9fd7a48db0
instead use the FPU to convert subnormals to normals. (NB: Further simplification is possible, such as using the FPU for the rounding step.) This fixes a bug reported by stefanf where long double subnormals in the Intel 80-bit format would be output with one fewer digit than necessary when the default precision was used.
320 lines
8.7 KiB
C
320 lines
8.7 KiB
C
/*-
|
|
* Copyright (c) 2004, 2005 David Schultz <das@FreeBSD.ORG>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include "fpmath.h"
|
|
#include "gdtoaimp.h"
|
|
|
|
/* Strings values used by dtoa() */
|
|
#define INFSTR "Infinity"
|
|
#define NANSTR "NaN"
|
|
|
|
#define DBL_ADJ (DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
|
|
#define LDBL_ADJ (LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
|
|
|
|
/*
|
|
* Round up the given digit string. If the digit string is fff...f,
|
|
* this procedure sets it to 100...0 and returns 1 to indicate that
|
|
* the exponent needs to be bumped. Otherwise, 0 is returned.
|
|
*/
|
|
static int
|
|
roundup(char *s0, int ndigits)
|
|
{
|
|
char *s;
|
|
|
|
for (s = s0 + ndigits - 1; *s == 0xf; s--) {
|
|
if (s == s0) {
|
|
*s = 1;
|
|
return (1);
|
|
}
|
|
++*s;
|
|
}
|
|
++*s;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Round the given digit string to ndigits digits according to the
|
|
* current rounding mode. Note that this could produce a string whose
|
|
* value is not representable in the corresponding floating-point
|
|
* type. The exponent pointed to by decpt is adjusted if necessary.
|
|
*/
|
|
static void
|
|
dorounding(char *s0, int ndigits, int sign, int *decpt)
|
|
{
|
|
int adjust = 0; /* do we need to adjust the exponent? */
|
|
|
|
switch (FLT_ROUNDS) {
|
|
case 0: /* toward zero */
|
|
default: /* implementation-defined */
|
|
break;
|
|
case 1: /* to nearest, halfway rounds to even */
|
|
if ((s0[ndigits] > 8) ||
|
|
(s0[ndigits] == 8 && s0[ndigits - 1] & 1))
|
|
adjust = roundup(s0, ndigits);
|
|
break;
|
|
case 2: /* toward +inf */
|
|
if (sign == 0)
|
|
adjust = roundup(s0, ndigits);
|
|
break;
|
|
case 3: /* toward -inf */
|
|
if (sign != 0)
|
|
adjust = roundup(s0, ndigits);
|
|
break;
|
|
}
|
|
|
|
if (adjust)
|
|
*decpt += 4;
|
|
}
|
|
|
|
/*
|
|
* This procedure converts a double-precision number in IEEE format
|
|
* into a string of hexadecimal digits and an exponent of 2. Its
|
|
* behavior is bug-for-bug compatible with dtoa() in mode 2, with the
|
|
* following exceptions:
|
|
*
|
|
* - An ndigits < 0 causes it to use as many digits as necessary to
|
|
* represent the number exactly.
|
|
* - The additional xdigs argument should point to either the string
|
|
* "0123456789ABCDEF" or the string "0123456789abcdef", depending on
|
|
* which case is desired.
|
|
* - This routine does not repeat dtoa's mistake of setting decpt
|
|
* to 9999 in the case of an infinity or NaN. INT_MAX is used
|
|
* for this purpose instead.
|
|
*
|
|
* Note that the C99 standard does not specify what the leading digit
|
|
* should be for non-zero numbers. For instance, 0x1.3p3 is the same
|
|
* as 0x2.6p2 is the same as 0x4.cp3. This implementation chooses the
|
|
* first digit so that subsequent digits are aligned on nibble
|
|
* boundaries (before rounding).
|
|
*
|
|
* Inputs: d, xdigs, ndigits
|
|
* Outputs: decpt, sign, rve
|
|
*/
|
|
char *
|
|
__hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
|
|
char **rve)
|
|
{
|
|
static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
|
|
union IEEEd2bits u;
|
|
char *s, *s0;
|
|
int bufsize;
|
|
|
|
u.d = d;
|
|
*sign = u.bits.sign;
|
|
|
|
switch (fpclassify(d)) {
|
|
case FP_NORMAL:
|
|
*decpt = u.bits.exp - DBL_ADJ;
|
|
break;
|
|
case FP_ZERO:
|
|
*decpt = 1;
|
|
return (nrv_alloc("0", rve, 1));
|
|
case FP_SUBNORMAL:
|
|
u.d *= 0x1p514;
|
|
*decpt = u.bits.exp - (514 + DBL_ADJ);
|
|
break;
|
|
case FP_INFINITE:
|
|
*decpt = INT_MAX;
|
|
return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
|
|
case FP_NAN:
|
|
*decpt = INT_MAX;
|
|
return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
/* FP_NORMAL or FP_SUBNORMAL */
|
|
|
|
if (ndigits == 0) /* dtoa() compatibility */
|
|
ndigits = 1;
|
|
|
|
/*
|
|
* For simplicity, we generate all the digits even if the
|
|
* caller has requested fewer.
|
|
*/
|
|
bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
|
|
s0 = rv_alloc(bufsize);
|
|
|
|
/*
|
|
* We work from right to left, first adding any requested zero
|
|
* padding, then the least significant portion of the
|
|
* mantissa, followed by the most significant. The buffer is
|
|
* filled with the byte values 0x0 through 0xf, which are
|
|
* converted to xdigs[0x0] through xdigs[0xf] after the
|
|
* rounding phase.
|
|
*/
|
|
for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
|
|
*s = 0;
|
|
for (; s > s0 + sigfigs - (DBL_MANL_SIZE / 4) - 1 && s > s0; s--) {
|
|
*s = u.bits.manl & 0xf;
|
|
u.bits.manl >>= 4;
|
|
}
|
|
for (; s > s0; s--) {
|
|
*s = u.bits.manh & 0xf;
|
|
u.bits.manh >>= 4;
|
|
}
|
|
|
|
/*
|
|
* At this point, we have snarfed all the bits in the
|
|
* mantissa, with the possible exception of the highest-order
|
|
* (partial) nibble, which is dealt with by the next
|
|
* statement. We also tack on the implicit normalization bit.
|
|
*/
|
|
*s = u.bits.manh | (1U << ((DBL_MANT_DIG - 1) % 4));
|
|
|
|
/* If ndigits < 0, we are expected to auto-size the precision. */
|
|
if (ndigits < 0) {
|
|
for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
|
|
;
|
|
}
|
|
|
|
if (sigfigs > ndigits && s0[ndigits] != 0)
|
|
dorounding(s0, ndigits, u.bits.sign, decpt);
|
|
|
|
s = s0 + ndigits;
|
|
if (rve != NULL)
|
|
*rve = s;
|
|
*s-- = '\0';
|
|
for (; s >= s0; s--)
|
|
*s = xdigs[(unsigned int)*s];
|
|
|
|
return (s0);
|
|
}
|
|
|
|
#if (LDBL_MANT_DIG > DBL_MANT_DIG)
|
|
|
|
/*
|
|
* This is the long double version of __hdtoa().
|
|
*/
|
|
char *
|
|
__hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
|
|
char **rve)
|
|
{
|
|
static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
|
|
union IEEEl2bits u;
|
|
char *s, *s0;
|
|
int bufsize;
|
|
|
|
u.e = e;
|
|
*sign = u.bits.sign;
|
|
|
|
switch (fpclassify(e)) {
|
|
case FP_NORMAL:
|
|
*decpt = u.bits.exp - LDBL_ADJ;
|
|
break;
|
|
case FP_ZERO:
|
|
*decpt = 1;
|
|
return (nrv_alloc("0", rve, 1));
|
|
case FP_SUBNORMAL:
|
|
u.e *= 0x1p514L;
|
|
*decpt = u.bits.exp - (514 + LDBL_ADJ);
|
|
break;
|
|
case FP_INFINITE:
|
|
*decpt = INT_MAX;
|
|
return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
|
|
case FP_NAN:
|
|
*decpt = INT_MAX;
|
|
return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
/* FP_NORMAL or FP_SUBNORMAL */
|
|
|
|
if (ndigits == 0) /* dtoa() compatibility */
|
|
ndigits = 1;
|
|
|
|
/*
|
|
* For simplicity, we generate all the digits even if the
|
|
* caller has requested fewer.
|
|
*/
|
|
bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
|
|
s0 = rv_alloc(bufsize);
|
|
|
|
/*
|
|
* We work from right to left, first adding any requested zero
|
|
* padding, then the least significant portion of the
|
|
* mantissa, followed by the most significant. The buffer is
|
|
* filled with the byte values 0x0 through 0xf, which are
|
|
* converted to xdigs[0x0] through xdigs[0xf] after the
|
|
* rounding phase.
|
|
*/
|
|
for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
|
|
*s = 0;
|
|
for (; s > s0 + sigfigs - (LDBL_MANL_SIZE / 4) - 1 && s > s0; s--) {
|
|
*s = u.bits.manl & 0xf;
|
|
u.bits.manl >>= 4;
|
|
}
|
|
for (; s > s0; s--) {
|
|
*s = u.bits.manh & 0xf;
|
|
u.bits.manh >>= 4;
|
|
}
|
|
|
|
/*
|
|
* At this point, we have snarfed all the bits in the
|
|
* mantissa, with the possible exception of the highest-order
|
|
* (partial) nibble, which is dealt with by the next
|
|
* statement. We also tack on the implicit normalization bit.
|
|
*/
|
|
*s = u.bits.manh | (1U << ((LDBL_MANT_DIG - 1) % 4));
|
|
|
|
/* If ndigits < 0, we are expected to auto-size the precision. */
|
|
if (ndigits < 0) {
|
|
for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
|
|
;
|
|
}
|
|
|
|
if (sigfigs > ndigits && s0[ndigits] != 0)
|
|
dorounding(s0, ndigits, u.bits.sign, decpt);
|
|
|
|
s = s0 + ndigits;
|
|
if (rve != NULL)
|
|
*rve = s;
|
|
*s-- = '\0';
|
|
for (; s >= s0; s--)
|
|
*s = xdigs[(unsigned int)*s];
|
|
|
|
return (s0);
|
|
}
|
|
|
|
#else /* (LDBL_MANT_DIG == DBL_MANT_DIG) */
|
|
|
|
char *
|
|
__hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
|
|
char **rve)
|
|
{
|
|
|
|
return (__hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
|
|
}
|
|
|
|
#endif /* (LDBL_MANT_DIG == DBL_MANT_DIG) */
|