freebsd-dev/sys/i386/isa/ithread.c
Peter Wemm 5ee171d264 Cleanup some leftover lint from the old interrupt system.
Also, while here, run up to 32 interrupt sources on APIC systems.
Normalize INTREN/INTRDIS so they are the same on both UP and SMP systems
rather than sometimes a macro, and sometimes a function.

Reviewed by:  jhb, jakeb
2000-12-04 21:15:14 +00:00

219 lines
6.5 KiB
C

/*-
* Copyright (c) 1997 Berkeley Software Design, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Berkeley Software Design Inc's name may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From BSDI: intr.c,v 1.6.2.5 1999/07/06 19:16:52 cp Exp
* $FreeBSD$
*/
/* Interrupt thread code. */
#include "opt_auto_eoi.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/rtprio.h> /* change this name XXX */
#ifndef SMP
#include <machine/lock.h>
#endif
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/syslog.h>
#include <sys/ipl.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/unistd.h>
#include <sys/errno.h>
#include <sys/interrupt.h>
#include <machine/md_var.h>
#include <machine/segments.h>
#include <i386/isa/icu.h>
#include <isa/isavar.h>
#include <i386/isa/intr_machdep.h>
#include <sys/interrupt.h>
#include <sys/vmmeter.h>
#include <sys/ktr.h>
#include <machine/cpu.h>
static u_int straycount[NHWI];
#define MAX_STRAY_LOG 5
/*
* Schedule a heavyweight interrupt process. This function is called
* from the interrupt handlers Xintr<num>.
*/
void
sched_ithd(void *cookie)
{
int irq = (int) cookie; /* IRQ we're handling */
struct ithd *ir = ithds[irq]; /* and the process that does it */
/* This used to be in icu_vector.s */
/*
* We count software interrupts when we process them. The
* code here follows previous practice, but there's an
* argument for counting hardware interrupts when they're
* processed too.
*/
atomic_add_long(intr_countp[irq], 1); /* one more for this IRQ */
atomic_add_int(&cnt.v_intr, 1); /* one more global interrupt */
/*
* If we don't have an interrupt resource or an interrupt thread for
* this IRQ, log it as a stray interrupt.
*/
if (ir == NULL || ir->it_proc == NULL) {
if (straycount[irq] < MAX_STRAY_LOG) {
printf("stray irq %d\n", irq);
if (++straycount[irq] == MAX_STRAY_LOG)
printf(
"got %d stray irq %d's: not logging anymore\n",
MAX_STRAY_LOG, irq);
}
return;
}
CTR3(KTR_INTR, "sched_ithd pid %d(%s) need=%d",
ir->it_proc->p_pid, ir->it_proc->p_comm, ir->it_need);
/*
* Set it_need so that if the thread is already running but close
* to done, it will do another go-round. Then get the sched lock
* and see if the thread is on whichkqs yet. If not, put it on
* there. In any case, kick everyone so that if the new thread
* is higher priority than their current thread, it gets run now.
*/
ir->it_need = 1;
mtx_enter(&sched_lock, MTX_SPIN);
if (ir->it_proc->p_stat == SWAIT) { /* not on run queue */
CTR1(KTR_INTR, "sched_ithd: setrunqueue %d",
ir->it_proc->p_pid);
/* membar_lock(); */
ir->it_proc->p_stat = SRUN;
setrunqueue(ir->it_proc);
aston();
}
else {
CTR3(KTR_INTR, "sched_ithd %d: it_need %d, state %d",
ir->it_proc->p_pid,
ir->it_need,
ir->it_proc->p_stat );
}
mtx_exit(&sched_lock, MTX_SPIN);
need_resched();
}
/*
* This is the main code for all interrupt threads. It gets put on
* whichkqs by setrunqueue above.
*/
void
ithd_loop(void *dummy)
{
struct ithd *me; /* our thread context */
struct intrhand *ih; /* and our interrupt handler chain */
me = curproc->p_ithd; /* point to myself */
/*
* As long as we have interrupts outstanding, go through the
* list of handlers, giving each one a go at it.
*/
for (;;) {
/*
* If we don't have any handlers, then we are an orphaned
* thread and just need to die.
*/
if (me->it_ih == NULL) {
CTR2(KTR_INTR, "ithd_loop pid %d(%s) exiting",
me->it_proc->p_pid, me->it_proc->p_comm);
curproc->p_ithd = NULL;
free(me, M_DEVBUF);
mtx_enter(&Giant, MTX_DEF);
kthread_exit(0);
}
CTR3(KTR_INTR, "ithd_loop pid %d(%s) need=%d",
me->it_proc->p_pid, me->it_proc->p_comm, me->it_need);
while (me->it_need) {
/*
* Service interrupts. If another interrupt
* arrives while we are running, they will set
* it_need to denote that we should make
* another pass.
*/
me->it_need = 0;
#if 0
membar_unlock(); /* push out "it_need=0" */
#endif
for (ih = me->it_ih; ih != NULL; ih = ih->ih_next) {
CTR5(KTR_INTR,
"ithd_loop pid %d ih=%p: %p(%p) flg=%x",
me->it_proc->p_pid, (void *)ih,
(void *)ih->ih_handler, ih->ih_argument,
ih->ih_flags);
if ((ih->ih_flags & INTR_MPSAFE) == 0)
mtx_enter(&Giant, MTX_DEF);
ih->ih_handler(ih->ih_argument);
if ((ih->ih_flags & INTR_MPSAFE) == 0)
mtx_exit(&Giant, MTX_DEF);
}
}
/*
* Processed all our interrupts. Now get the sched
* lock. This may take a while and it_need may get
* set again, so we have to check it again.
*/
mtx_assert(&Giant, MA_NOTOWNED);
mtx_enter(&sched_lock, MTX_SPIN);
if (!me->it_need) {
INTREN (1 << me->irq); /* reset the mask bit */
me->it_proc->p_stat = SWAIT; /* we're idle */
#ifdef APIC_IO
CTR2(KTR_INTR, "ithd_loop pid %d: done, apic_imen=%x",
me->it_proc->p_pid, apic_imen);
#else
CTR2(KTR_INTR, "ithd_loop pid %d: done, imen=%x",
me->it_proc->p_pid, imen);
#endif
mi_switch();
CTR1(KTR_INTR, "ithd_loop pid %d: resumed",
me->it_proc->p_pid);
}
mtx_exit(&sched_lock, MTX_SPIN);
}
}