be2ac88c59
DoS in an improved fashion over the existing code. Reviewed by: silby (in a previous iteration) Sponsored by: DARPA, NAI Labs
1039 lines
27 KiB
C
1039 lines
27 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1991, 1993, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_ipsec.h"
|
|
#include "opt_inet6.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/limits.h>
|
|
|
|
#include <vm/vm_zone.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#endif /* INET6 */
|
|
|
|
#ifdef IPSEC
|
|
#include <netinet6/ipsec.h>
|
|
#include <netkey/key.h>
|
|
#endif /* IPSEC */
|
|
|
|
struct in_addr zeroin_addr;
|
|
|
|
/*
|
|
* These configure the range of local port addresses assigned to
|
|
* "unspecified" outgoing connections/packets/whatever.
|
|
*/
|
|
int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */
|
|
int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */
|
|
int ipport_firstauto = IPPORT_RESERVED; /* 1024 */
|
|
int ipport_lastauto = IPPORT_USERRESERVED; /* 5000 */
|
|
int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
|
|
int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */
|
|
|
|
#define RANGECHK(var, min, max) \
|
|
if ((var) < (min)) { (var) = (min); } \
|
|
else if ((var) > (max)) { (var) = (max); }
|
|
|
|
static int
|
|
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error = sysctl_handle_int(oidp,
|
|
oidp->oid_arg1, oidp->oid_arg2, req);
|
|
if (!error) {
|
|
RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX);
|
|
RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX);
|
|
RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX);
|
|
RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
#undef RANGECHK
|
|
|
|
SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
|
|
&ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
|
|
|
|
/*
|
|
* in_pcb.c: manage the Protocol Control Blocks.
|
|
*
|
|
* NOTE: It is assumed that most of these functions will be called at
|
|
* splnet(). XXX - There are, unfortunately, a few exceptions to this
|
|
* rule that should be fixed.
|
|
*/
|
|
|
|
/*
|
|
* Allocate a PCB and associate it with the socket.
|
|
*/
|
|
int
|
|
in_pcballoc(so, pcbinfo, td)
|
|
struct socket *so;
|
|
struct inpcbinfo *pcbinfo;
|
|
struct thread *td;
|
|
{
|
|
register struct inpcb *inp;
|
|
#ifdef IPSEC
|
|
int error;
|
|
#endif
|
|
|
|
inp = zalloc(pcbinfo->ipi_zone);
|
|
if (inp == NULL)
|
|
return (ENOBUFS);
|
|
bzero((caddr_t)inp, sizeof(*inp));
|
|
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
|
|
inp->inp_pcbinfo = pcbinfo;
|
|
inp->inp_socket = so;
|
|
#ifdef IPSEC
|
|
error = ipsec_init_policy(so, &inp->inp_sp);
|
|
if (error != 0) {
|
|
zfree(pcbinfo->ipi_zone, inp);
|
|
return error;
|
|
}
|
|
#endif /*IPSEC*/
|
|
#if defined(INET6)
|
|
if (INP_SOCKAF(so) == AF_INET6 && !ip6_mapped_addr_on)
|
|
inp->inp_flags |= IN6P_IPV6_V6ONLY;
|
|
#endif
|
|
LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
|
|
pcbinfo->ipi_count++;
|
|
so->so_pcb = (caddr_t)inp;
|
|
#ifdef INET6
|
|
if (ip6_auto_flowlabel)
|
|
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
in_pcbbind(inp, nam, td)
|
|
register struct inpcb *inp;
|
|
struct sockaddr *nam;
|
|
struct thread *td;
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
register struct socket *so = inp->inp_socket;
|
|
unsigned short *lastport;
|
|
struct sockaddr_in *sin;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
u_short lport = 0;
|
|
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
|
|
int error, prison = 0;
|
|
|
|
if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
|
|
return (EADDRNOTAVAIL);
|
|
if (inp->inp_lport || inp->inp_laddr.s_addr != INADDR_ANY)
|
|
return (EINVAL);
|
|
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
|
|
wild = 1;
|
|
if (nam) {
|
|
sin = (struct sockaddr_in *)nam;
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
#ifdef notdef
|
|
/*
|
|
* We should check the family, but old programs
|
|
* incorrectly fail to initialize it.
|
|
*/
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
#endif
|
|
if (sin->sin_addr.s_addr != INADDR_ANY)
|
|
if (prison_ip(p->p_ucred, 0, &sin->sin_addr.s_addr))
|
|
return(EINVAL);
|
|
lport = sin->sin_port;
|
|
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
|
|
/*
|
|
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
|
|
* allow complete duplication of binding if
|
|
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
|
|
* and a multicast address is bound on both
|
|
* new and duplicated sockets.
|
|
*/
|
|
if (so->so_options & SO_REUSEADDR)
|
|
reuseport = SO_REUSEADDR|SO_REUSEPORT;
|
|
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
|
|
sin->sin_port = 0; /* yech... */
|
|
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
|
|
if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
if (lport) {
|
|
struct inpcb *t;
|
|
/* GROSS */
|
|
if (ntohs(lport) < IPPORT_RESERVED && p &&
|
|
suser_xxx(0, p, PRISON_ROOT))
|
|
return (EACCES);
|
|
if (p && jailed(p->p_ucred))
|
|
prison = 1;
|
|
if (so->so_cred->cr_uid != 0 &&
|
|
!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
|
|
t = in_pcblookup_local(inp->inp_pcbinfo,
|
|
sin->sin_addr, lport,
|
|
prison ? 0 : INPLOOKUP_WILDCARD);
|
|
if (t &&
|
|
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
|
|
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
|
|
(t->inp_socket->so_options &
|
|
SO_REUSEPORT) == 0) &&
|
|
(so->so_cred->cr_uid !=
|
|
t->inp_socket->so_cred->cr_uid)) {
|
|
#if defined(INET6)
|
|
if (ntohl(sin->sin_addr.s_addr) !=
|
|
INADDR_ANY ||
|
|
ntohl(t->inp_laddr.s_addr) !=
|
|
INADDR_ANY ||
|
|
INP_SOCKAF(so) ==
|
|
INP_SOCKAF(t->inp_socket))
|
|
#endif /* defined(INET6) */
|
|
return (EADDRINUSE);
|
|
}
|
|
}
|
|
if (prison &&
|
|
prison_ip(p->p_ucred, 0, &sin->sin_addr.s_addr))
|
|
return (EADDRNOTAVAIL);
|
|
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
|
|
lport, prison ? 0 : wild);
|
|
if (t &&
|
|
(reuseport & t->inp_socket->so_options) == 0) {
|
|
#if defined(INET6)
|
|
if (ntohl(sin->sin_addr.s_addr) !=
|
|
INADDR_ANY ||
|
|
ntohl(t->inp_laddr.s_addr) !=
|
|
INADDR_ANY ||
|
|
INP_SOCKAF(so) ==
|
|
INP_SOCKAF(t->inp_socket))
|
|
#endif /* defined(INET6) */
|
|
return (EADDRINUSE);
|
|
}
|
|
}
|
|
inp->inp_laddr = sin->sin_addr;
|
|
}
|
|
if (lport == 0) {
|
|
ushort first, last;
|
|
int count;
|
|
|
|
if (inp->inp_laddr.s_addr != INADDR_ANY)
|
|
if (prison_ip(p->p_ucred, 0, &inp->inp_laddr.s_addr )) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
return (EINVAL);
|
|
}
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
|
|
if (inp->inp_flags & INP_HIGHPORT) {
|
|
first = ipport_hifirstauto; /* sysctl */
|
|
last = ipport_hilastauto;
|
|
lastport = &pcbinfo->lasthi;
|
|
} else if (inp->inp_flags & INP_LOWPORT) {
|
|
if (p && (error = suser_xxx(0, p, PRISON_ROOT))) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
return error;
|
|
}
|
|
first = ipport_lowfirstauto; /* 1023 */
|
|
last = ipport_lowlastauto; /* 600 */
|
|
lastport = &pcbinfo->lastlow;
|
|
} else {
|
|
first = ipport_firstauto; /* sysctl */
|
|
last = ipport_lastauto;
|
|
lastport = &pcbinfo->lastport;
|
|
}
|
|
/*
|
|
* Simple check to ensure all ports are not used up causing
|
|
* a deadlock here.
|
|
*
|
|
* We split the two cases (up and down) so that the direction
|
|
* is not being tested on each round of the loop.
|
|
*/
|
|
if (first > last) {
|
|
/*
|
|
* counting down
|
|
*/
|
|
count = first - last;
|
|
|
|
do {
|
|
if (count-- < 0) { /* completely used? */
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
--*lastport;
|
|
if (*lastport > first || *lastport < last)
|
|
*lastport = first;
|
|
lport = htons(*lastport);
|
|
} while (in_pcblookup_local(pcbinfo,
|
|
inp->inp_laddr, lport, wild));
|
|
} else {
|
|
/*
|
|
* counting up
|
|
*/
|
|
count = last - first;
|
|
|
|
do {
|
|
if (count-- < 0) { /* completely used? */
|
|
/*
|
|
* Undo any address bind that may have
|
|
* occurred above.
|
|
*/
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
++*lastport;
|
|
if (*lastport < first || *lastport > last)
|
|
*lastport = first;
|
|
lport = htons(*lastport);
|
|
} while (in_pcblookup_local(pcbinfo,
|
|
inp->inp_laddr, lport, wild));
|
|
}
|
|
}
|
|
inp->inp_lport = lport;
|
|
if (prison_ip(p->p_ucred, 0, &inp->inp_laddr.s_addr)) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
inp->inp_lport = 0;
|
|
return(EINVAL);
|
|
}
|
|
if (in_pcbinshash(inp) != 0) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
inp->inp_lport = 0;
|
|
return (EAGAIN);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Transform old in_pcbconnect() into an inner subroutine for new
|
|
* in_pcbconnect(): Do some validity-checking on the remote
|
|
* address (in mbuf 'nam') and then determine local host address
|
|
* (i.e., which interface) to use to access that remote host.
|
|
*
|
|
* This preserves definition of in_pcbconnect(), while supporting a
|
|
* slightly different version for T/TCP. (This is more than
|
|
* a bit of a kludge, but cleaning up the internal interfaces would
|
|
* have forced minor changes in every protocol).
|
|
*/
|
|
|
|
int
|
|
in_pcbladdr(inp, nam, plocal_sin)
|
|
register struct inpcb *inp;
|
|
struct sockaddr *nam;
|
|
struct sockaddr_in **plocal_sin;
|
|
{
|
|
struct in_ifaddr *ia;
|
|
register struct sockaddr_in *sin = (struct sockaddr_in *)nam;
|
|
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
if (sin->sin_port == 0)
|
|
return (EADDRNOTAVAIL);
|
|
if (!TAILQ_EMPTY(&in_ifaddrhead)) {
|
|
/*
|
|
* If the destination address is INADDR_ANY,
|
|
* use the primary local address.
|
|
* If the supplied address is INADDR_BROADCAST,
|
|
* and the primary interface supports broadcast,
|
|
* choose the broadcast address for that interface.
|
|
*/
|
|
if (sin->sin_addr.s_addr == INADDR_ANY)
|
|
sin->sin_addr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
|
|
else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST &&
|
|
(TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST))
|
|
sin->sin_addr = satosin(&TAILQ_FIRST(&in_ifaddrhead)->ia_broadaddr)->sin_addr;
|
|
}
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
register struct route *ro;
|
|
|
|
ia = (struct in_ifaddr *)0;
|
|
/*
|
|
* If route is known or can be allocated now,
|
|
* our src addr is taken from the i/f, else punt.
|
|
*/
|
|
ro = &inp->inp_route;
|
|
if (ro->ro_rt &&
|
|
(satosin(&ro->ro_dst)->sin_addr.s_addr !=
|
|
sin->sin_addr.s_addr ||
|
|
inp->inp_socket->so_options & SO_DONTROUTE)) {
|
|
RTFREE(ro->ro_rt);
|
|
ro->ro_rt = (struct rtentry *)0;
|
|
}
|
|
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0 && /*XXX*/
|
|
(ro->ro_rt == (struct rtentry *)0 ||
|
|
ro->ro_rt->rt_ifp == (struct ifnet *)0)) {
|
|
/* No route yet, so try to acquire one */
|
|
ro->ro_dst.sa_family = AF_INET;
|
|
ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
|
|
((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
|
|
sin->sin_addr;
|
|
rtalloc(ro);
|
|
}
|
|
/*
|
|
* If we found a route, use the address
|
|
* corresponding to the outgoing interface
|
|
* unless it is the loopback (in case a route
|
|
* to our address on another net goes to loopback).
|
|
*/
|
|
if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK))
|
|
ia = ifatoia(ro->ro_rt->rt_ifa);
|
|
if (ia == 0) {
|
|
u_short fport = sin->sin_port;
|
|
|
|
sin->sin_port = 0;
|
|
ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin)));
|
|
if (ia == 0)
|
|
ia = ifatoia(ifa_ifwithnet(sintosa(sin)));
|
|
sin->sin_port = fport;
|
|
if (ia == 0)
|
|
ia = TAILQ_FIRST(&in_ifaddrhead);
|
|
if (ia == 0)
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
/*
|
|
* If the destination address is multicast and an outgoing
|
|
* interface has been set as a multicast option, use the
|
|
* address of that interface as our source address.
|
|
*/
|
|
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
|
|
inp->inp_moptions != NULL) {
|
|
struct ip_moptions *imo;
|
|
struct ifnet *ifp;
|
|
|
|
imo = inp->inp_moptions;
|
|
if (imo->imo_multicast_ifp != NULL) {
|
|
ifp = imo->imo_multicast_ifp;
|
|
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
|
|
if (ia->ia_ifp == ifp)
|
|
break;
|
|
if (ia == 0)
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
}
|
|
/*
|
|
* Don't do pcblookup call here; return interface in plocal_sin
|
|
* and exit to caller, that will do the lookup.
|
|
*/
|
|
*plocal_sin = &ia->ia_addr;
|
|
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Outer subroutine:
|
|
* Connect from a socket to a specified address.
|
|
* Both address and port must be specified in argument sin.
|
|
* If don't have a local address for this socket yet,
|
|
* then pick one.
|
|
*/
|
|
int
|
|
in_pcbconnect(inp, nam, td)
|
|
register struct inpcb *inp;
|
|
struct sockaddr *nam;
|
|
struct thread *td;
|
|
{
|
|
struct sockaddr_in *ifaddr;
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
|
|
struct sockaddr_in sa;
|
|
struct ucred *cred;
|
|
int error;
|
|
|
|
cred = inp->inp_socket->so_cred;
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY && jailed(cred)) {
|
|
bzero(&sa, sizeof (sa));
|
|
sa.sin_addr.s_addr = htonl(cred->cr_prison->pr_ip);
|
|
sa.sin_len=sizeof (sa);
|
|
sa.sin_family = AF_INET;
|
|
error = in_pcbbind(inp, (struct sockaddr *)&sa, td);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
/*
|
|
* Call inner routine, to assign local interface address.
|
|
*/
|
|
if ((error = in_pcbladdr(inp, nam, &ifaddr)) != 0)
|
|
return(error);
|
|
|
|
if (in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port,
|
|
inp->inp_laddr.s_addr ? inp->inp_laddr : ifaddr->sin_addr,
|
|
inp->inp_lport, 0, NULL) != NULL) {
|
|
return (EADDRINUSE);
|
|
}
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
if (inp->inp_lport == 0) {
|
|
error = in_pcbbind(inp, (struct sockaddr *)0, td);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
inp->inp_laddr = ifaddr->sin_addr;
|
|
}
|
|
inp->inp_faddr = sin->sin_addr;
|
|
inp->inp_fport = sin->sin_port;
|
|
in_pcbrehash(inp);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
in_pcbdisconnect(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
|
|
inp->inp_faddr.s_addr = INADDR_ANY;
|
|
inp->inp_fport = 0;
|
|
in_pcbrehash(inp);
|
|
if (inp->inp_socket->so_state & SS_NOFDREF)
|
|
in_pcbdetach(inp);
|
|
}
|
|
|
|
void
|
|
in_pcbdetach(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
struct socket *so = inp->inp_socket;
|
|
struct inpcbinfo *ipi = inp->inp_pcbinfo;
|
|
|
|
#ifdef IPSEC
|
|
ipsec4_delete_pcbpolicy(inp);
|
|
#endif /*IPSEC*/
|
|
inp->inp_gencnt = ++ipi->ipi_gencnt;
|
|
in_pcbremlists(inp);
|
|
so->so_pcb = 0;
|
|
sotryfree(so);
|
|
if (inp->inp_options)
|
|
(void)m_free(inp->inp_options);
|
|
if (inp->inp_route.ro_rt)
|
|
rtfree(inp->inp_route.ro_rt);
|
|
ip_freemoptions(inp->inp_moptions);
|
|
inp->inp_vflag = 0;
|
|
zfree(ipi->ipi_zone, inp);
|
|
}
|
|
|
|
/*
|
|
* The calling convention of in_setsockaddr() and in_setpeeraddr() was
|
|
* modified to match the pru_sockaddr() and pru_peeraddr() entry points
|
|
* in struct pr_usrreqs, so that protocols can just reference then directly
|
|
* without the need for a wrapper function. The socket must have a valid
|
|
* (i.e., non-nil) PCB, but it should be impossible to get an invalid one
|
|
* except through a kernel programming error, so it is acceptable to panic
|
|
* (or in this case trap) if the PCB is invalid. (Actually, we don't trap
|
|
* because there actually /is/ a programming error somewhere... XXX)
|
|
*/
|
|
int
|
|
in_setsockaddr(so, nam)
|
|
struct socket *so;
|
|
struct sockaddr **nam;
|
|
{
|
|
int s;
|
|
register struct inpcb *inp;
|
|
register struct sockaddr_in *sin;
|
|
|
|
/*
|
|
* Do the malloc first in case it blocks.
|
|
*/
|
|
MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
|
|
M_WAITOK | M_ZERO);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
|
|
s = splnet();
|
|
inp = sotoinpcb(so);
|
|
if (!inp) {
|
|
splx(s);
|
|
free(sin, M_SONAME);
|
|
return ECONNRESET;
|
|
}
|
|
sin->sin_port = inp->inp_lport;
|
|
sin->sin_addr = inp->inp_laddr;
|
|
splx(s);
|
|
|
|
*nam = (struct sockaddr *)sin;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
in_setpeeraddr(so, nam)
|
|
struct socket *so;
|
|
struct sockaddr **nam;
|
|
{
|
|
int s;
|
|
struct inpcb *inp;
|
|
register struct sockaddr_in *sin;
|
|
|
|
/*
|
|
* Do the malloc first in case it blocks.
|
|
*/
|
|
MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
|
|
M_WAITOK | M_ZERO);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
|
|
s = splnet();
|
|
inp = sotoinpcb(so);
|
|
if (!inp) {
|
|
splx(s);
|
|
free(sin, M_SONAME);
|
|
return ECONNRESET;
|
|
}
|
|
sin->sin_port = inp->inp_fport;
|
|
sin->sin_addr = inp->inp_faddr;
|
|
splx(s);
|
|
|
|
*nam = (struct sockaddr *)sin;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
in_pcbnotifyall(head, faddr, errno, notify)
|
|
struct inpcbhead *head;
|
|
struct in_addr faddr;
|
|
int errno;
|
|
void (*notify) __P((struct inpcb *, int));
|
|
{
|
|
struct inpcb *inp, *ninp;
|
|
int s;
|
|
|
|
s = splnet();
|
|
for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
|
|
ninp = LIST_NEXT(inp, inp_list);
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != faddr.s_addr ||
|
|
inp->inp_socket == NULL)
|
|
continue;
|
|
(*notify)(inp, errno);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
in_pcbpurgeif0(head, ifp)
|
|
struct inpcb *head;
|
|
struct ifnet *ifp;
|
|
{
|
|
struct inpcb *inp;
|
|
struct ip_moptions *imo;
|
|
int i, gap;
|
|
|
|
for (inp = head; inp != NULL; inp = LIST_NEXT(inp, inp_list)) {
|
|
imo = inp->inp_moptions;
|
|
if ((inp->inp_vflag & INP_IPV4) &&
|
|
imo != NULL) {
|
|
/*
|
|
* Unselect the outgoing interface if it is being
|
|
* detached.
|
|
*/
|
|
if (imo->imo_multicast_ifp == ifp)
|
|
imo->imo_multicast_ifp = NULL;
|
|
|
|
/*
|
|
* Drop multicast group membership if we joined
|
|
* through the interface being detached.
|
|
*/
|
|
for (i = 0, gap = 0; i < imo->imo_num_memberships;
|
|
i++) {
|
|
if (imo->imo_membership[i]->inm_ifp == ifp) {
|
|
in_delmulti(imo->imo_membership[i]);
|
|
gap++;
|
|
} else if (gap != 0)
|
|
imo->imo_membership[i - gap] =
|
|
imo->imo_membership[i];
|
|
}
|
|
imo->imo_num_memberships -= gap;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for alternatives when higher level complains
|
|
* about service problems. For now, invalidate cached
|
|
* routing information. If the route was created dynamically
|
|
* (by a redirect), time to try a default gateway again.
|
|
*/
|
|
void
|
|
in_losing(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
register struct rtentry *rt;
|
|
struct rt_addrinfo info;
|
|
|
|
if ((rt = inp->inp_route.ro_rt)) {
|
|
bzero((caddr_t)&info, sizeof(info));
|
|
info.rti_flags = rt->rt_flags;
|
|
info.rti_info[RTAX_DST] = rt_key(rt);
|
|
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
|
|
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
|
|
rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);
|
|
if (rt->rt_flags & RTF_DYNAMIC)
|
|
(void) rtrequest1(RTM_DELETE, &info, NULL);
|
|
inp->inp_route.ro_rt = NULL;
|
|
rtfree(rt);
|
|
/*
|
|
* A new route can be allocated
|
|
* the next time output is attempted.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After a routing change, flush old routing
|
|
* and allocate a (hopefully) better one.
|
|
*/
|
|
void
|
|
in_rtchange(inp, errno)
|
|
register struct inpcb *inp;
|
|
int errno;
|
|
{
|
|
if (inp->inp_route.ro_rt) {
|
|
rtfree(inp->inp_route.ro_rt);
|
|
inp->inp_route.ro_rt = 0;
|
|
/*
|
|
* A new route can be allocated the next time
|
|
* output is attempted.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Lookup a PCB based on the local address and port.
|
|
*/
|
|
struct inpcb *
|
|
in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay)
|
|
struct inpcbinfo *pcbinfo;
|
|
struct in_addr laddr;
|
|
u_int lport_arg;
|
|
int wild_okay;
|
|
{
|
|
register struct inpcb *inp;
|
|
int matchwild = 3, wildcard;
|
|
u_short lport = lport_arg;
|
|
|
|
if (!wild_okay) {
|
|
struct inpcbhead *head;
|
|
/*
|
|
* Look for an unconnected (wildcard foreign addr) PCB that
|
|
* matches the local address and port we're looking for.
|
|
*/
|
|
head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == INADDR_ANY &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* Found.
|
|
*/
|
|
return (inp);
|
|
}
|
|
}
|
|
/*
|
|
* Not found.
|
|
*/
|
|
return (NULL);
|
|
} else {
|
|
struct inpcbporthead *porthash;
|
|
struct inpcbport *phd;
|
|
struct inpcb *match = NULL;
|
|
/*
|
|
* Best fit PCB lookup.
|
|
*
|
|
* First see if this local port is in use by looking on the
|
|
* port hash list.
|
|
*/
|
|
porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
|
|
pcbinfo->porthashmask)];
|
|
LIST_FOREACH(phd, porthash, phd_hash) {
|
|
if (phd->phd_port == lport)
|
|
break;
|
|
}
|
|
if (phd != NULL) {
|
|
/*
|
|
* Port is in use by one or more PCBs. Look for best
|
|
* fit.
|
|
*/
|
|
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
|
|
wildcard = 0;
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
if (inp->inp_laddr.s_addr != INADDR_ANY) {
|
|
if (laddr.s_addr == INADDR_ANY)
|
|
wildcard++;
|
|
else if (inp->inp_laddr.s_addr != laddr.s_addr)
|
|
continue;
|
|
} else {
|
|
if (laddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
}
|
|
if (wildcard < matchwild) {
|
|
match = inp;
|
|
matchwild = wildcard;
|
|
if (matchwild == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (match);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Lookup PCB in hash list.
|
|
*/
|
|
struct inpcb *
|
|
in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard,
|
|
ifp)
|
|
struct inpcbinfo *pcbinfo;
|
|
struct in_addr faddr, laddr;
|
|
u_int fport_arg, lport_arg;
|
|
int wildcard;
|
|
struct ifnet *ifp;
|
|
{
|
|
struct inpcbhead *head;
|
|
register struct inpcb *inp;
|
|
u_short fport = fport_arg, lport = lport_arg;
|
|
|
|
/*
|
|
* First look for an exact match.
|
|
*/
|
|
head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == faddr.s_addr &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_fport == fport &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* Found.
|
|
*/
|
|
return (inp);
|
|
}
|
|
}
|
|
if (wildcard) {
|
|
struct inpcb *local_wild = NULL;
|
|
#if defined(INET6)
|
|
struct inpcb *local_wild_mapped = NULL;
|
|
#endif /* defined(INET6) */
|
|
|
|
head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == INADDR_ANY &&
|
|
inp->inp_lport == lport) {
|
|
if (ifp && ifp->if_type == IFT_FAITH &&
|
|
(inp->inp_flags & INP_FAITH) == 0)
|
|
continue;
|
|
if (inp->inp_laddr.s_addr == laddr.s_addr)
|
|
return (inp);
|
|
else if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
#if defined(INET6)
|
|
if (INP_CHECK_SOCKAF(inp->inp_socket,
|
|
AF_INET6))
|
|
local_wild_mapped = inp;
|
|
else
|
|
#endif /* defined(INET6) */
|
|
local_wild = inp;
|
|
}
|
|
}
|
|
}
|
|
#if defined(INET6)
|
|
if (local_wild == NULL)
|
|
return (local_wild_mapped);
|
|
#endif /* defined(INET6) */
|
|
return (local_wild);
|
|
}
|
|
|
|
/*
|
|
* Not found.
|
|
*/
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Insert PCB onto various hash lists.
|
|
*/
|
|
int
|
|
in_pcbinshash(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
struct inpcbhead *pcbhash;
|
|
struct inpcbporthead *pcbporthash;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct inpcbport *phd;
|
|
u_int32_t hashkey_faddr;
|
|
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6)
|
|
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
|
|
else
|
|
#endif /* INET6 */
|
|
hashkey_faddr = inp->inp_faddr.s_addr;
|
|
|
|
pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
|
|
inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
|
|
|
|
pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport,
|
|
pcbinfo->porthashmask)];
|
|
|
|
/*
|
|
* Go through port list and look for a head for this lport.
|
|
*/
|
|
LIST_FOREACH(phd, pcbporthash, phd_hash) {
|
|
if (phd->phd_port == inp->inp_lport)
|
|
break;
|
|
}
|
|
/*
|
|
* If none exists, malloc one and tack it on.
|
|
*/
|
|
if (phd == NULL) {
|
|
MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
|
|
if (phd == NULL) {
|
|
return (ENOBUFS); /* XXX */
|
|
}
|
|
phd->phd_port = inp->inp_lport;
|
|
LIST_INIT(&phd->phd_pcblist);
|
|
LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
|
|
}
|
|
inp->inp_phd = phd;
|
|
LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
|
|
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Move PCB to the proper hash bucket when { faddr, fport } have been
|
|
* changed. NOTE: This does not handle the case of the lport changing (the
|
|
* hashed port list would have to be updated as well), so the lport must
|
|
* not change after in_pcbinshash() has been called.
|
|
*/
|
|
void
|
|
in_pcbrehash(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
struct inpcbhead *head;
|
|
u_int32_t hashkey_faddr;
|
|
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6)
|
|
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
|
|
else
|
|
#endif /* INET6 */
|
|
hashkey_faddr = inp->inp_faddr.s_addr;
|
|
|
|
head = &inp->inp_pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
|
|
inp->inp_lport, inp->inp_fport, inp->inp_pcbinfo->hashmask)];
|
|
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_INSERT_HEAD(head, inp, inp_hash);
|
|
}
|
|
|
|
/*
|
|
* Remove PCB from various lists.
|
|
*/
|
|
void
|
|
in_pcbremlists(inp)
|
|
struct inpcb *inp;
|
|
{
|
|
inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt;
|
|
if (inp->inp_lport) {
|
|
struct inpcbport *phd = inp->inp_phd;
|
|
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_REMOVE(inp, inp_portlist);
|
|
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
|
|
LIST_REMOVE(phd, phd_hash);
|
|
free(phd, M_PCB);
|
|
}
|
|
}
|
|
LIST_REMOVE(inp, inp_list);
|
|
inp->inp_pcbinfo->ipi_count--;
|
|
}
|
|
|
|
int
|
|
prison_xinpcb(struct proc *p, struct inpcb *inp)
|
|
{
|
|
if (!jailed(p->p_ucred))
|
|
return (0);
|
|
if (ntohl(inp->inp_laddr.s_addr) == p->p_ucred->cr_prison->pr_ip)
|
|
return (0);
|
|
return (1);
|
|
}
|