f5fea3ddc9
Reviewed by: wollman
723 lines
18 KiB
C
723 lines
18 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in.c 8.2 (Berkeley) 11/15/93
|
|
* $Id: in.c,v 1.12 1995/04/25 19:50:20 wollman Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <netinet/igmp_var.h>
|
|
|
|
/*
|
|
* This structure is used to keep track of in_multi chains which belong to
|
|
* deleted interface addresses.
|
|
*/
|
|
static LIST_HEAD(, multi_kludge) in_mk; /* XXX BSS initialization */
|
|
|
|
struct multi_kludge {
|
|
LIST_ENTRY(multi_kludge) mk_entry;
|
|
struct ifnet *mk_ifp;
|
|
struct in_multihead mk_head;
|
|
};
|
|
|
|
/*
|
|
* Return the network number from an internet address.
|
|
*/
|
|
u_long
|
|
in_netof(in)
|
|
struct in_addr in;
|
|
{
|
|
register u_long i = ntohl(in.s_addr);
|
|
register u_long net;
|
|
register struct in_ifaddr *ia;
|
|
|
|
if (IN_CLASSA(i))
|
|
net = i & IN_CLASSA_NET;
|
|
else if (IN_CLASSB(i))
|
|
net = i & IN_CLASSB_NET;
|
|
else if (IN_CLASSC(i))
|
|
net = i & IN_CLASSC_NET;
|
|
else if (IN_CLASSD(i))
|
|
net = i & IN_CLASSD_NET;
|
|
else
|
|
return (0);
|
|
|
|
/*
|
|
* Check whether network is a subnet;
|
|
* if so, return subnet number.
|
|
*/
|
|
for (ia = in_ifaddr; ia; ia = ia->ia_next)
|
|
if (net == ia->ia_net)
|
|
return (i & ia->ia_subnetmask);
|
|
return (net);
|
|
}
|
|
|
|
#ifndef SUBNETSARELOCAL
|
|
#define SUBNETSARELOCAL 1
|
|
#endif
|
|
int subnetsarelocal = SUBNETSARELOCAL;
|
|
/*
|
|
* Return 1 if an internet address is for a ``local'' host
|
|
* (one to which we have a connection). If subnetsarelocal
|
|
* is true, this includes other subnets of the local net.
|
|
* Otherwise, it includes only the directly-connected (sub)nets.
|
|
*/
|
|
int
|
|
in_localaddr(in)
|
|
struct in_addr in;
|
|
{
|
|
register u_long i = ntohl(in.s_addr);
|
|
register struct in_ifaddr *ia;
|
|
|
|
if (subnetsarelocal) {
|
|
for (ia = in_ifaddr; ia; ia = ia->ia_next)
|
|
if ((i & ia->ia_netmask) == ia->ia_net)
|
|
return (1);
|
|
} else {
|
|
for (ia = in_ifaddr; ia; ia = ia->ia_next)
|
|
if ((i & ia->ia_subnetmask) == ia->ia_subnet)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine whether an IP address is in a reserved set of addresses
|
|
* that may not be forwarded, or whether datagrams to that destination
|
|
* may be forwarded.
|
|
*/
|
|
int
|
|
in_canforward(in)
|
|
struct in_addr in;
|
|
{
|
|
register u_long i = ntohl(in.s_addr);
|
|
register u_long net;
|
|
|
|
if (IN_EXPERIMENTAL(i) || IN_MULTICAST(i))
|
|
return (0);
|
|
if (IN_CLASSA(i)) {
|
|
net = i & IN_CLASSA_NET;
|
|
if (net == 0 || net == (IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Trim a mask in a sockaddr
|
|
*/
|
|
void
|
|
in_socktrim(ap)
|
|
struct sockaddr_in *ap;
|
|
{
|
|
register char *cplim = (char *) &ap->sin_addr;
|
|
register char *cp = (char *) (&ap->sin_addr + 1);
|
|
|
|
ap->sin_len = 0;
|
|
while (--cp >= cplim)
|
|
if (*cp) {
|
|
(ap)->sin_len = cp - (char *) (ap) + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int in_interfaces; /* number of external internet interfaces */
|
|
|
|
/*
|
|
* Generic internet control operations (ioctl's).
|
|
* Ifp is 0 if not an interface-specific ioctl.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
in_control(so, cmd, data, ifp)
|
|
struct socket *so;
|
|
int cmd;
|
|
caddr_t data;
|
|
register struct ifnet *ifp;
|
|
{
|
|
register struct ifreq *ifr = (struct ifreq *)data;
|
|
register struct in_ifaddr *ia = 0;
|
|
register struct ifaddr *ifa;
|
|
struct in_ifaddr *oia;
|
|
struct in_aliasreq *ifra = (struct in_aliasreq *)data;
|
|
struct sockaddr_in oldaddr;
|
|
int error, hostIsNew, maskIsNew;
|
|
u_long i;
|
|
struct multi_kludge *mk;
|
|
|
|
/*
|
|
* Find address for this interface, if it exists.
|
|
*/
|
|
if (ifp)
|
|
for (ia = in_ifaddr; ia; ia = ia->ia_next)
|
|
if (ia->ia_ifp == ifp)
|
|
break;
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCAIFADDR:
|
|
case SIOCDIFADDR:
|
|
if (ifra->ifra_addr.sin_family == AF_INET) {
|
|
for (oia = ia; ia; ia = ia->ia_next) {
|
|
if (ia->ia_ifp == ifp &&
|
|
ia->ia_addr.sin_addr.s_addr ==
|
|
ifra->ifra_addr.sin_addr.s_addr)
|
|
break;
|
|
}
|
|
if ((ifp->if_flags & IFF_POINTOPOINT)
|
|
&& (cmd == SIOCAIFADDR)
|
|
&& (ifra->ifra_dstaddr.sin_addr.s_addr
|
|
== INADDR_ANY)) {
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
}
|
|
if (cmd == SIOCDIFADDR && ia == 0)
|
|
return (EADDRNOTAVAIL);
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFADDR:
|
|
case SIOCSIFNETMASK:
|
|
case SIOCSIFDSTADDR:
|
|
if ((so->so_state & SS_PRIV) == 0)
|
|
return (EPERM);
|
|
|
|
if (ifp == 0)
|
|
panic("in_control");
|
|
if (ia == (struct in_ifaddr *)0) {
|
|
oia = (struct in_ifaddr *)
|
|
malloc(sizeof *oia, M_IFADDR, M_WAITOK);
|
|
if (oia == (struct in_ifaddr *)NULL)
|
|
return (ENOBUFS);
|
|
bzero((caddr_t)oia, sizeof *oia);
|
|
ia = in_ifaddr;
|
|
if (ia) {
|
|
for ( ; ia->ia_next; ia = ia->ia_next)
|
|
continue;
|
|
ia->ia_next = oia;
|
|
} else
|
|
in_ifaddr = oia;
|
|
ia = oia;
|
|
ifa = ifp->if_addrlist;
|
|
if (ifa) {
|
|
for ( ; ifa->ifa_next; ifa = ifa->ifa_next)
|
|
continue;
|
|
ifa->ifa_next = (struct ifaddr *) ia;
|
|
} else
|
|
ifp->if_addrlist = (struct ifaddr *) ia;
|
|
ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
|
|
ia->ia_ifa.ifa_dstaddr
|
|
= (struct sockaddr *)&ia->ia_dstaddr;
|
|
ia->ia_ifa.ifa_netmask
|
|
= (struct sockaddr *)&ia->ia_sockmask;
|
|
ia->ia_sockmask.sin_len = 8;
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
|
|
ia->ia_broadaddr.sin_family = AF_INET;
|
|
}
|
|
ia->ia_ifp = ifp;
|
|
if (!(ifp->if_flags & IFF_LOOPBACK))
|
|
in_interfaces++;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFBRDADDR:
|
|
if ((so->so_state & SS_PRIV) == 0)
|
|
return (EPERM);
|
|
/* FALLTHROUGH */
|
|
|
|
case SIOCGIFADDR:
|
|
case SIOCGIFNETMASK:
|
|
case SIOCGIFDSTADDR:
|
|
case SIOCGIFBRDADDR:
|
|
if (ia == (struct in_ifaddr *)0)
|
|
return (EADDRNOTAVAIL);
|
|
break;
|
|
}
|
|
switch (cmd) {
|
|
|
|
case SIOCGIFADDR:
|
|
*((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_addr;
|
|
break;
|
|
|
|
case SIOCGIFBRDADDR:
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0)
|
|
return (EINVAL);
|
|
*((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_broadaddr;
|
|
break;
|
|
|
|
case SIOCGIFDSTADDR:
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
|
|
return (EINVAL);
|
|
*((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_dstaddr;
|
|
break;
|
|
|
|
case SIOCGIFNETMASK:
|
|
*((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_sockmask;
|
|
break;
|
|
|
|
case SIOCSIFDSTADDR:
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
|
|
return (EINVAL);
|
|
oldaddr = ia->ia_dstaddr;
|
|
ia->ia_dstaddr = *(struct sockaddr_in *)&ifr->ifr_dstaddr;
|
|
if (ifp->if_ioctl && (error = (*ifp->if_ioctl)
|
|
(ifp, SIOCSIFDSTADDR, (caddr_t)ia))) {
|
|
ia->ia_dstaddr = oldaddr;
|
|
return (error);
|
|
}
|
|
if (ia->ia_flags & IFA_ROUTE) {
|
|
ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&oldaddr;
|
|
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
|
|
ia->ia_ifa.ifa_dstaddr =
|
|
(struct sockaddr *)&ia->ia_dstaddr;
|
|
rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFBRDADDR:
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0)
|
|
return (EINVAL);
|
|
ia->ia_broadaddr = *(struct sockaddr_in *)&ifr->ifr_broadaddr;
|
|
break;
|
|
|
|
case SIOCSIFADDR:
|
|
return (in_ifinit(ifp, ia,
|
|
(struct sockaddr_in *) &ifr->ifr_addr, 1));
|
|
|
|
case SIOCSIFNETMASK:
|
|
i = ifra->ifra_addr.sin_addr.s_addr;
|
|
ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr = i);
|
|
break;
|
|
|
|
case SIOCAIFADDR:
|
|
maskIsNew = 0;
|
|
hostIsNew = 1;
|
|
error = 0;
|
|
if (ia->ia_addr.sin_family == AF_INET) {
|
|
if (ifra->ifra_addr.sin_len == 0) {
|
|
ifra->ifra_addr = ia->ia_addr;
|
|
hostIsNew = 0;
|
|
} else if (ifra->ifra_addr.sin_addr.s_addr ==
|
|
ia->ia_addr.sin_addr.s_addr)
|
|
hostIsNew = 0;
|
|
}
|
|
if (ifra->ifra_mask.sin_len) {
|
|
in_ifscrub(ifp, ia);
|
|
ia->ia_sockmask = ifra->ifra_mask;
|
|
ia->ia_subnetmask =
|
|
ntohl(ia->ia_sockmask.sin_addr.s_addr);
|
|
maskIsNew = 1;
|
|
}
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) &&
|
|
(ifra->ifra_dstaddr.sin_family == AF_INET)) {
|
|
in_ifscrub(ifp, ia);
|
|
ia->ia_dstaddr = ifra->ifra_dstaddr;
|
|
maskIsNew = 1; /* We lie; but the effect's the same */
|
|
}
|
|
if (ifra->ifra_addr.sin_family == AF_INET &&
|
|
(hostIsNew || maskIsNew))
|
|
error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0);
|
|
if ((ifp->if_flags & IFF_BROADCAST) &&
|
|
(ifra->ifra_broadaddr.sin_family == AF_INET))
|
|
ia->ia_broadaddr = ifra->ifra_broadaddr;
|
|
return (error);
|
|
|
|
case SIOCDIFADDR:
|
|
mk = malloc(sizeof *mk, M_IPMADDR, M_WAITOK);
|
|
if (!mk)
|
|
return ENOBUFS;
|
|
|
|
in_ifscrub(ifp, ia);
|
|
if ((ifa = ifp->if_addrlist) == (struct ifaddr *)ia)
|
|
ifp->if_addrlist = ifa->ifa_next;
|
|
else {
|
|
while (ifa->ifa_next &&
|
|
(ifa->ifa_next != (struct ifaddr *)ia))
|
|
ifa = ifa->ifa_next;
|
|
if (ifa->ifa_next)
|
|
ifa->ifa_next = ((struct ifaddr *)ia)->ifa_next;
|
|
else
|
|
printf("Couldn't unlink inifaddr from ifp\n");
|
|
}
|
|
oia = ia;
|
|
if (oia == (ia = in_ifaddr))
|
|
in_ifaddr = ia->ia_next;
|
|
else {
|
|
while (ia->ia_next && (ia->ia_next != oia))
|
|
ia = ia->ia_next;
|
|
if (ia->ia_next)
|
|
ia->ia_next = oia->ia_next;
|
|
else
|
|
printf("Didn't unlink inifadr from list\n");
|
|
}
|
|
|
|
if (!oia->ia_multiaddrs.lh_first) {
|
|
IFAFREE(&oia->ia_ifa);
|
|
FREE(mk, M_IPMADDR);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Multicast address kludge:
|
|
* If there were any multicast addresses attached to this
|
|
* interface address, either move them to another address
|
|
* on this interface, or save them until such time as this
|
|
* interface is reconfigured for IP.
|
|
*/
|
|
IFP_TO_IA(oia->ia_ifp, ia);
|
|
if (ia) { /* there is another address */
|
|
struct in_multi *inm;
|
|
for(inm = oia->ia_multiaddrs.lh_first; inm;
|
|
inm = inm->inm_entry.le_next) {
|
|
IFAFREE(&inm->inm_ia->ia_ifa);
|
|
ia->ia_ifa.ifa_refcnt++;
|
|
inm->inm_ia = ia;
|
|
LIST_INSERT_HEAD(&ia->ia_multiaddrs, inm,
|
|
inm_entry);
|
|
}
|
|
FREE(mk, M_IPMADDR);
|
|
} else { /* last address on this if deleted, save */
|
|
struct in_multi *inm;
|
|
|
|
LIST_INIT(&mk->mk_head);
|
|
mk->mk_ifp = ifp;
|
|
|
|
for(inm = oia->ia_multiaddrs.lh_first; inm;
|
|
inm = inm->inm_entry.le_next) {
|
|
LIST_INSERT_HEAD(&mk->mk_head, inm, inm_entry);
|
|
}
|
|
|
|
if (mk->mk_head.lh_first) {
|
|
LIST_INSERT_HEAD(&in_mk, mk, mk_entry);
|
|
} else {
|
|
FREE(mk, M_IPMADDR);
|
|
}
|
|
}
|
|
|
|
IFAFREE((&oia->ia_ifa));
|
|
break;
|
|
|
|
default:
|
|
if (ifp == 0 || ifp->if_ioctl == 0)
|
|
return (EOPNOTSUPP);
|
|
return ((*ifp->if_ioctl)(ifp, cmd, data));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Delete any existing route for an interface.
|
|
*/
|
|
void
|
|
in_ifscrub(ifp, ia)
|
|
register struct ifnet *ifp;
|
|
register struct in_ifaddr *ia;
|
|
{
|
|
|
|
if ((ia->ia_flags & IFA_ROUTE) == 0)
|
|
return;
|
|
if (ifp->if_flags & (IFF_LOOPBACK|IFF_POINTOPOINT))
|
|
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
|
|
else
|
|
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, 0);
|
|
ia->ia_flags &= ~IFA_ROUTE;
|
|
}
|
|
|
|
/*
|
|
* Initialize an interface's internet address
|
|
* and routing table entry.
|
|
*/
|
|
int
|
|
in_ifinit(ifp, ia, sin, scrub)
|
|
register struct ifnet *ifp;
|
|
register struct in_ifaddr *ia;
|
|
struct sockaddr_in *sin;
|
|
int scrub;
|
|
{
|
|
register u_long i = ntohl(sin->sin_addr.s_addr);
|
|
struct sockaddr_in oldaddr;
|
|
int s = splimp(), flags = RTF_UP, error;
|
|
struct multi_kludge *mk;
|
|
|
|
oldaddr = ia->ia_addr;
|
|
ia->ia_addr = *sin;
|
|
/*
|
|
* Give the interface a chance to initialize
|
|
* if this is its first address,
|
|
* and to validate the address if necessary.
|
|
*/
|
|
if (ifp->if_ioctl &&
|
|
(error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
|
|
splx(s);
|
|
ia->ia_addr = oldaddr;
|
|
return (error);
|
|
}
|
|
splx(s);
|
|
if (scrub) {
|
|
ia->ia_ifa.ifa_addr = (struct sockaddr *)&oldaddr;
|
|
in_ifscrub(ifp, ia);
|
|
ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
|
|
}
|
|
if (IN_CLASSA(i))
|
|
ia->ia_netmask = IN_CLASSA_NET;
|
|
else if (IN_CLASSB(i))
|
|
ia->ia_netmask = IN_CLASSB_NET;
|
|
else
|
|
ia->ia_netmask = IN_CLASSC_NET;
|
|
/*
|
|
* The subnet mask usually includes at least the standard network part,
|
|
* but may may be smaller in the case of supernetting.
|
|
* If it is set, we believe it.
|
|
*/
|
|
if (ia->ia_subnetmask == 0) {
|
|
ia->ia_subnetmask = ia->ia_netmask;
|
|
ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask);
|
|
} else
|
|
ia->ia_netmask &= ia->ia_subnetmask;
|
|
ia->ia_net = i & ia->ia_netmask;
|
|
ia->ia_subnet = i & ia->ia_subnetmask;
|
|
in_socktrim(&ia->ia_sockmask);
|
|
/*
|
|
* Add route for the network.
|
|
*/
|
|
ia->ia_ifa.ifa_metric = ifp->if_metric;
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
ia->ia_broadaddr.sin_addr.s_addr =
|
|
htonl(ia->ia_subnet | ~ia->ia_subnetmask);
|
|
ia->ia_netbroadcast.s_addr =
|
|
htonl(ia->ia_net | ~ ia->ia_netmask);
|
|
} else if (ifp->if_flags & IFF_LOOPBACK) {
|
|
ia->ia_ifa.ifa_dstaddr = ia->ia_ifa.ifa_addr;
|
|
flags |= RTF_HOST;
|
|
} else if (ifp->if_flags & IFF_POINTOPOINT) {
|
|
if (ia->ia_dstaddr.sin_family != AF_INET)
|
|
return (0);
|
|
flags |= RTF_HOST;
|
|
}
|
|
if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, flags)) == 0)
|
|
ia->ia_flags |= IFA_ROUTE;
|
|
|
|
LIST_INIT(&ia->ia_multiaddrs);
|
|
/*
|
|
* If the interface supports multicast, join the "all hosts"
|
|
* multicast group on that interface.
|
|
*/
|
|
if (ifp->if_flags & IFF_MULTICAST) {
|
|
struct in_addr addr;
|
|
|
|
/*
|
|
* Continuation of multicast address hack:
|
|
* If there was a multicast group list previously saved
|
|
* for this interface, then we re-attach it to the first
|
|
* address configured on the i/f.
|
|
*/
|
|
for(mk = in_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
|
|
if(mk->mk_ifp == ifp) {
|
|
struct in_multi *inm;
|
|
|
|
for(inm = mk->mk_head.lh_first; inm;
|
|
inm = inm->inm_entry.le_next) {
|
|
IFAFREE(&inm->inm_ia->ia_ifa);
|
|
ia->ia_ifa.ifa_refcnt++;
|
|
inm->inm_ia = ia;
|
|
LIST_INSERT_HEAD(&ia->ia_multiaddrs,
|
|
inm, inm_entry);
|
|
}
|
|
LIST_REMOVE(mk, mk_entry);
|
|
free(mk, M_IPMADDR);
|
|
break;
|
|
}
|
|
}
|
|
|
|
addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP);
|
|
in_addmulti(&addr, ifp);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* Return 1 if the address might be a local broadcast address.
|
|
*/
|
|
int
|
|
in_broadcast(in, ifp)
|
|
struct in_addr in;
|
|
struct ifnet *ifp;
|
|
{
|
|
register struct ifaddr *ifa;
|
|
u_long t;
|
|
|
|
if (in.s_addr == INADDR_BROADCAST ||
|
|
in.s_addr == INADDR_ANY)
|
|
return 1;
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0)
|
|
return 0;
|
|
t = ntohl(in.s_addr);
|
|
/*
|
|
* Look through the list of addresses for a match
|
|
* with a broadcast address.
|
|
*/
|
|
#define ia ((struct in_ifaddr *)ifa)
|
|
for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next)
|
|
if (ifa->ifa_addr->sa_family == AF_INET &&
|
|
(in.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
|
|
in.s_addr == ia->ia_netbroadcast.s_addr ||
|
|
/*
|
|
* Check for old-style (host 0) broadcast.
|
|
*/
|
|
t == ia->ia_subnet || t == ia->ia_net))
|
|
return 1;
|
|
return (0);
|
|
#undef ia
|
|
}
|
|
/*
|
|
* Add an address to the list of IP multicast addresses for a given interface.
|
|
*/
|
|
struct in_multi *
|
|
in_addmulti(ap, ifp)
|
|
register struct in_addr *ap;
|
|
register struct ifnet *ifp;
|
|
{
|
|
register struct in_multi *inm;
|
|
struct ifreq ifr;
|
|
struct in_ifaddr *ia;
|
|
int s = splnet();
|
|
|
|
/*
|
|
* See if address already in list.
|
|
*/
|
|
IN_LOOKUP_MULTI(*ap, ifp, inm);
|
|
if (inm != NULL) {
|
|
/*
|
|
* Found it; just increment the reference count.
|
|
*/
|
|
++inm->inm_refcount;
|
|
}
|
|
else {
|
|
/*
|
|
* New address; allocate a new multicast record
|
|
* and link it into the interface's multicast list.
|
|
*/
|
|
inm = (struct in_multi *)malloc(sizeof(*inm),
|
|
M_IPMADDR, M_NOWAIT);
|
|
if (inm == NULL) {
|
|
splx(s);
|
|
return (NULL);
|
|
}
|
|
inm->inm_addr = *ap;
|
|
inm->inm_ifp = ifp;
|
|
inm->inm_refcount = 1;
|
|
IFP_TO_IA(ifp, ia);
|
|
if (ia == NULL) {
|
|
free(inm, M_IPMADDR);
|
|
splx(s);
|
|
return (NULL);
|
|
}
|
|
inm->inm_ia = ia;
|
|
ia->ia_ifa.ifa_refcnt++; /* gain a reference */
|
|
LIST_INSERT_HEAD(&ia->ia_multiaddrs, inm, inm_entry);
|
|
|
|
/*
|
|
* Ask the network driver to update its multicast reception
|
|
* filter appropriately for the new address.
|
|
*/
|
|
((struct sockaddr_in *)&ifr.ifr_addr)->sin_family = AF_INET;
|
|
((struct sockaddr_in *)&ifr.ifr_addr)->sin_addr = *ap;
|
|
if ((ifp->if_ioctl == NULL) ||
|
|
(*ifp->if_ioctl)(ifp, SIOCADDMULTI,(caddr_t)&ifr) != 0) {
|
|
LIST_REMOVE(inm, inm_entry);
|
|
IFAFREE(&ia->ia_ifa); /* release reference */
|
|
free(inm, M_IPMADDR);
|
|
splx(s);
|
|
return (NULL);
|
|
}
|
|
/*
|
|
* Let IGMP know that we have joined a new IP multicast group.
|
|
*/
|
|
igmp_joingroup(inm);
|
|
}
|
|
splx(s);
|
|
return (inm);
|
|
}
|
|
|
|
/*
|
|
* Delete a multicast address record.
|
|
*/
|
|
void
|
|
in_delmulti(inm)
|
|
register struct in_multi *inm;
|
|
{
|
|
register struct in_multi **p;
|
|
struct ifreq ifr;
|
|
int s = splnet();
|
|
|
|
if (--inm->inm_refcount == 0) {
|
|
/*
|
|
* No remaining claims to this record; let IGMP know that
|
|
* we are leaving the multicast group.
|
|
*/
|
|
igmp_leavegroup(inm);
|
|
/*
|
|
* Unlink from list.
|
|
*/
|
|
LIST_REMOVE(inm, inm_entry);
|
|
IFAFREE(&inm->inm_ia->ia_ifa); /* release reference */
|
|
|
|
/*
|
|
* Notify the network driver to update its multicast reception
|
|
* filter.
|
|
*/
|
|
((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
|
|
((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr =
|
|
inm->inm_addr;
|
|
(*inm->inm_ifp->if_ioctl)(inm->inm_ifp, SIOCDELMULTI,
|
|
(caddr_t)&ifr);
|
|
free(inm, M_IPMADDR);
|
|
}
|
|
splx(s);
|
|
}
|