freebsd-dev/sys/dev/wi/if_wi.c
Warner Losh d5ca4da61e Add better mediaopt support for ibss and friends.
Now the driver is closer to matching the wi man page.

Submitted by: jhay (who obtained it from OpenBSD).
2002-06-19 17:37:34 +00:00

3080 lines
77 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The WaveLAN/IEEE adapter is the second generation of the WaveLAN
* from Lucent. Unlike the older cards, the new ones are programmed
* entirely via a firmware-driven controller called the Hermes.
* Unfortunately, Lucent will not release the Hermes programming manual
* without an NDA (if at all). What they do release is an API library
* called the HCF (Hardware Control Functions) which is supposed to
* do the device-specific operations of a device driver for you. The
* publically available version of the HCF library (the 'HCF Light') is
* a) extremely gross, b) lacks certain features, particularly support
* for 802.11 frames, and c) is contaminated by the GNU Public License.
*
* This driver does not use the HCF or HCF Light at all. Instead, it
* programs the Hermes controller directly, using information gleaned
* from the HCF Light code and corresponding documentation.
*
* This driver supports the ISA, PCMCIA and PCI versions of the Lucent
* WaveLan cards (based on the Hermes chipset), as well as the newer
* Prism 2 chipsets with firmware from Intersil and Symbol.
*/
#include <sys/param.h>
#include <sys/systm.h>
#if __FreeBSD_version >= 500033
#include <sys/endian.h>
#endif
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/random.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h>
#include <sys/rman.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_ieee80211.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <net/bpf.h>
#include <dev/wi/if_wavelan_ieee.h>
#include <dev/wi/wi_hostap.h>
#include <dev/wi/if_wivar.h>
#include <dev/wi/if_wireg.h>
#if !defined(lint)
static const char rcsid[] =
"$FreeBSD$";
#endif
static void wi_intr(void *);
static void wi_reset(struct wi_softc *);
static int wi_ioctl(struct ifnet *, u_long, caddr_t);
static void wi_init(void *);
static void wi_start(struct ifnet *);
static void wi_stop(struct wi_softc *);
static void wi_watchdog(struct ifnet *);
static void wi_rxeof(struct wi_softc *);
static void wi_txeof(struct wi_softc *, int);
static void wi_update_stats(struct wi_softc *);
static void wi_setmulti(struct wi_softc *);
static int wi_cmd(struct wi_softc *, int, int, int, int);
static int wi_read_record(struct wi_softc *, struct wi_ltv_gen *);
static int wi_write_record(struct wi_softc *, struct wi_ltv_gen *);
static int wi_read_data(struct wi_softc *, int, int, caddr_t, int);
static int wi_write_data(struct wi_softc *, int, int, caddr_t, int);
static int wi_seek(struct wi_softc *, int, int, int);
static int wi_alloc_nicmem(struct wi_softc *, int, int *);
static void wi_inquire(void *);
static void wi_setdef(struct wi_softc *, struct wi_req *);
#ifdef WICACHE
static
void wi_cache_store(struct wi_softc *, struct ether_header *,
struct mbuf *, unsigned short);
#endif
static int wi_get_cur_ssid(struct wi_softc *, char *, int *);
static void wi_get_id(struct wi_softc *);
static int wi_media_change(struct ifnet *);
static void wi_media_status(struct ifnet *, struct ifmediareq *);
static int wi_get_debug(struct wi_softc *, struct wi_req *);
static int wi_set_debug(struct wi_softc *, struct wi_req *);
devclass_t wi_devclass;
struct wi_card_ident wi_card_ident[] = {
/* CARD_ID CARD_NAME FIRM_TYPE */
{ WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
{ WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
{ WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
{ WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
{ WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
{ WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
{ WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
{ WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
{ WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
{ WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
{ WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
{ WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
{ WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
{ 0, NULL, 0 },
};
int
wi_generic_detach(dev)
device_t dev;
{
struct wi_softc *sc;
struct ifnet *ifp;
int s;
sc = device_get_softc(dev);
WI_LOCK(sc, s);
ifp = &sc->arpcom.ac_if;
if (sc->wi_gone) {
device_printf(dev, "already unloaded\n");
WI_UNLOCK(sc, s);
return(ENODEV);
}
wi_stop(sc);
/* Delete all remaining media. */
ifmedia_removeall(&sc->ifmedia);
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
wi_free(dev);
sc->wi_gone = 1;
WI_UNLOCK(sc, s);
#if __FreeBSD_version >= 500000
mtx_destroy(&sc->wi_mtx);
#endif
return(0);
}
int
wi_generic_attach(device_t dev)
{
struct wi_softc *sc;
struct wi_ltv_macaddr mac;
struct wi_ltv_gen gen;
struct ifnet *ifp;
int error;
int s;
/* XXX maybe we need the splimp stuff here XXX */
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
wi_intr, sc, &sc->wi_intrhand);
if (error) {
device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
wi_free(dev);
return (error);
}
#if __FreeBSD_version >= 500000
mtx_init(&sc->wi_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
#endif
WI_LOCK(sc, s);
/* Reset the NIC. */
wi_reset(sc);
/*
* Read the station address.
* And do it twice. I've seen PRISM-based cards that return
* an error when trying to read it the first time, which causes
* the probe to fail.
*/
mac.wi_type = WI_RID_MAC_NODE;
mac.wi_len = 4;
wi_read_record(sc, (struct wi_ltv_gen *)&mac);
if ((error = wi_read_record(sc, (struct wi_ltv_gen *)&mac)) != 0) {
device_printf(dev, "mac read failed %d\n", error);
wi_free(dev);
return (error);
}
bcopy((char *)&mac.wi_mac_addr,
(char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
device_printf(dev, "802.11 address: %6D\n", sc->arpcom.ac_enaddr, ":");
wi_get_id(sc);
ifp->if_softc = sc;
ifp->if_unit = sc->wi_unit;
ifp->if_name = "wi";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = wi_ioctl;
ifp->if_output = ether_output;
ifp->if_start = wi_start;
ifp->if_watchdog = wi_watchdog;
ifp->if_init = wi_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name,
sizeof(WI_DEFAULT_NODENAME) - 1);
bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name,
sizeof(WI_DEFAULT_NETNAME) - 1);
bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name,
sizeof(WI_DEFAULT_IBSS) - 1);
sc->wi_portnum = WI_DEFAULT_PORT;
sc->wi_ptype = WI_PORTTYPE_BSS;
sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
sc->wi_max_data_len = WI_DEFAULT_DATALEN;
sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
sc->wi_roaming = WI_DEFAULT_ROAMING;
sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
sc->wi_authmode = IEEE80211_AUTH_OPEN;
/*
* Read the default channel from the NIC. This may vary
* depending on the country where the NIC was purchased, so
* we can't hard-code a default and expect it to work for
* everyone.
*/
gen.wi_type = WI_RID_OWN_CHNL;
gen.wi_len = 2;
wi_read_record(sc, &gen);
sc->wi_channel = gen.wi_val;
/*
* Set flags based on firmware version.
*/
switch (sc->sc_firmware_type) {
case WI_LUCENT:
sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
if (sc->sc_sta_firmware_ver >= 60000)
sc->wi_flags |= WI_FLAGS_HAS_MOR;
if (sc->sc_sta_firmware_ver >= 60006) {
sc->wi_flags |= WI_FLAGS_HAS_IBSS;
sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
}
sc->wi_ibss_port = htole16(1);
break;
case WI_INTERSIL:
sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
if (sc->sc_sta_firmware_ver >= 800) {
sc->wi_flags |= WI_FLAGS_HAS_IBSS;
sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
}
sc->wi_ibss_port = htole16(0);
break;
case WI_SYMBOL:
sc->wi_flags |= WI_FLAGS_HAS_DIVERSITY;
if (sc->sc_sta_firmware_ver >= 20000)
sc->wi_flags |= WI_FLAGS_HAS_IBSS;
/* Older Symbol firmware does not support IBSS creation. */
if (sc->sc_sta_firmware_ver >= 25000)
sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
sc->wi_ibss_port = htole16(4);
break;
}
/*
* Find out if we support WEP on this card.
*/
gen.wi_type = WI_RID_WEP_AVAIL;
gen.wi_len = 2;
wi_read_record(sc, &gen);
sc->wi_has_wep = gen.wi_val;
if (bootverbose)
device_printf(sc->dev, "wi_has_wep = %d\n", sc->wi_has_wep);
/*
* Find supported rates.
*/
gen.wi_type = WI_RID_DATA_RATES;
gen.wi_len = 2;
if (wi_read_record(sc, &gen))
sc->wi_supprates = WI_SUPPRATES_1M | WI_SUPPRATES_2M |
WI_SUPPRATES_5M | WI_SUPPRATES_11M;
else
sc->wi_supprates = gen.wi_val;
bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats));
wi_init(sc);
wi_stop(sc);
ifmedia_init(&sc->ifmedia, 0, wi_media_change, wi_media_status);
#define ADD(m, c) ifmedia_add(&sc->ifmedia, (m), (c), NULL)
if (sc->wi_supprates & WI_SUPPRATES_1M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->sc_firmware_type == WI_INTERSIL)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_HOSTAP, 0), 0);
}
if (sc->wi_supprates & WI_SUPPRATES_2M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->sc_firmware_type == WI_INTERSIL)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_HOSTAP, 0), 0);
}
if (sc->wi_supprates & WI_SUPPRATES_5M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->sc_firmware_type == WI_INTERSIL)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_HOSTAP, 0), 0);
}
if (sc->wi_supprates & WI_SUPPRATES_11M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->sc_firmware_type == WI_INTERSIL)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_HOSTAP, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
}
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_IBSS,
0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->sc_firmware_type == WI_INTERSIL)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
IFM_IEEE80211_HOSTAP, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
#undef ADD
ifmedia_set(&sc->ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
0, 0));
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
callout_handle_init(&sc->wi_stat_ch);
WI_UNLOCK(sc, s);
return(0);
}
static void
wi_get_id(sc)
struct wi_softc *sc;
{
struct wi_ltv_ver ver;
struct wi_card_ident *id;
/* getting chip identity */
memset(&ver, 0, sizeof(ver));
ver.wi_type = WI_RID_CARD_ID;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
device_printf(sc->dev, "using ");
sc->sc_firmware_type = WI_NOTYPE;
for (id = wi_card_ident; id->card_name != NULL; id++) {
if (le16toh(ver.wi_ver[0]) == id->card_id) {
printf("%s", id->card_name);
sc->sc_firmware_type = id->firm_type;
break;
}
}
if (sc->sc_firmware_type == WI_NOTYPE) {
if (le16toh(ver.wi_ver[0]) & 0x8000) {
printf("Unknown PRISM2 chip");
sc->sc_firmware_type = WI_INTERSIL;
} else {
printf("Unknown Lucent chip");
sc->sc_firmware_type = WI_LUCENT;
}
}
if (sc->sc_firmware_type != WI_LUCENT) {
/* get primary firmware version */
memset(&ver, 0, sizeof(ver));
ver.wi_type = WI_RID_PRI_IDENTITY;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
ver.wi_ver[3] * 100 + ver.wi_ver[1];
}
/* get station firmware version */
memset(&ver, 0, sizeof(ver));
ver.wi_type = WI_RID_STA_IDENTITY;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
ver.wi_ver[3] * 100 + ver.wi_ver[1];
if (sc->sc_firmware_type == WI_INTERSIL &&
(sc->sc_sta_firmware_ver == 10102 ||
sc->sc_sta_firmware_ver == 20102)) {
struct wi_ltv_str sver;
char *p;
memset(&sver, 0, sizeof(sver));
sver.wi_type = WI_RID_SYMBOL_IDENTITY;
sver.wi_len = 7;
/* value should be the format like "V2.00-11" */
if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
*(p = (char *)sver.wi_str) >= 'A' &&
p[2] == '.' && p[5] == '-' && p[8] == '\0') {
sc->sc_firmware_type = WI_SYMBOL;
sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
(p[3] - '0') * 1000 + (p[4] - '0') * 100 +
(p[6] - '0') * 10 + (p[7] - '0');
}
}
printf("\n");
device_printf(sc->dev, "%s Firmware: ",
sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
(sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
/*
* The primary firmware is only valid on Prism based chipsets
* (INTERSIL or SYMBOL).
*/
if (sc->sc_firmware_type != WI_LUCENT)
printf("Primary %u.%02u.%02u, ", sc->sc_pri_firmware_ver / 10000,
(sc->sc_pri_firmware_ver % 10000) / 100,
sc->sc_pri_firmware_ver % 100);
printf("Station %u.%02u.%02u\n",
sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
sc->sc_sta_firmware_ver % 100);
return;
}
static void
wi_rxeof(sc)
struct wi_softc *sc;
{
struct ifnet *ifp;
struct ether_header *eh;
struct mbuf *m;
int id;
ifp = &sc->arpcom.ac_if;
id = CSR_READ_2(sc, WI_RX_FID);
/*
* if we have the procframe flag set, disregard all this and just
* read the data from the device.
*/
if (sc->wi_procframe || sc->wi_debug.wi_monitor) {
struct wi_frame *rx_frame;
int datlen, hdrlen;
/* first allocate mbuf for packet storage */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.rcvif = ifp;
/* now read wi_frame first so we know how much data to read */
if (wi_read_data(sc, id, 0, mtod(m, caddr_t),
sizeof(struct wi_frame))) {
m_freem(m);
ifp->if_ierrors++;
return;
}
rx_frame = mtod(m, struct wi_frame *);
switch ((rx_frame->wi_status & WI_STAT_MAC_PORT) >> 8) {
case 7:
switch (rx_frame->wi_frame_ctl & WI_FCTL_FTYPE) {
case WI_FTYPE_DATA:
hdrlen = WI_DATA_HDRLEN;
datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
break;
case WI_FTYPE_MGMT:
hdrlen = WI_MGMT_HDRLEN;
datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
break;
case WI_FTYPE_CTL:
/*
* prism2 cards don't pass control packets
* down properly or consistently, so we'll only
* pass down the header.
*/
hdrlen = WI_CTL_HDRLEN;
datlen = 0;
break;
default:
device_printf(sc->dev, "received packet of "
"unknown type on port 7\n");
m_freem(m);
ifp->if_ierrors++;
return;
}
break;
case 0:
hdrlen = WI_DATA_HDRLEN;
datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
break;
default:
device_printf(sc->dev, "received packet on invalid "
"port (wi_status=0x%x)\n", rx_frame->wi_status);
m_freem(m);
ifp->if_ierrors++;
return;
}
if ((hdrlen + datlen + 2) > MCLBYTES) {
device_printf(sc->dev, "oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
datlen, rx_frame->wi_status);
m_freem(m);
ifp->if_ierrors++;
return;
}
if (wi_read_data(sc, id, hdrlen, mtod(m, caddr_t) + hdrlen,
datlen + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len = hdrlen + datlen;
ifp->if_ipackets++;
/* Handle BPF listeners. */
if (ifp->if_bpf)
bpf_mtap(ifp, m);
m_freem(m);
} else {
struct wi_frame rx_frame;
/* First read in the frame header */
if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame,
sizeof(rx_frame))) {
ifp->if_ierrors++;
return;
}
if (rx_frame.wi_status & WI_STAT_ERRSTAT) {
ifp->if_ierrors++;
return;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
if (rx_frame.wi_status == WI_STAT_MGMT &&
sc->wi_ptype == WI_PORTTYPE_AP) {
if ((WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len + 2) >
MCLBYTES) {
device_printf(sc->dev, "oversized mgmt packet "
"received in hostap mode "
"(wi_dat_len=%d, wi_status=0x%x)\n",
rx_frame.wi_dat_len, rx_frame.wi_status);
m_freem(m);
ifp->if_ierrors++;
return;
}
/* Put the whole header in there. */
bcopy(&rx_frame, mtod(m, void *),
sizeof(struct wi_frame));
if (wi_read_data(sc, id, WI_802_11_OFFSET_RAW,
mtod(m, caddr_t) + WI_802_11_OFFSET_RAW,
rx_frame.wi_dat_len + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len;
/* XXX: consider giving packet to bhp? */
wihap_mgmt_input(sc, &rx_frame, m);
return;
}
if (rx_frame.wi_status == WI_STAT_1042 ||
rx_frame.wi_status == WI_STAT_TUNNEL ||
rx_frame.wi_status == WI_STAT_WMP_MSG) {
if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) {
device_printf(sc->dev,
"oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
rx_frame.wi_dat_len, rx_frame.wi_status);
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
rx_frame.wi_dat_len + WI_SNAPHDR_LEN;
#if 0
bcopy((char *)&rx_frame.wi_addr1,
(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
if (sc->wi_ptype == WI_PORTTYPE_ADHOC) {
bcopy((char *)&rx_frame.wi_addr2,
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
} else {
bcopy((char *)&rx_frame.wi_addr3,
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
}
#else
bcopy((char *)&rx_frame.wi_dst_addr,
(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
bcopy((char *)&rx_frame.wi_src_addr,
(char *)&eh->ether_shost, ETHER_ADDR_LEN);
#endif
bcopy((char *)&rx_frame.wi_type,
(char *)&eh->ether_type, ETHER_TYPE_LEN);
if (wi_read_data(sc, id, WI_802_11_OFFSET,
mtod(m, caddr_t) + sizeof(struct ether_header),
m->m_len + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
} else {
if((rx_frame.wi_dat_len +
sizeof(struct ether_header)) > MCLBYTES) {
device_printf(sc->dev,
"oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
rx_frame.wi_dat_len, rx_frame.wi_status);
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
rx_frame.wi_dat_len + sizeof(struct ether_header);
if (wi_read_data(sc, id, WI_802_3_OFFSET,
mtod(m, caddr_t), m->m_len + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
}
ifp->if_ipackets++;
if (sc->wi_ptype == WI_PORTTYPE_AP) {
/*
* Give host AP code first crack at data
* packets. If it decides to handle it (or
* drop it), it will return a non-zero.
* Otherwise, it is destined for this host.
*/
if (wihap_data_input(sc, &rx_frame, m))
return;
}
/* Receive packet. */
m_adj(m, sizeof(struct ether_header));
#ifdef WICACHE
wi_cache_store(sc, eh, m, rx_frame.wi_q_info);
#endif
ether_input(ifp, eh, m);
}
}
static void
wi_txeof(sc, status)
struct wi_softc *sc;
int status;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (status & WI_EV_TX_EXC)
ifp->if_oerrors++;
else
ifp->if_opackets++;
return;
}
void
wi_inquire(xsc)
void *xsc;
{
struct wi_softc *sc;
struct ifnet *ifp;
int s;
sc = xsc;
ifp = &sc->arpcom.ac_if;
sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
/* Don't do this while we're transmitting */
if (ifp->if_flags & IFF_OACTIVE)
return;
WI_LOCK(sc, s);
wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS, 0, 0);
WI_UNLOCK(sc, s);
return;
}
void
wi_update_stats(sc)
struct wi_softc *sc;
{
struct wi_ltv_gen gen;
u_int16_t id;
struct ifnet *ifp;
u_int32_t *ptr;
int len, i;
u_int16_t t;
ifp = &sc->arpcom.ac_if;
id = CSR_READ_2(sc, WI_INFO_FID);
wi_read_data(sc, id, 0, (char *)&gen, 4);
/*
* if we just got our scan results, copy it over into the scan buffer
* so we can return it to anyone that asks for it. (add a little
* compatibility with the prism2 scanning mechanism)
*/
if (gen.wi_type == WI_INFO_SCAN_RESULTS)
{
sc->wi_scanbuf_len = gen.wi_len;
wi_read_data(sc, id, 4, (char *)sc->wi_scanbuf,
sc->wi_scanbuf_len * 2);
return;
}
else if (gen.wi_type != WI_INFO_COUNTERS)
return;
len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
ptr = (u_int32_t *)&sc->wi_stats;
for (i = 0; i < len - 1; i++) {
t = CSR_READ_2(sc, WI_DATA1);
#ifdef WI_HERMES_STATS_WAR
if (t > 0xF000)
t = ~t & 0xFFFF;
#endif
ptr[i] += t;
}
ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
sc->wi_stats.wi_tx_multi_retries +
sc->wi_stats.wi_tx_retry_limit;
return;
}
static void
wi_intr(xsc)
void *xsc;
{
struct wi_softc *sc = xsc;
struct ifnet *ifp;
u_int16_t status;
int s;
WI_LOCK(sc, s);
ifp = &sc->arpcom.ac_if;
if (sc->wi_gone || !(ifp->if_flags & IFF_UP)) {
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
CSR_WRITE_2(sc, WI_INT_EN, 0);
WI_UNLOCK(sc, s);
return;
}
/* Disable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, 0);
status = CSR_READ_2(sc, WI_EVENT_STAT);
CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
if (status & WI_EV_RX) {
wi_rxeof(sc);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
}
if (status & WI_EV_TX) {
wi_txeof(sc, status);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
}
if (status & WI_EV_ALLOC) {
int id;
id = CSR_READ_2(sc, WI_ALLOC_FID);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
if (id == sc->wi_tx_data_id)
wi_txeof(sc, status);
}
if (status & WI_EV_INFO) {
wi_update_stats(sc);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
}
if (status & WI_EV_TX_EXC) {
wi_txeof(sc, status);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
}
if (status & WI_EV_INFO_DROP) {
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
wi_start(ifp);
}
WI_UNLOCK(sc, s);
return;
}
static int
wi_cmd(sc, cmd, val0, val1, val2)
struct wi_softc *sc;
int cmd;
int val0;
int val1;
int val2;
{
int i, s = 0;
static volatile int count = 0;
if (count > 1)
panic("Hey partner, hold on there!");
count++;
/* wait for the busy bit to clear */
for (i = 500; i > 0; i--) { /* 5s */
if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) {
break;
}
DELAY(10*1000); /* 10 m sec */
}
if (i == 0) {
device_printf(sc->dev, "wi_cmd: busy bit won't clear.\n" );
count--;
return(ETIMEDOUT);
}
CSR_WRITE_2(sc, WI_PARAM0, val0);
CSR_WRITE_2(sc, WI_PARAM1, val1);
CSR_WRITE_2(sc, WI_PARAM2, val2);
CSR_WRITE_2(sc, WI_COMMAND, cmd);
for (i = 0; i < WI_TIMEOUT; i++) {
/*
* Wait for 'command complete' bit to be
* set in the event status register.
*/
s = CSR_READ_2(sc, WI_EVENT_STAT);
if (s & WI_EV_CMD) {
/* Ack the event and read result code. */
s = CSR_READ_2(sc, WI_STATUS);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
#ifdef foo
if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK))
return(EIO);
#endif
if (s & WI_STAT_CMD_RESULT) {
count--;
return(EIO);
}
break;
}
DELAY(WI_DELAY);
}
count--;
if (i == WI_TIMEOUT) {
device_printf(sc->dev,
"timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s);
return(ETIMEDOUT);
}
return(0);
}
static void
wi_reset(sc)
struct wi_softc *sc;
{
#define WI_INIT_TRIES 3
int i;
int tries;
/* Symbol firmware cannot be initialized more than once */
if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_enabled)
return;
if (sc->sc_firmware_type == WI_SYMBOL)
tries = 1;
else
tries = WI_INIT_TRIES;
for (i = 0; i < tries; i++) {
if (wi_cmd(sc, WI_CMD_INI, 0, 0, 0) == 0)
break;
DELAY(WI_DELAY * 1000);
}
sc->sc_enabled = 1;
if (i == tries) {
device_printf(sc->dev, "init failed\n");
return;
}
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
/* Calibrate timer. */
WI_SETVAL(WI_RID_TICK_TIME, 8);
return;
}
/*
* Read an LTV record from the NIC.
*/
static int
wi_read_record(sc, ltv)
struct wi_softc *sc;
struct wi_ltv_gen *ltv;
{
u_int16_t *ptr;
int i, len, code;
struct wi_ltv_gen *oltv, p2ltv;
oltv = ltv;
if (sc->sc_firmware_type != WI_LUCENT) {
switch (ltv->wi_type) {
case WI_RID_ENCRYPTION:
p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
p2ltv.wi_len = 2;
ltv = &p2ltv;
break;
case WI_RID_TX_CRYPT_KEY:
p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
p2ltv.wi_len = 2;
ltv = &p2ltv;
break;
case WI_RID_ROAMING_MODE:
if (sc->sc_firmware_type == WI_INTERSIL)
break;
/* not supported */
ltv->wi_len = 1;
return 0;
case WI_RID_MICROWAVE_OVEN:
/* not supported */
ltv->wi_len = 1;
return 0;
}
}
/* Tell the NIC to enter record read mode. */
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type, 0, 0))
return(EIO);
/* Seek to the record. */
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
return(EIO);
/*
* Read the length and record type and make sure they
* match what we expect (this verifies that we have enough
* room to hold all of the returned data).
*/
len = CSR_READ_2(sc, WI_DATA1);
if (len > ltv->wi_len)
return(ENOSPC);
code = CSR_READ_2(sc, WI_DATA1);
if (code != ltv->wi_type)
return(EIO);
ltv->wi_len = len;
ltv->wi_type = code;
/* Now read the data. */
ptr = &ltv->wi_val;
for (i = 0; i < ltv->wi_len - 1; i++)
ptr[i] = CSR_READ_2(sc, WI_DATA1);
if (ltv->wi_type == WI_RID_PORTTYPE && sc->wi_ptype == WI_PORTTYPE_IBSS
&& ltv->wi_val == sc->wi_ibss_port) {
/*
* Convert vendor IBSS port type to WI_PORTTYPE_IBSS.
* Since Lucent uses port type 1 for BSS *and* IBSS we
* have to rely on wi_ptype to distinguish this for us.
*/
ltv->wi_val = htole16(WI_PORTTYPE_IBSS);
} else if (sc->sc_firmware_type != WI_LUCENT) {
switch (oltv->wi_type) {
case WI_RID_TX_RATE:
case WI_RID_CUR_TX_RATE:
switch (ltv->wi_val) {
case 1: oltv->wi_val = 1; break;
case 2: oltv->wi_val = 2; break;
case 3: oltv->wi_val = 6; break;
case 4: oltv->wi_val = 5; break;
case 7: oltv->wi_val = 7; break;
case 8: oltv->wi_val = 11; break;
case 15: oltv->wi_val = 3; break;
default: oltv->wi_val = 0x100 + ltv->wi_val; break;
}
break;
case WI_RID_ENCRYPTION:
oltv->wi_len = 2;
if (ltv->wi_val & 0x01)
oltv->wi_val = 1;
else
oltv->wi_val = 0;
break;
case WI_RID_TX_CRYPT_KEY:
oltv->wi_len = 2;
oltv->wi_val = ltv->wi_val;
break;
case WI_RID_CNFAUTHMODE:
oltv->wi_len = 2;
if (le16toh(ltv->wi_val) & 0x01)
oltv->wi_val = htole16(1);
else if (le16toh(ltv->wi_val) & 0x02)
oltv->wi_val = htole16(2);
break;
}
}
return(0);
}
/*
* Same as read, except we inject data instead of reading it.
*/
static int
wi_write_record(sc, ltv)
struct wi_softc *sc;
struct wi_ltv_gen *ltv;
{
u_int16_t *ptr;
int i;
struct wi_ltv_gen p2ltv;
if (ltv->wi_type == WI_RID_PORTTYPE &&
le16toh(ltv->wi_val) == WI_PORTTYPE_IBSS) {
/* Convert WI_PORTTYPE_IBSS to vendor IBSS port type. */
p2ltv.wi_type = WI_RID_PORTTYPE;
p2ltv.wi_len = 2;
p2ltv.wi_val = sc->wi_ibss_port;
ltv = &p2ltv;
} else if (sc->sc_firmware_type != WI_LUCENT) {
switch (ltv->wi_type) {
case WI_RID_TX_RATE:
p2ltv.wi_type = WI_RID_TX_RATE;
p2ltv.wi_len = 2;
switch (ltv->wi_val) {
case 1: p2ltv.wi_val = 1; break;
case 2: p2ltv.wi_val = 2; break;
case 3: p2ltv.wi_val = 15; break;
case 5: p2ltv.wi_val = 4; break;
case 6: p2ltv.wi_val = 3; break;
case 7: p2ltv.wi_val = 7; break;
case 11: p2ltv.wi_val = 8; break;
default: return EINVAL;
}
ltv = &p2ltv;
break;
case WI_RID_ENCRYPTION:
p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
p2ltv.wi_len = 2;
if (le16toh(ltv->wi_val)) {
p2ltv.wi_val =htole16(PRIVACY_INVOKED |
EXCLUDE_UNENCRYPTED);
if (sc->wi_ptype == WI_PORTTYPE_AP)
/*
* Disable tx encryption...
* it's broken.
*/
p2ltv.wi_val |= htole16(HOST_ENCRYPT);
} else
p2ltv.wi_val =
htole16(HOST_ENCRYPT | HOST_DECRYPT);
ltv = &p2ltv;
break;
case WI_RID_TX_CRYPT_KEY:
p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
p2ltv.wi_len = 2;
p2ltv.wi_val = ltv->wi_val;
ltv = &p2ltv;
break;
case WI_RID_DEFLT_CRYPT_KEYS:
{
int error;
int keylen;
struct wi_ltv_str ws;
struct wi_ltv_keys *wk =
(struct wi_ltv_keys *)ltv;
keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
for (i = 0; i < 4; i++) {
bzero(&ws, sizeof(ws));
ws.wi_len = (keylen > 5) ? 8 : 4;
ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
memcpy(ws.wi_str,
&wk->wi_keys[i].wi_keydat, keylen);
error = wi_write_record(sc,
(struct wi_ltv_gen *)&ws);
if (error)
return error;
}
return 0;
}
case WI_RID_CNFAUTHMODE:
p2ltv.wi_type = WI_RID_CNFAUTHMODE;
p2ltv.wi_len = 2;
if (le16toh(ltv->wi_val) == 1)
p2ltv.wi_val = htole16(0x01);
else if (le16toh(ltv->wi_val) == 2)
p2ltv.wi_val = htole16(0x02);
ltv = &p2ltv;
break;
case WI_RID_ROAMING_MODE:
if (sc->sc_firmware_type == WI_INTERSIL)
break;
/* not supported */
return 0;
case WI_RID_MICROWAVE_OVEN:
/* not supported */
return 0;
}
} else {
/* LUCENT */
switch (ltv->wi_type) {
case WI_RID_TX_RATE:
switch (ltv->wi_val) {
case 1: ltv->wi_val = 1; break; /* 1Mb/s fixed */
case 2: ltv->wi_val = 2; break; /* 2Mb/s fixed */
case 3: ltv->wi_val = 3; break; /* 11Mb/s auto */
case 5: ltv->wi_val = 4; break; /* 5.5Mb/s fixed */
case 6: ltv->wi_val = 6; break; /* 2Mb/s auto */
case 7: ltv->wi_val = 7; break; /* 5.5Mb/s auto */
case 11: ltv->wi_val = 5; break; /* 11Mb/s fixed */
default: return EINVAL;
}
}
}
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
return(EIO);
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
ptr = &ltv->wi_val;
for (i = 0; i < ltv->wi_len - 1; i++)
CSR_WRITE_2(sc, WI_DATA1, ptr[i]);
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type, 0, 0))
return(EIO);
return(0);
}
static int
wi_seek(sc, id, off, chan)
struct wi_softc *sc;
int id, off, chan;
{
int i;
int selreg, offreg;
int status;
switch (chan) {
case WI_BAP0:
selreg = WI_SEL0;
offreg = WI_OFF0;
break;
case WI_BAP1:
selreg = WI_SEL1;
offreg = WI_OFF1;
break;
default:
device_printf(sc->dev, "invalid data path: %x\n", chan);
return(EIO);
}
CSR_WRITE_2(sc, selreg, id);
CSR_WRITE_2(sc, offreg, off);
for (i = 0; i < WI_TIMEOUT; i++) {
status = CSR_READ_2(sc, offreg);
if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
break;
DELAY(WI_DELAY);
}
if (i == WI_TIMEOUT) {
device_printf(sc->dev, "timeout in wi_seek to %x/%x; last status %x\n",
id, off, status);
return(ETIMEDOUT);
}
return(0);
}
static int
wi_read_data(sc, id, off, buf, len)
struct wi_softc *sc;
int id, off;
caddr_t buf;
int len;
{
int i;
u_int16_t *ptr;
if (wi_seek(sc, id, off, WI_BAP1))
return(EIO);
ptr = (u_int16_t *)buf;
for (i = 0; i < len / 2; i++)
ptr[i] = CSR_READ_2(sc, WI_DATA1);
return(0);
}
/*
* According to the comments in the HCF Light code, there is a bug in
* the Hermes (or possibly in certain Hermes firmware revisions) where
* the chip's internal autoincrement counter gets thrown off during
* data writes: the autoincrement is missed, causing one data word to
* be overwritten and subsequent words to be written to the wrong memory
* locations. The end result is that we could end up transmitting bogus
* frames without realizing it. The workaround for this is to write a
* couple of extra guard words after the end of the transfer, then
* attempt to read then back. If we fail to locate the guard words where
* we expect them, we preform the transfer over again.
*/
static int
wi_write_data(sc, id, off, buf, len)
struct wi_softc *sc;
int id, off;
caddr_t buf;
int len;
{
int i;
u_int16_t *ptr;
#ifdef WI_HERMES_AUTOINC_WAR
int retries;
retries = 512;
again:
#endif
if (wi_seek(sc, id, off, WI_BAP0))
return(EIO);
ptr = (u_int16_t *)buf;
for (i = 0; i < (len / 2); i++)
CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
#ifdef WI_HERMES_AUTOINC_WAR
CSR_WRITE_2(sc, WI_DATA0, 0x1234);
CSR_WRITE_2(sc, WI_DATA0, 0x5678);
if (wi_seek(sc, id, off + len, WI_BAP0))
return(EIO);
if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
CSR_READ_2(sc, WI_DATA0) != 0x5678) {
if (--retries >= 0)
goto again;
device_printf(sc->dev, "wi_write_data device timeout\n");
return (EIO);
}
#endif
return(0);
}
/*
* Allocate a region of memory inside the NIC and zero
* it out.
*/
static int
wi_alloc_nicmem(sc, len, id)
struct wi_softc *sc;
int len;
int *id;
{
int i;
if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
device_printf(sc->dev,
"failed to allocate %d bytes on NIC\n", len);
return(ENOMEM);
}
for (i = 0; i < WI_TIMEOUT; i++) {
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
break;
DELAY(WI_DELAY);
}
if (i == WI_TIMEOUT) {
device_printf(sc->dev, "time out allocating memory on card\n");
return(ETIMEDOUT);
}
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
*id = CSR_READ_2(sc, WI_ALLOC_FID);
if (wi_seek(sc, *id, 0, WI_BAP0)) {
device_printf(sc->dev, "seek failed while allocating memory on card\n");
return(EIO);
}
for (i = 0; i < len / 2; i++)
CSR_WRITE_2(sc, WI_DATA0, 0);
return(0);
}
static void
wi_setmulti(sc)
struct wi_softc *sc;
{
struct ifnet *ifp;
int i = 0;
struct ifmultiaddr *ifma;
struct wi_ltv_mcast mcast;
ifp = &sc->arpcom.ac_if;
bzero((char *)&mcast, sizeof(mcast));
mcast.wi_type = WI_RID_MCAST_LIST;
mcast.wi_len = (3 * 16) + 1;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
return;
}
#if __FreeBSD_version < 500000
LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
#else
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
#endif
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (i < 16) {
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
(char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN);
i++;
} else {
bzero((char *)&mcast, sizeof(mcast));
break;
}
}
mcast.wi_len = (i * 3) + 1;
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
return;
}
static void
wi_setdef(sc, wreq)
struct wi_softc *sc;
struct wi_req *wreq;
{
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
switch(wreq->wi_type) {
case WI_RID_MAC_NODE:
ifa = ifaddr_byindex(ifp->if_index);
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN);
bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
break;
case WI_RID_PORTTYPE:
sc->wi_ptype = le16toh(wreq->wi_val[0]);
break;
case WI_RID_TX_RATE:
sc->wi_tx_rate = le16toh(wreq->wi_val[0]);
break;
case WI_RID_MAX_DATALEN:
sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
break;
case WI_RID_RTS_THRESH:
sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
break;
case WI_RID_SYSTEM_SCALE:
sc->wi_ap_density = le16toh(wreq->wi_val[0]);
break;
case WI_RID_CREATE_IBSS:
sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
break;
case WI_RID_OWN_CHNL:
sc->wi_channel = le16toh(wreq->wi_val[0]);
break;
case WI_RID_NODENAME:
bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30);
break;
case WI_RID_DESIRED_SSID:
bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30);
break;
case WI_RID_OWN_SSID:
bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30);
break;
case WI_RID_PM_ENABLED:
sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
break;
case WI_RID_MICROWAVE_OVEN:
sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
break;
case WI_RID_MAX_SLEEP:
sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
break;
case WI_RID_CNFAUTHMODE:
sc->wi_authtype = le16toh(wreq->wi_val[0]);
break;
case WI_RID_ROAMING_MODE:
sc->wi_roaming = le16toh(wreq->wi_val[0]);
break;
case WI_RID_ENCRYPTION:
sc->wi_use_wep = le16toh(wreq->wi_val[0]);
break;
case WI_RID_TX_CRYPT_KEY:
sc->wi_tx_key = le16toh(wreq->wi_val[0]);
break;
case WI_RID_DEFLT_CRYPT_KEYS:
bcopy((char *)wreq, (char *)&sc->wi_keys,
sizeof(struct wi_ltv_keys));
break;
default:
break;
}
/* Reinitialize WaveLAN. */
wi_init(sc);
return;
}
static int
wi_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
int error = 0;
int len;
u_int8_t tmpkey[14];
char tmpssid[IEEE80211_NWID_LEN];
struct wi_softc *sc;
struct wi_req wreq;
struct ifreq *ifr;
struct ieee80211req *ireq;
#if __FreeBSD_version >= 500000
struct thread *td = curthread;
#else
struct proc *td = curproc; /* Little white lie */
#endif
int s;
sc = ifp->if_softc;
WI_LOCK(sc, s);
ifr = (struct ifreq *)data;
ireq = (struct ieee80211req *)data;
if (sc->wi_gone) {
error = ENODEV;
goto out;
}
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->wi_if_flags & IFF_PROMISC)) {
WI_SETVAL(WI_RID_PROMISC, 1);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->wi_if_flags & IFF_PROMISC) {
WI_SETVAL(WI_RID_PROMISC, 0);
} else
wi_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING) {
wi_stop(sc);
}
}
sc->wi_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
wi_setmulti(sc);
error = 0;
break;
case SIOCGWAVELAN:
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
if (wreq.wi_len > WI_MAX_DATALEN) {
error = EINVAL;
break;
}
/* Don't show WEP keys to non-root users. */
if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS && suser(td))
break;
if (wreq.wi_type == WI_RID_IFACE_STATS) {
bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val,
sizeof(sc->wi_stats));
wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
} else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
bcopy((char *)&sc->wi_keys, (char *)&wreq,
sizeof(struct wi_ltv_keys));
}
#ifdef WICACHE
else if (wreq.wi_type == WI_RID_ZERO_CACHE) {
sc->wi_sigitems = sc->wi_nextitem = 0;
} else if (wreq.wi_type == WI_RID_READ_CACHE) {
char *pt = (char *)&wreq.wi_val;
bcopy((char *)&sc->wi_sigitems,
(char *)pt, sizeof(int));
pt += (sizeof (int));
wreq.wi_len = sizeof(int) / 2;
bcopy((char *)&sc->wi_sigcache, (char *)pt,
sizeof(struct wi_sigcache) * sc->wi_sigitems);
wreq.wi_len += ((sizeof(struct wi_sigcache) *
sc->wi_sigitems) / 2) + 1;
}
#endif
else if (wreq.wi_type == WI_RID_PROCFRAME) {
wreq.wi_len = 2;
wreq.wi_val[0] = sc->wi_procframe;
} else if (wreq.wi_type == WI_RID_PRISM2) {
wreq.wi_len = 2;
wreq.wi_val[0] = sc->sc_firmware_type != WI_LUCENT;
} else if (wreq.wi_type == WI_RID_SCAN_RES &&
sc->sc_firmware_type == WI_LUCENT) {
memcpy((char *)wreq.wi_val, (char *)sc->wi_scanbuf,
sc->wi_scanbuf_len * 2);
wreq.wi_len = sc->wi_scanbuf_len;
} else {
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) {
error = EINVAL;
break;
}
}
error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
break;
case SIOCSWAVELAN:
if ((error = suser(td)))
goto out;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
if (wreq.wi_len > WI_MAX_DATALEN) {
error = EINVAL;
break;
}
if (wreq.wi_type == WI_RID_IFACE_STATS) {
error = EINVAL;
break;
} else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
wreq.wi_len);
} else if (wreq.wi_type == WI_RID_PROCFRAME) {
sc->wi_procframe = wreq.wi_val[0];
/*
* if we're getting a scan request from a wavelan card
* (non-prism2), send out a cmd_inquire to the card to scan
* results for the scan will be received through the info
* interrupt handler. otherwise the scan request can be
* directly handled by a prism2 card's rid interface.
*/
} else if (wreq.wi_type == WI_RID_SCAN_REQ &&
sc->sc_firmware_type == WI_LUCENT) {
wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
} else {
error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
if (!error)
wi_setdef(sc, &wreq);
}
break;
case SIOCGPRISM2DEBUG:
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
if (!(ifp->if_flags & IFF_RUNNING) ||
sc->sc_firmware_type == WI_LUCENT) {
error = EIO;
break;
}
error = wi_get_debug(sc, &wreq);
if (error == 0)
error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
break;
case SIOCSPRISM2DEBUG:
if ((error = suser(td)))
goto out;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
break;
error = wi_set_debug(sc, &wreq);
break;
case SIOCG80211:
switch(ireq->i_type) {
case IEEE80211_IOC_SSID:
if(ireq->i_val == -1) {
bzero(tmpssid, IEEE80211_NWID_LEN);
error = wi_get_cur_ssid(sc, tmpssid, &len);
if (error != 0)
break;
error = copyout(tmpssid, ireq->i_data,
IEEE80211_NWID_LEN);
ireq->i_len = len;
} else if (ireq->i_val == 0) {
error = copyout(sc->wi_net_name,
ireq->i_data,
IEEE80211_NWID_LEN);
ireq->i_len = IEEE80211_NWID_LEN;
} else
error = EINVAL;
break;
case IEEE80211_IOC_NUMSSIDS:
ireq->i_val = 1;
break;
case IEEE80211_IOC_WEP:
if(!sc->wi_has_wep) {
ireq->i_val = IEEE80211_WEP_NOSUP;
} else {
if(sc->wi_use_wep) {
ireq->i_val =
IEEE80211_WEP_MIXED;
} else {
ireq->i_val =
IEEE80211_WEP_OFF;
}
}
break;
case IEEE80211_IOC_WEPKEY:
if(!sc->wi_has_wep ||
ireq->i_val < 0 || ireq->i_val > 3) {
error = EINVAL;
break;
}
len = sc->wi_keys.wi_keys[ireq->i_val].wi_keylen;
if (suser(td))
bcopy(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
tmpkey, len);
else
bzero(tmpkey, len);
ireq->i_len = len;
error = copyout(tmpkey, ireq->i_data, len);
break;
case IEEE80211_IOC_NUMWEPKEYS:
if(!sc->wi_has_wep)
error = EINVAL;
else
ireq->i_val = 4;
break;
case IEEE80211_IOC_WEPTXKEY:
if(!sc->wi_has_wep)
error = EINVAL;
else
ireq->i_val = sc->wi_tx_key;
break;
case IEEE80211_IOC_AUTHMODE:
ireq->i_val = sc->wi_authmode;
break;
case IEEE80211_IOC_STATIONNAME:
error = copyout(sc->wi_node_name,
ireq->i_data, IEEE80211_NWID_LEN);
ireq->i_len = IEEE80211_NWID_LEN;
break;
case IEEE80211_IOC_CHANNEL:
wreq.wi_type = WI_RID_CURRENT_CHAN;
wreq.wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
error = EINVAL;
else {
ireq->i_val = wreq.wi_val[0];
}
break;
case IEEE80211_IOC_POWERSAVE:
if(sc->wi_pm_enabled)
ireq->i_val = IEEE80211_POWERSAVE_ON;
else
ireq->i_val = IEEE80211_POWERSAVE_OFF;
break;
case IEEE80211_IOC_POWERSAVESLEEP:
ireq->i_val = sc->wi_max_sleep;
break;
default:
error = EINVAL;
}
break;
case SIOCS80211:
if ((error = suser(td)))
goto out;
switch(ireq->i_type) {
case IEEE80211_IOC_SSID:
if (ireq->i_val != 0 ||
ireq->i_len > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
/* We set both of them */
bzero(sc->wi_net_name, IEEE80211_NWID_LEN);
error = copyin(ireq->i_data,
sc->wi_net_name, ireq->i_len);
bcopy(sc->wi_net_name, sc->wi_ibss_name, IEEE80211_NWID_LEN);
break;
case IEEE80211_IOC_WEP:
/*
* These cards only support one mode so
* we just turn wep on what ever is
* passed in if it's not OFF.
*/
if (ireq->i_val == IEEE80211_WEP_OFF) {
sc->wi_use_wep = 0;
} else {
sc->wi_use_wep = 1;
}
break;
case IEEE80211_IOC_WEPKEY:
if (ireq->i_val < 0 || ireq->i_val > 3 ||
ireq->i_len > 13) {
error = EINVAL;
break;
}
bzero(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, 13);
error = copyin(ireq->i_data,
sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
ireq->i_len);
if(error)
break;
sc->wi_keys.wi_keys[ireq->i_val].wi_keylen =
ireq->i_len;
break;
case IEEE80211_IOC_WEPTXKEY:
if (ireq->i_val < 0 || ireq->i_val > 3) {
error = EINVAL;
break;
}
sc->wi_tx_key = ireq->i_val;
break;
case IEEE80211_IOC_AUTHMODE:
sc->wi_authmode = ireq->i_val;
break;
case IEEE80211_IOC_STATIONNAME:
if (ireq->i_len > 32) {
error = EINVAL;
break;
}
bzero(sc->wi_node_name, 32);
error = copyin(ireq->i_data,
sc->wi_node_name, ireq->i_len);
break;
case IEEE80211_IOC_CHANNEL:
/*
* The actual range is 1-14, but if you
* set it to 0 you get the default. So
* we let that work too.
*/
if (ireq->i_val < 0 || ireq->i_val > 14) {
error = EINVAL;
break;
}
sc->wi_channel = ireq->i_val;
break;
case IEEE80211_IOC_POWERSAVE:
switch (ireq->i_val) {
case IEEE80211_POWERSAVE_OFF:
sc->wi_pm_enabled = 0;
break;
case IEEE80211_POWERSAVE_ON:
sc->wi_pm_enabled = 1;
break;
default:
error = EINVAL;
break;
}
break;
case IEEE80211_IOC_POWERSAVESLEEP:
if (ireq->i_val < 0) {
error = EINVAL;
break;
}
sc->wi_max_sleep = ireq->i_val;
break;
default:
error = EINVAL;
break;
}
/* Reinitialize WaveLAN. */
wi_init(sc);
break;
case SIOCHOSTAP_ADD:
case SIOCHOSTAP_DEL:
case SIOCHOSTAP_GET:
case SIOCHOSTAP_GETALL:
case SIOCHOSTAP_GFLAGS:
case SIOCHOSTAP_SFLAGS:
/* Send all Host AP specific ioctl's to Host AP code. */
error = wihap_ioctl(sc, command, data);
break;
default:
error = EINVAL;
break;
}
out:
WI_UNLOCK(sc, s);
return(error);
}
static void
wi_init(xsc)
void *xsc;
{
struct wi_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct wi_ltv_macaddr mac;
int id = 0;
int s;
WI_LOCK(sc, s);
if (sc->wi_gone) {
WI_UNLOCK(sc, s);
return;
}
if (ifp->if_flags & IFF_RUNNING)
wi_stop(sc);
wi_reset(sc);
/* Program max data length. */
WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
/* Set the port type. */
WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
/* Enable/disable IBSS creation. */
WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
/* Program the RTS/CTS threshold. */
WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
/* Program the TX rate */
WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
/* Access point density */
WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
/* Power Management Enabled */
WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
/* Power Managment Max Sleep */
WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
/* Roaming type */
WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
/* Specify the IBSS name */
WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name);
/* Specify the network name */
WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
/* Specify the frequency to use */
WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
/* Program the nodename. */
WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name);
/* Specify the authentication mode. */
WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authmode);
/* Set our MAC address. */
mac.wi_len = 4;
mac.wi_type = WI_RID_MAC_NODE;
bcopy((char *)&sc->arpcom.ac_enaddr,
(char *)&mac.wi_mac_addr, ETHER_ADDR_LEN);
wi_write_record(sc, (struct wi_ltv_gen *)&mac);
/* Configure WEP. */
if (sc->wi_has_wep) {
WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
/*
* ONLY HWB3163 EVAL-CARD Firmware version
* less than 0.8 variant2
*
* If promiscuous mode disable, Prism2 chip
* does not work with WEP .
* It is under investigation for details.
* (ichiro@netbsd.org)
*/
if (sc->sc_firmware_type == WI_INTERSIL &&
sc->sc_sta_firmware_ver < 802 ) {
/* firm ver < 0.8 variant 2 */
WI_SETVAL(WI_RID_PROMISC, 1);
}
WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authtype);
}
}
/* Initialize promisc mode. */
if (ifp->if_flags & IFF_PROMISC) {
WI_SETVAL(WI_RID_PROMISC, 1);
} else {
WI_SETVAL(WI_RID_PROMISC, 0);
}
/* Set multicast filter. */
wi_setmulti(sc);
/* Enable desired port */
wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0, 0, 0);
if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
device_printf(sc->dev, "tx buffer allocation failed\n");
sc->wi_tx_data_id = id;
if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
device_printf(sc->dev, "mgmt. buffer allocation failed\n");
sc->wi_tx_mgmt_id = id;
/* enable interrupts */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
wihap_init(sc);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
WI_UNLOCK(sc, s);
return;
}
#define RC4STATE 256
#define RC4KEYLEN 16
#define RC4SWAP(x,y) \
do { u_int8_t t = state[x]; state[x] = state[y]; state[y] = t; } while(0)
static void
wi_do_hostencrypt(struct wi_softc *sc, caddr_t buf, int len)
{
u_int32_t i, crc, klen;
u_int8_t state[RC4STATE], key[RC4KEYLEN];
u_int8_t x, y, *dat;
if (!sc->wi_icv_flag) {
sc->wi_icv = arc4random();
sc->wi_icv_flag++;
} else
sc->wi_icv++;
/*
* Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
* (B, 255, N) with 3 <= B < 8
*/
if (sc->wi_icv >= 0x03ff00 &&
(sc->wi_icv & 0xf8ff00) == 0x00ff00)
sc->wi_icv += 0x000100;
/* prepend 24bit IV to tx key, byte order does not matter */
key[0] = sc->wi_icv >> 16;
key[1] = sc->wi_icv >> 8;
key[2] = sc->wi_icv;
klen = sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keylen +
IEEE80211_WEP_IVLEN;
klen = (klen >= RC4KEYLEN) ? RC4KEYLEN : RC4KEYLEN/2;
bcopy((char *)&sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keydat,
(char *)key + IEEE80211_WEP_IVLEN, klen - IEEE80211_WEP_IVLEN);
/* rc4 keysetup */
x = y = 0;
for (i = 0; i < RC4STATE; i++)
state[i] = i;
for (i = 0; i < RC4STATE; i++) {
y = (key[x] + state[i] + y) % RC4STATE;
RC4SWAP(i, y);
x = (x + 1) % klen;
}
/* output: IV, tx keyid, rc4(data), rc4(crc32(data)) */
dat = buf;
dat[0] = key[0];
dat[1] = key[1];
dat[2] = key[2];
dat[3] = sc->wi_tx_key << 6; /* pad and keyid */
dat += 4;
/* compute rc4 over data, crc32 over data */
crc = ~0;
x = y = 0;
for (i = 0; i < len; i++) {
x = (x + 1) % RC4STATE;
y = (state[x] + y) % RC4STATE;
RC4SWAP(x, y);
crc = crc32_tab[(crc ^ dat[i]) & 0xff] ^ (crc >> 8);
dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
}
crc = ~crc;
dat += len;
/* append little-endian crc32 and encrypt */
dat[0] = crc;
dat[1] = crc >> 8;
dat[2] = crc >> 16;
dat[3] = crc >> 24;
for (i = 0; i < IEEE80211_WEP_CRCLEN; i++) {
x = (x + 1) % RC4STATE;
y = (state[x] + y) % RC4STATE;
RC4SWAP(x, y);
dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
}
}
static void
wi_start(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc;
struct mbuf *m0;
struct wi_frame tx_frame;
struct ether_header *eh;
int id;
int s;
sc = ifp->if_softc;
WI_LOCK(sc, s);
if (sc->wi_gone) {
WI_UNLOCK(sc, s);
return;
}
if (ifp->if_flags & IFF_OACTIVE) {
WI_UNLOCK(sc, s);
return;
}
nextpkt:
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL) {
WI_UNLOCK(sc, s);
return;
}
bzero((char *)&tx_frame, sizeof(tx_frame));
tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
id = sc->wi_tx_data_id;
eh = mtod(m0, struct ether_header *);
if (sc->wi_ptype == WI_PORTTYPE_AP) {
if (!wihap_check_tx(&sc->wi_hostap_info,
eh->ether_dhost, &tx_frame.wi_tx_rate)) {
if (ifp->if_flags & IFF_DEBUG)
printf("wi_start: dropping unassoc "
"dst %6D\n", eh->ether_dhost, ":");
m_freem(m0);
goto nextpkt;
}
}
/*
* Use RFC1042 encoding for IP and ARP datagrams,
* 802.3 for anything else.
*/
if (ntohs(eh->ether_type) > ETHER_MAX_LEN) {
bcopy((char *)&eh->ether_dhost,
(char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN);
if (sc->wi_ptype == WI_PORTTYPE_AP) {
tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT; /* XXX */
tx_frame.wi_frame_ctl |= WI_FCTL_FROMDS;
if (sc->wi_use_wep)
tx_frame.wi_frame_ctl |= WI_FCTL_WEP;
bcopy((char *)&sc->arpcom.ac_enaddr,
(char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_shost,
(char *)&tx_frame.wi_addr3, ETHER_ADDR_LEN);
}
else
bcopy((char *)&eh->ether_shost,
(char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_dhost,
(char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
bcopy((char *)&eh->ether_shost,
(char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN);
tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN;
tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
tx_frame.wi_type = eh->ether_type;
if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
/* Do host encryption. */
bcopy(&tx_frame.wi_dat[0], &sc->wi_txbuf[4], 8);
m_copydata(m0, sizeof(struct ether_header),
m0->m_pkthdr.len - sizeof(struct ether_header),
(caddr_t)&sc->wi_txbuf[12]);
wi_do_hostencrypt(sc, &sc->wi_txbuf[0],
tx_frame.wi_dat_len);
tx_frame.wi_dat_len += IEEE80211_WEP_IVLEN +
IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN;
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_11_OFFSET_RAW,
(caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
sizeof(struct ether_header)) + 18);
} else {
m_copydata(m0, sizeof(struct ether_header),
m0->m_pkthdr.len - sizeof(struct ether_header),
(caddr_t)&sc->wi_txbuf);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_11_OFFSET,
(caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
sizeof(struct ether_header)) + 2);
}
} else {
tx_frame.wi_dat_len = m0->m_pkthdr.len;
if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
/* Do host encryption. */
printf( "XXX: host encrypt not implemented for 802.3\n" );
} else {
eh->ether_type = htons(m0->m_pkthdr.len -
WI_SNAPHDR_LEN);
m_copydata(m0, 0, m0->m_pkthdr.len,
(caddr_t)&sc->wi_txbuf);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_3_OFFSET,
(caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2);
}
}
/*
* If there's a BPF listner, bounce a copy of
* this frame to him. Also, don't send this to the bpf sniffer
* if we're in procframe or monitor sniffing mode.
*/
if (!(sc->wi_procframe || sc->wi_debug.wi_monitor) && ifp->if_bpf)
bpf_mtap(ifp, m0);
m_freem(m0);
if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0))
device_printf(sc->dev, "xmit failed\n");
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
WI_UNLOCK(sc, s);
return;
}
int
wi_mgmt_xmit(sc, data, len)
struct wi_softc *sc;
caddr_t data;
int len;
{
struct wi_frame tx_frame;
int id;
struct wi_80211_hdr *hdr;
caddr_t dptr;
if (sc->wi_gone)
return(ENODEV);
hdr = (struct wi_80211_hdr *)data;
dptr = data + sizeof(struct wi_80211_hdr);
bzero((char *)&tx_frame, sizeof(tx_frame));
id = sc->wi_tx_mgmt_id;
bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl,
sizeof(struct wi_80211_hdr));
tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT;
tx_frame.wi_dat_len = len - sizeof(struct wi_80211_hdr);
tx_frame.wi_len = htons(tx_frame.wi_dat_len);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
len - sizeof(struct wi_80211_hdr) + 2);
if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) {
device_printf(sc->dev, "xmit failed\n");
return(EIO);
}
return(0);
}
static void
wi_stop(sc)
struct wi_softc *sc;
{
struct ifnet *ifp;
int s;
WI_LOCK(sc, s);
if (sc->wi_gone) {
WI_UNLOCK(sc, s);
return;
}
wihap_shutdown(sc);
ifp = &sc->arpcom.ac_if;
/*
* If the card is gone and the memory port isn't mapped, we will
* (hopefully) get 0xffff back from the status read, which is not
* a valid status value.
*/
if (CSR_READ_2(sc, WI_STATUS) != 0xffff) {
CSR_WRITE_2(sc, WI_INT_EN, 0);
wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0, 0, 0);
}
untimeout(wi_inquire, sc, sc->wi_stat_ch);
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
WI_UNLOCK(sc, s);
return;
}
static void
wi_watchdog(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc;
sc = ifp->if_softc;
device_printf(sc->dev, "watchdog timeout\n");
wi_init(sc);
ifp->if_oerrors++;
return;
}
int
wi_alloc(dev, rid)
device_t dev;
int rid;
{
struct wi_softc *sc = device_get_softc(dev);
if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
sc->iobase_rid = rid;
sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
&sc->iobase_rid, 0, ~0, (1 << 6),
rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
if (!sc->iobase) {
device_printf(dev, "No I/O space?!\n");
return (ENXIO);
}
sc->wi_io_addr = rman_get_start(sc->iobase);
sc->wi_btag = rman_get_bustag(sc->iobase);
sc->wi_bhandle = rman_get_bushandle(sc->iobase);
} else {
sc->mem_rid = rid;
sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY,
&sc->mem_rid, 0, ~0, 1, RF_ACTIVE);
if (!sc->mem) {
device_printf(dev, "No Mem space on prism2.5?\n");
return (ENXIO);
}
sc->wi_btag = rman_get_bustag(sc->mem);
sc->wi_bhandle = rman_get_bushandle(sc->mem);
}
sc->irq_rid = 0;
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
0, ~0, 1, RF_ACTIVE |
((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
if (!sc->irq) {
wi_free(dev);
device_printf(dev, "No irq?!\n");
return (ENXIO);
}
sc->dev = dev;
sc->wi_unit = device_get_unit(dev);
return (0);
}
void
wi_free(dev)
device_t dev;
{
struct wi_softc *sc = device_get_softc(dev);
if (sc->iobase != NULL) {
bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
sc->iobase = NULL;
}
if (sc->irq != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
sc->irq = NULL;
}
if (sc->mem != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
sc->mem = NULL;
}
return;
}
void
wi_shutdown(dev)
device_t dev;
{
struct wi_softc *sc;
sc = device_get_softc(dev);
wi_stop(sc);
return;
}
#ifdef WICACHE
/* wavelan signal strength cache code.
* store signal/noise/quality on per MAC src basis in
* a small fixed cache. The cache wraps if > MAX slots
* used. The cache may be zeroed out to start over.
* Two simple filters exist to reduce computation:
* 1. ip only (literally 0x800) which may be used
* to ignore some packets. It defaults to ip only.
* it could be used to focus on broadcast, non-IP 802.11 beacons.
* 2. multicast/broadcast only. This may be used to
* ignore unicast packets and only cache signal strength
* for multicast/broadcast packets (beacons); e.g., Mobile-IP
* beacons and not unicast traffic.
*
* The cache stores (MAC src(index), IP src (major clue), signal,
* quality, noise)
*
* No apologies for storing IP src here. It's easy and saves much
* trouble elsewhere. The cache is assumed to be INET dependent,
* although it need not be.
*/
#ifdef documentation
int wi_sigitems; /* number of cached entries */
struct wi_sigcache wi_sigcache[MAXWICACHE]; /* array of cache entries */
int wi_nextitem; /* index/# of entries */
#endif
/* control variables for cache filtering. Basic idea is
* to reduce cost (e.g., to only Mobile-IP agent beacons
* which are broadcast or multicast). Still you might
* want to measure signal strength with unicast ping packets
* on a pt. to pt. ant. setup.
*/
/* set true if you want to limit cache items to broadcast/mcast
* only packets (not unicast). Useful for mobile-ip beacons which
* are broadcast/multicast at network layer. Default is all packets
* so ping/unicast will work say with pt. to pt. antennae setup.
*/
static int wi_cache_mcastonly = 0;
SYSCTL_INT(_machdep, OID_AUTO, wi_cache_mcastonly, CTLFLAG_RW,
&wi_cache_mcastonly, 0, "");
/* set true if you want to limit cache items to IP packets only
*/
static int wi_cache_iponly = 1;
SYSCTL_INT(_machdep, OID_AUTO, wi_cache_iponly, CTLFLAG_RW,
&wi_cache_iponly, 0, "");
/*
* Original comments:
* -----------------
* wi_cache_store, per rx packet store signal
* strength in MAC (src) indexed cache.
*
* follows linux driver in how signal strength is computed.
* In ad hoc mode, we use the rx_quality field.
* signal and noise are trimmed to fit in the range from 47..138.
* rx_quality field MSB is signal strength.
* rx_quality field LSB is noise.
* "quality" is (signal - noise) as is log value.
* note: quality CAN be negative.
*
* In BSS mode, we use the RID for communication quality.
* TBD: BSS mode is currently untested.
*
* Bill's comments:
* ---------------
* Actually, we use the rx_quality field all the time for both "ad-hoc"
* and BSS modes. Why? Because reading an RID is really, really expensive:
* there's a bunch of PIO operations that have to be done to read a record
* from the NIC, and reading the comms quality RID each time a packet is
* received can really hurt performance. We don't have to do this anyway:
* the comms quality field only reflects the values in the rx_quality field
* anyway. The comms quality RID is only meaningful in infrastructure mode,
* but the values it contains are updated based on the rx_quality from
* frames received from the access point.
*
* Also, according to Lucent, the signal strength and noise level values
* can be converted to dBms by subtracting 149, so I've modified the code
* to do that instead of the scaling it did originally.
*/
static void
wi_cache_store(struct wi_softc *sc, struct ether_header *eh,
struct mbuf *m, unsigned short rx_quality)
{
struct ip *ip = 0;
int i;
static int cache_slot = 0; /* use this cache entry */
static int wrapindex = 0; /* next "free" cache entry */
int sig, noise;
int sawip=0;
/*
* filters:
* 1. ip only
* 2. configurable filter to throw out unicast packets,
* keep multicast only.
*/
if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
sawip = 1;
}
/*
* filter for ip packets only
*/
if (wi_cache_iponly && !sawip) {
return;
}
/*
* filter for broadcast/multicast only
*/
if (wi_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
return;
}
#ifdef SIGDEBUG
printf("wi%d: q value %x (MSB=0x%x, LSB=0x%x) \n", sc->wi_unit,
rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
#endif
/*
* find the ip header. we want to store the ip_src
* address.
*/
if (sawip)
ip = mtod(m, struct ip *);
/*
* do a linear search for a matching MAC address
* in the cache table
* . MAC address is 6 bytes,
* . var w_nextitem holds total number of entries already cached
*/
for(i = 0; i < sc->wi_nextitem; i++) {
if (! bcmp(eh->ether_shost , sc->wi_sigcache[i].macsrc, 6 )) {
/*
* Match!,
* so we already have this entry,
* update the data
*/
break;
}
}
/*
* did we find a matching mac address?
* if yes, then overwrite a previously existing cache entry
*/
if (i < sc->wi_nextitem ) {
cache_slot = i;
}
/*
* else, have a new address entry,so
* add this new entry,
* if table full, then we need to replace LRU entry
*/
else {
/*
* check for space in cache table
* note: wi_nextitem also holds number of entries
* added in the cache table
*/
if ( sc->wi_nextitem < MAXWICACHE ) {
cache_slot = sc->wi_nextitem;
sc->wi_nextitem++;
sc->wi_sigitems = sc->wi_nextitem;
}
/* no space found, so simply wrap with wrap index
* and "zap" the next entry
*/
else {
if (wrapindex == MAXWICACHE) {
wrapindex = 0;
}
cache_slot = wrapindex++;
}
}
/*
* invariant: cache_slot now points at some slot
* in cache.
*/
if (cache_slot < 0 || cache_slot >= MAXWICACHE) {
log(LOG_ERR, "wi_cache_store, bad index: %d of "
"[0..%d], gross cache error\n",
cache_slot, MAXWICACHE);
return;
}
/*
* store items in cache
* .ip source address
* .mac src
* .signal, etc.
*/
if (sawip)
sc->wi_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
bcopy( eh->ether_shost, sc->wi_sigcache[cache_slot].macsrc, 6);
sig = (rx_quality >> 8) & 0xFF;
noise = rx_quality & 0xFF;
sc->wi_sigcache[cache_slot].signal = sig - 149;
sc->wi_sigcache[cache_slot].noise = noise - 149;
sc->wi_sigcache[cache_slot].quality = sig - noise;
return;
}
#endif
static int
wi_get_cur_ssid(sc, ssid, len)
struct wi_softc *sc;
char *ssid;
int *len;
{
int error = 0;
struct wi_req wreq;
wreq.wi_len = WI_MAX_DATALEN;
switch (sc->wi_ptype) {
case WI_PORTTYPE_AP:
*len = IEEE80211_NWID_LEN;
bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
break;
case WI_PORTTYPE_ADHOC:
wreq.wi_type = WI_RID_CURRENT_SSID;
error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
if (error != 0)
break;
if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
*len = wreq.wi_val[0];
bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
break;
case WI_PORTTYPE_BSS:
wreq.wi_type = WI_RID_COMMQUAL;
error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
if (error != 0)
break;
if (wreq.wi_val[0] != 0) /* associated */ {
wreq.wi_type = WI_RID_CURRENT_SSID;
wreq.wi_len = WI_MAX_DATALEN;
error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
if (error != 0)
break;
if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
*len = wreq.wi_val[0];
bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
} else {
*len = IEEE80211_NWID_LEN;
bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
}
break;
default:
error = EINVAL;
break;
}
return error;
}
static int
wi_media_change(ifp)
struct ifnet *ifp;
{
struct wi_softc *sc = ifp->if_softc;
int otype = sc->wi_ptype;
int orate = sc->wi_tx_rate;
int ocreate_ibss = sc->wi_create_ibss;
if ((sc->ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_HOSTAP) &&
sc->sc_firmware_type != WI_INTERSIL)
return (EINVAL);
sc->wi_create_ibss = 0;
switch (sc->ifmedia.ifm_cur->ifm_media & IFM_OMASK) {
case 0:
sc->wi_ptype = WI_PORTTYPE_BSS;
break;
case IFM_IEEE80211_ADHOC:
sc->wi_ptype = WI_PORTTYPE_ADHOC;
break;
case IFM_IEEE80211_HOSTAP:
sc->wi_ptype = WI_PORTTYPE_AP;
break;
case IFM_IEEE80211_IBSSMASTER:
case IFM_IEEE80211_IBSSMASTER|IFM_IEEE80211_IBSS:
if (!(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS))
return (EINVAL);
sc->wi_create_ibss = 1;
/* FALLTHROUGH */
case IFM_IEEE80211_IBSS:
sc->wi_ptype = WI_PORTTYPE_IBSS;
break;
default:
/* Invalid combination. */
return (EINVAL);
}
switch (IFM_SUBTYPE(sc->ifmedia.ifm_cur->ifm_media)) {
case IFM_IEEE80211_DS1:
sc->wi_tx_rate = 1;
break;
case IFM_IEEE80211_DS2:
sc->wi_tx_rate = 2;
break;
case IFM_IEEE80211_DS5:
sc->wi_tx_rate = 5;
break;
case IFM_IEEE80211_DS11:
sc->wi_tx_rate = 11;
break;
case IFM_AUTO:
sc->wi_tx_rate = 3;
break;
}
if (ocreate_ibss != sc->wi_create_ibss || otype != sc->wi_ptype ||
orate != sc->wi_tx_rate)
wi_init(sc);
return(0);
}
static void
wi_media_status(ifp, imr)
struct ifnet *ifp;
struct ifmediareq *imr;
{
struct wi_req wreq;
struct wi_softc *sc = ifp->if_softc;
if (sc->wi_tx_rate == 3) {
imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
imr->ifm_active |= IFM_IEEE80211_ADHOC;
else if (sc->wi_ptype == WI_PORTTYPE_AP)
imr->ifm_active |= IFM_IEEE80211_HOSTAP;
else if (sc->wi_ptype == WI_PORTTYPE_IBSS) {
if (sc->wi_create_ibss)
imr->ifm_active |= IFM_IEEE80211_IBSSMASTER;
else
imr->ifm_active |= IFM_IEEE80211_IBSS;
}
wreq.wi_type = WI_RID_CUR_TX_RATE;
wreq.wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) {
switch(wreq.wi_val[0]) {
case 1:
imr->ifm_active |= IFM_IEEE80211_DS1;
break;
case 2:
imr->ifm_active |= IFM_IEEE80211_DS2;
break;
case 6:
imr->ifm_active |= IFM_IEEE80211_DS5;
break;
case 11:
imr->ifm_active |= IFM_IEEE80211_DS11;
break;
}
}
} else {
imr->ifm_active = sc->ifmedia.ifm_cur->ifm_media;
}
imr->ifm_status = IFM_AVALID;
if (sc->wi_ptype == WI_PORTTYPE_ADHOC ||
sc->wi_ptype == WI_PORTTYPE_IBSS)
/*
* XXX: It would be nice if we could give some actually
* useful status like whether we joined another IBSS or
* created one ourselves.
*/
imr->ifm_status |= IFM_ACTIVE;
else if (sc->wi_ptype == WI_PORTTYPE_AP)
imr->ifm_status |= IFM_ACTIVE;
else {
wreq.wi_type = WI_RID_COMMQUAL;
wreq.wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
wreq.wi_val[0] != 0)
imr->ifm_status |= IFM_ACTIVE;
}
}
static int
wi_get_debug(sc, wreq)
struct wi_softc *sc;
struct wi_req *wreq;
{
int error = 0;
wreq->wi_len = 1;
switch (wreq->wi_type) {
case WI_DEBUG_SLEEP:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_sleep;
break;
case WI_DEBUG_DELAYSUPP:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_delaysupp;
break;
case WI_DEBUG_TXSUPP:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_txsupp;
break;
case WI_DEBUG_MONITOR:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_monitor;
break;
case WI_DEBUG_LEDTEST:
wreq->wi_len += 3;
wreq->wi_val[0] = sc->wi_debug.wi_ledtest;
wreq->wi_val[1] = sc->wi_debug.wi_ledtest_param0;
wreq->wi_val[2] = sc->wi_debug.wi_ledtest_param1;
break;
case WI_DEBUG_CONTTX:
wreq->wi_len += 2;
wreq->wi_val[0] = sc->wi_debug.wi_conttx;
wreq->wi_val[1] = sc->wi_debug.wi_conttx_param0;
break;
case WI_DEBUG_CONTRX:
wreq->wi_len++;
wreq->wi_val[0] = sc->wi_debug.wi_contrx;
break;
case WI_DEBUG_SIGSTATE:
wreq->wi_len += 2;
wreq->wi_val[0] = sc->wi_debug.wi_sigstate;
wreq->wi_val[1] = sc->wi_debug.wi_sigstate_param0;
break;
case WI_DEBUG_CONFBITS:
wreq->wi_len += 2;
wreq->wi_val[0] = sc->wi_debug.wi_confbits;
wreq->wi_val[1] = sc->wi_debug.wi_confbits_param0;
break;
default:
error = EIO;
break;
}
return (error);
}
static int
wi_set_debug(sc, wreq)
struct wi_softc *sc;
struct wi_req *wreq;
{
int error = 0;
u_int16_t cmd, param0 = 0, param1 = 0;
switch (wreq->wi_type) {
case WI_DEBUG_RESET:
case WI_DEBUG_INIT:
case WI_DEBUG_CALENABLE:
break;
case WI_DEBUG_SLEEP:
sc->wi_debug.wi_sleep = 1;
break;
case WI_DEBUG_WAKE:
sc->wi_debug.wi_sleep = 0;
break;
case WI_DEBUG_CHAN:
param0 = wreq->wi_val[0];
break;
case WI_DEBUG_DELAYSUPP:
sc->wi_debug.wi_delaysupp = 1;
break;
case WI_DEBUG_TXSUPP:
sc->wi_debug.wi_txsupp = 1;
break;
case WI_DEBUG_MONITOR:
sc->wi_debug.wi_monitor = 1;
break;
case WI_DEBUG_LEDTEST:
param0 = wreq->wi_val[0];
param1 = wreq->wi_val[1];
sc->wi_debug.wi_ledtest = 1;
sc->wi_debug.wi_ledtest_param0 = param0;
sc->wi_debug.wi_ledtest_param1 = param1;
break;
case WI_DEBUG_CONTTX:
param0 = wreq->wi_val[0];
sc->wi_debug.wi_conttx = 1;
sc->wi_debug.wi_conttx_param0 = param0;
break;
case WI_DEBUG_STOPTEST:
sc->wi_debug.wi_delaysupp = 0;
sc->wi_debug.wi_txsupp = 0;
sc->wi_debug.wi_monitor = 0;
sc->wi_debug.wi_ledtest = 0;
sc->wi_debug.wi_ledtest_param0 = 0;
sc->wi_debug.wi_ledtest_param1 = 0;
sc->wi_debug.wi_conttx = 0;
sc->wi_debug.wi_conttx_param0 = 0;
sc->wi_debug.wi_contrx = 0;
sc->wi_debug.wi_sigstate = 0;
sc->wi_debug.wi_sigstate_param0 = 0;
break;
case WI_DEBUG_CONTRX:
sc->wi_debug.wi_contrx = 1;
break;
case WI_DEBUG_SIGSTATE:
param0 = wreq->wi_val[0];
sc->wi_debug.wi_sigstate = 1;
sc->wi_debug.wi_sigstate_param0 = param0;
break;
case WI_DEBUG_CONFBITS:
param0 = wreq->wi_val[0];
param1 = wreq->wi_val[1];
sc->wi_debug.wi_confbits = param0;
sc->wi_debug.wi_confbits_param0 = param1;
break;
default:
error = EIO;
break;
}
if (error)
return (error);
cmd = WI_CMD_DEBUG | (wreq->wi_type << 8);
error = wi_cmd(sc, cmd, param0, param1, 0);
return (error);
}