {
/* initialize the read condition signal */
ret = pthread_cond_init(&prwlock->read_signal, NULL);
if (ret != 0) {
pthread_mutex_destroy(&prwlock->lock);
free(prwlock);
} else {
/* initialize the write condition signal */
ret = pthread_cond_init(&prwlock->write_signal, NULL);
if (ret != 0) {
pthread_cond_destroy(&prwlock->read_signal);
pthread_mutex_destroy(&prwlock->lock);
free(prwlock);
} else {
/* success */
prwlock->state = 0;
prwlock->blocked_writers = 0;
*rwlock = prwlock;
}
}
}
return(ret);
}
int
_pthread_rwlock_rdlock (pthread_rwlock_t *rwlock)
{
pthread_rwlock_t prwlock;
int ret;
if (rwlock == NULL)
return(EINVAL);
prwlock = *rwlock;
/* check for static initialization */
if (prwlock == NULL) {
if ((ret = init_static(rwlock)) != 0)
return(ret);
prwlock = *rwlock;
}
/* grab the monitor lock */
if ((ret = pthread_mutex_lock(&prwlock->lock)) != 0)
return(ret);
/* give writers priority over readers */
while (prwlock->blocked_writers || prwlock->state < 0) {
ret = pthread_cond_wait(&prwlock->read_signal, &prwlock->lock);
if (ret != 0) {
/* can't do a whole lot if this fails */
pthread_mutex_unlock(&prwlock->lock);
return(ret);
}
}
/* check lock count */
if (prwlock->state == MAX_READ_LOCKS)
ret = EAGAIN;
else
++prwlock->state; /* indicate we are locked for reading */
/*
* Something is really wrong if this call fails. Returning
* error won't do because we've already obtained the read
* lock. Decrementing 'state' is no good because we probably
* don't have the monitor lock.
*/
pthread_mutex_unlock(&prwlock->lock);
return(ret);
}
int
_pthread_rwlock_tryrdlock (pthread_rwlock_t *rwlock)
{
pthread_rwlock_t prwlock;
int ret;
if (rwlock == NULL)
return(EINVAL);
prwlock = *rwlock;
/* check for static initialization */
if (prwlock == NULL) {
if ((ret = init_static(rwlock)) != 0)
return(ret);
prwlock = *rwlock;
}
/* grab the monitor lock */
if ((ret = pthread_mutex_lock(&prwlock->lock)) != 0)
return(ret);
/* give writers priority over readers */
if (prwlock->blocked_writers || prwlock->state < 0)
ret = EWOULDBLOCK;
else if (prwlock->state == MAX_READ_LOCKS)
ret = EAGAIN; /* too many read locks acquired */
else
++prwlock->state; /* indicate we are locked for reading */
/* see the comment on this in pthread_rwlock_rdlock */
pthread_mutex_unlock(&prwlock->lock);
return(ret);
}
int
_pthread_rwlock_trywrlock (pthread_rwlock_t *rwlock)
{
pthread_rwlock_t prwlock;
int ret;
if (rwlock == NULL)
return(EINVAL);
prwlock = *rwlock;
/* check for static initialization */
if (prwlock == NULL) {
if ((ret = init_static(rwlock)) != 0)
return(ret);
prwlock = *rwlock;
}
/* grab the monitor lock */
if ((ret = pthread_mutex_lock(&prwlock->lock)) != 0)
return(ret);
if (prwlock->state != 0)
ret = EWOULDBLOCK;
else
/* indicate we are locked for writing */
prwlock->state = -1;
/* see the comment on this in pthread_rwlock_rdlock */
pthread_mutex_unlock(&prwlock->lock);
return(ret);
}
int
_pthread_rwlock_unlock (pthread_rwlock_t *rwlock)
{
pthread_rwlock_t prwlock;
int ret;
if (rwlock == NULL)
return(EINVAL);
prwlock = *rwlock;
if (prwlock == NULL)
return(EINVAL);
/* grab the monitor lock */
if ((ret = pthread_mutex_lock(&prwlock->lock)) != 0)
return(ret);
if (prwlock->state > 0) {
if (--prwlock->state == 0 && prwlock->blocked_writers)
ret = pthread_cond_signal(&prwlock->write_signal);
} else if (prwlock->state < 0) {
prwlock->state = 0;
if (prwlock->blocked_writers)
ret = pthread_cond_signal(&prwlock->write_signal);
else
ret = pthread_cond_broadcast(&prwlock->read_signal);
} else
ret = EINVAL;
/* see the comment on this in pthread_rwlock_rdlock */
pthread_mutex_unlock(&prwlock->lock);
return(ret);
}
int
_pthread_rwlock_wrlock (pthread_rwlock_t *rwlock)
{
pthread_rwlock_t prwlock;
int ret;
if (rwlock == NULL)
return(EINVAL);
prwlock = *rwlock;
/* check for static initialization */
if (prwlock == NULL) {
if ((ret = init_static(rwlock)) != 0)
return(ret);
prwlock = *rwlock;
}
/* grab the monitor lock */
if ((ret = pthread_mutex_lock(&prwlock->lock)) != 0)
return(ret);
while (prwlock->state != 0) {
++prwlock->blocked_writers;
ret = pthread_cond_wait(&prwlock->write_signal, &prwlock->lock);
if (ret != 0) {
--prwlock->blocked_writers;
pthread_mutex_unlock(&prwlock->lock);
return(ret);
}
--prwlock->blocked_writers;
}
/* indicate we are locked for writing */
prwlock->state = -1;
/* see the comment on this in pthread_rwlock_rdlock */
pthread_mutex_unlock(&prwlock->lock);
return(ret);
}