freebsd-dev/sys/ia64/include/bus.h
Warner Losh 06db52b609 Break out the definition of bus_space_{tag,handle}_t and a few other types
into _bus.h to help with name space polution from including all of bus.h.
In a few days, I'll commit changes to the MI code to take advantage of thse
sepration (after I've made sure that these changes don't break anything in
the main tree, I've tested in my trees, but you never know...).

Suggested by: bde (in 2002 or 2003 I think)
Reviewed in principle by: jhb
2005-04-18 21:45:34 +00:00

845 lines
24 KiB
C

/* $NetBSD: bus.h,v 1.12 1997/10/01 08:25:15 fvdl Exp $ */
/*-
* Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1996 Charles M. Hannum. All rights reserved.
* Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christopher G. Demetriou
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* $FreeBSD$ */
#ifndef _MACHINE_BUS_H_
#define _MACHINE_BUS_H_
/*
* Platform notes:
* o We don't use the _MACHINE_BUS_PIO_H_ and _MACHINE_BUS_MEMIO_H_
* macros to conditionally compile for I/O port, memory mapped I/O
* or both. It's a micro-optimization that is not worth the pain
* because there is no I/O port space. I/O ports are emulated by
* doing memory mapped I/O in a special memory range. The address
* translation is slightly magic for I/O port accesses, but it does
* not warrant the overhead.
*
*/
#define _MACHINE_BUS_MEMIO_H_
#define _MACHINE_BUS_PIO_H_
#include <machine/_bus.h>
#include <machine/cpufunc.h>
/*
* Values for the ia64 bus space tag, not to be used directly by MI code.
*/
#define IA64_BUS_SPACE_IO 0 /* space is i/o space */
#define IA64_BUS_SPACE_MEM 1 /* space is mem space */
#define BUS_SPACE_MAXSIZE_24BIT 0xFFFFFF
#define BUS_SPACE_MAXSIZE_32BIT 0xFFFFFFFF
#define BUS_SPACE_MAXSIZE 0xFFFFFFFFFFFFFFFF
#define BUS_SPACE_MAXADDR_24BIT 0xFFFFFF
#define BUS_SPACE_MAXADDR_32BIT 0xFFFFFFFF
#define BUS_SPACE_MAXADDR 0xFFFFFFFF
#define BUS_SPACE_UNRESTRICTED (~0)
/*
* Map a region of device bus space into CPU virtual address space.
*/
static __inline int bus_space_map(bus_space_tag_t t, bus_addr_t addr,
bus_size_t size, int flags,
bus_space_handle_t *bshp);
static __inline int
bus_space_map(bus_space_tag_t t __unused, bus_addr_t addr,
bus_size_t size __unused, int flags __unused,
bus_space_handle_t *bshp)
{
*bshp = addr;
return (0);
}
/*
* Unmap a region of device bus space.
*/
static __inline void
bus_space_unmap(bus_space_tag_t bst __unused, bus_space_handle_t bsh __unused,
bus_size_t size __unused)
{
}
/*
* Get a new handle for a subregion of an already-mapped area of bus space.
*/
static __inline int
bus_space_subregion(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, bus_size_t size, bus_space_handle_t *nbshp)
{
*nbshp = bsh + ofs;
return (0);
}
/*
* Allocate a region of memory that is accessible to devices in bus space.
*/
int
bus_space_alloc(bus_space_tag_t bst, bus_addr_t rstart, bus_addr_t rend,
bus_size_t size, bus_size_t align, bus_size_t boundary, int flags,
bus_addr_t *addrp, bus_space_handle_t *bshp);
/*
* Free a region of bus space accessible memory.
*/
void
bus_space_free(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t size);
/*
* Bus read/write barrier method.
*/
#define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */
#define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */
static __inline void
bus_space_barrier(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
bus_size_t size, int flags)
{
ia64_mf_a();
ia64_mf();
}
/*
* Read 1 unit of data from bus space described by the tag, handle and ofs
* tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is returned.
*/
static __inline uint8_t
bus_space_read_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
return (*bsp);
}
static __inline uint16_t
bus_space_read_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
return (*bsp);
}
static __inline uint32_t
bus_space_read_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
return (*bsp);
}
static __inline uint64_t
bus_space_read_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
return (*bsp);
}
/*
* Write 1 unit of data to bus space described by the tag, handle and ofs
* tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is passed by value.
*/
static __inline void
bus_space_write_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint8_t val)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
}
static __inline void
bus_space_write_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint16_t val)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
}
static __inline void
bus_space_write_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint32_t val)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
}
static __inline void
bus_space_write_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint64_t val)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
}
/*
* Read count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is returned in the buffer passed by reference.
*/
static __inline void
bus_space_read_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t *bufp, size_t count)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bufp++ = *bsp;
}
static __inline void
bus_space_read_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t *bufp, size_t count)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bufp++ = *bsp;
}
static __inline void
bus_space_read_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t *bufp, size_t count)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bufp++ = *bsp;
}
static __inline void
bus_space_read_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t *bufp, size_t count)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bufp++ = *bsp;
}
/*
* Write count units of data to bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is read from the buffer passed by reference.
*/
static __inline void
bus_space_write_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint8_t *bufp, size_t count)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = *bufp++;
}
static __inline void
bus_space_write_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint16_t *bufp, size_t count)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = *bufp++;
}
static __inline void
bus_space_write_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint32_t *bufp, size_t count)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = *bufp++;
}
static __inline void
bus_space_write_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint64_t *bufp, size_t count)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = *bufp++;
}
/*
* Read count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is written to the buffer passed by reference and read from successive
* bus space addresses. Access is unordered.
*/
static __inline void
bus_space_read_region_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t *bufp, size_t count)
{
uint8_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bufp++ = *bsp;
ofs += 1;
}
}
static __inline void
bus_space_read_region_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t *bufp, size_t count)
{
uint16_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bufp++ = *bsp;
ofs += 2;
}
}
static __inline void
bus_space_read_region_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t *bufp, size_t count)
{
uint32_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bufp++ = *bsp;
ofs += 4;
}
}
static __inline void
bus_space_read_region_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t *bufp, size_t count)
{
uint64_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bufp++ = *bsp;
ofs += 8;
}
}
/*
* Write count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is read from the buffer passed by reference and written to successive
* bus space addresses. Access is unordered.
*/
static __inline void
bus_space_write_region_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint8_t *bufp, size_t count)
{
uint8_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = *bufp++;
ofs += 1;
}
}
static __inline void
bus_space_write_region_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint16_t *bufp, size_t count)
{
uint16_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = *bufp++;
ofs += 2;
}
}
static __inline void
bus_space_write_region_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint32_t *bufp, size_t count)
{
uint32_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = *bufp++;
ofs += 4;
}
}
static __inline void
bus_space_write_region_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint64_t *bufp, size_t count)
{
uint64_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = *bufp++;
ofs += 8;
}
}
/*
* Write count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is passed by value. Writes are unordered.
*/
static __inline void
bus_space_set_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t val, size_t count)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = val;
}
static __inline void
bus_space_set_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t val, size_t count)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = val;
}
static __inline void
bus_space_set_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t val, size_t count)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = val;
}
static __inline void
bus_space_set_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t val, size_t count)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = val;
}
/*
* Write count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is passed by value and written to successive bus space addresses.
* Writes are unordered.
*/
static __inline void
bus_space_set_region_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t val, size_t count)
{
uint8_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
ofs += 1;
}
}
static __inline void
bus_space_set_region_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t val, size_t count)
{
uint16_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
ofs += 2;
}
}
static __inline void
bus_space_set_region_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t val, size_t count)
{
uint32_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
ofs += 4;
}
}
static __inline void
bus_space_set_region_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t val, size_t count)
{
uint64_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
ofs += 8;
}
}
/*
* Copy count units of data from bus space described by the tag and the first
* handle and ofs pair to bus space described by the tag and the second handle
* and ofs pair. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes.
* The data is read from successive bus space addresses and also written to
* successive bus space addresses. Both reads and writes are unordered.
*/
static __inline void
bus_space_copy_region_1(bus_space_tag_t bst, bus_space_handle_t bsh1,
bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, size_t count)
{
bus_addr_t dst, src;
uint8_t __volatile *dstp, *srcp;
src = bsh1 + ofs1;
dst = bsh2 + ofs2;
if (dst > src) {
src += count - 1;
dst += count - 1;
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src -= 1;
dst -= 1;
}
} else {
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src += 1;
dst += 1;
}
}
}
static __inline void
bus_space_copy_region_2(bus_space_tag_t bst, bus_space_handle_t bsh1,
bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, size_t count)
{
bus_addr_t dst, src;
uint16_t __volatile *dstp, *srcp;
src = bsh1 + ofs1;
dst = bsh2 + ofs2;
if (dst > src) {
src += (count - 1) << 1;
dst += (count - 1) << 1;
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src -= 2;
dst -= 2;
}
} else {
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src += 2;
dst += 2;
}
}
}
static __inline void
bus_space_copy_region_4(bus_space_tag_t bst, bus_space_handle_t bsh1,
bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, size_t count)
{
bus_addr_t dst, src;
uint32_t __volatile *dstp, *srcp;
src = bsh1 + ofs1;
dst = bsh2 + ofs2;
if (dst > src) {
src += (count - 1) << 2;
dst += (count - 1) << 2;
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src -= 4;
dst -= 4;
}
} else {
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src += 4;
dst += 4;
}
}
}
static __inline void
bus_space_copy_region_8(bus_space_tag_t bst, bus_space_handle_t bsh1,
bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, size_t count)
{
bus_addr_t dst, src;
uint64_t __volatile *dstp, *srcp;
src = bsh1 + ofs1;
dst = bsh2 + ofs2;
if (dst > src) {
src += (count - 1) << 3;
dst += (count - 1) << 3;
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src -= 8;
dst -= 8;
}
} else {
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src += 8;
dst += 8;
}
}
}
/*
* Stream accesses are the same as normal accesses on ia64; there are no
* supported bus systems with an endianess different from the host one.
*/
#define bus_space_read_stream_1(t, h, o) \
bus_space_read_1(t, h, o)
#define bus_space_read_stream_2(t, h, o) \
bus_space_read_2(t, h, o)
#define bus_space_read_stream_4(t, h, o) \
bus_space_read_4(t, h, o)
#define bus_space_read_stream_8(t, h, o) \
bus_space_read_8(t, h, o)
#define bus_space_read_multi_stream_1(t, h, o, a, c) \
bus_space_read_multi_1(t, h, o, a, c)
#define bus_space_read_multi_stream_2(t, h, o, a, c) \
bus_space_read_multi_2(t, h, o, a, c)
#define bus_space_read_multi_stream_4(t, h, o, a, c) \
bus_space_read_multi_4(t, h, o, a, c)
#define bus_space_read_multi_stream_8(t, h, o, a, c) \
bus_space_read_multi_8(t, h, o, a, c)
#define bus_space_write_stream_1(t, h, o, v) \
bus_space_write_1(t, h, o, v)
#define bus_space_write_stream_2(t, h, o, v) \
bus_space_write_2(t, h, o, v)
#define bus_space_write_stream_4(t, h, o, v) \
bus_space_write_4(t, h, o, v)
#define bus_space_write_stream_8(t, h, o, v) \
bus_space_write_8(t, h, o, v)
#define bus_space_write_multi_stream_1(t, h, o, a, c) \
bus_space_write_multi_1(t, h, o, a, c)
#define bus_space_write_multi_stream_2(t, h, o, a, c) \
bus_space_write_multi_2(t, h, o, a, c)
#define bus_space_write_multi_stream_4(t, h, o, a, c) \
bus_space_write_multi_4(t, h, o, a, c)
#define bus_space_write_multi_stream_8(t, h, o, a, c) \
bus_space_write_multi_8(t, h, o, a, c)
#define bus_space_set_multi_stream_1(t, h, o, v, c) \
bus_space_set_multi_1(t, h, o, v, c)
#define bus_space_set_multi_stream_2(t, h, o, v, c) \
bus_space_set_multi_2(t, h, o, v, c)
#define bus_space_set_multi_stream_4(t, h, o, v, c) \
bus_space_set_multi_4(t, h, o, v, c)
#define bus_space_set_multi_stream_8(t, h, o, v, c) \
bus_space_set_multi_8(t, h, o, v, c)
#define bus_space_read_region_stream_1(t, h, o, a, c) \
bus_space_read_region_1(t, h, o, a, c)
#define bus_space_read_region_stream_2(t, h, o, a, c) \
bus_space_read_region_2(t, h, o, a, c)
#define bus_space_read_region_stream_4(t, h, o, a, c) \
bus_space_read_region_4(t, h, o, a, c)
#define bus_space_read_region_stream_8(t, h, o, a, c) \
bus_space_read_region_8(t, h, o, a, c)
#define bus_space_write_region_stream_1(t, h, o, a, c) \
bus_space_write_region_1(t, h, o, a, c)
#define bus_space_write_region_stream_2(t, h, o, a, c) \
bus_space_write_region_2(t, h, o, a, c)
#define bus_space_write_region_stream_4(t, h, o, a, c) \
bus_space_write_region_4(t, h, o, a, c)
#define bus_space_write_region_stream_8(t, h, o, a, c) \
bus_space_write_region_8(t, h, o, a, c)
#define bus_space_set_region_stream_1(t, h, o, v, c) \
bus_space_set_region_1(t, h, o, v, c)
#define bus_space_set_region_stream_2(t, h, o, v, c) \
bus_space_set_region_2(t, h, o, v, c)
#define bus_space_set_region_stream_4(t, h, o, v, c) \
bus_space_set_region_4(t, h, o, v, c)
#define bus_space_set_region_stream_8(t, h, o, v, c) \
bus_space_set_region_8(t, h, o, v, c)
#define bus_space_copy_region_stream_1(t, h1, o1, h2, o2, c) \
bus_space_copy_region_1(t, h1, o1, h2, o2, c)
#define bus_space_copy_region_stream_2(t, h1, o1, h2, o2, c) \
bus_space_copy_region_2(t, h1, o1, h2, o2, c)
#define bus_space_copy_region_stream_4(t, h1, o1, h2, o2, c) \
bus_space_copy_region_4(t, h1, o1, h2, o2, c)
#define bus_space_copy_region_stream_8(t, h1, o1, h2, o2, c) \
bus_space_copy_region_8(t, h1, o1, h2, o2, c)
#include <machine/bus_dma.h>
#endif /* _MACHINE_BUS_H_ */