freebsd-dev/sys/powerpc/booke/machdep.c
Rafal Jaworowski 0bd1aed098 MFC r203924:
Call the proper linkup routine in PowerPC Book-E machdep.

Submitted by:	attilio
2010-02-24 20:20:02 +00:00

1021 lines
24 KiB
C

/*-
* Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (C) 2001 Benno Rice
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $
*/
/*-
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
#include "opt_msgbuf.h"
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/exec.h>
#include <sys/ktr.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/sysent.h>
#include <sys/imgact.h>
#include <sys/msgbuf.h>
#include <sys/ptrace.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_page.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <machine/cpu.h>
#include <machine/kdb.h>
#include <machine/reg.h>
#include <machine/vmparam.h>
#include <machine/spr.h>
#include <machine/hid.h>
#include <machine/psl.h>
#include <machine/trap.h>
#include <machine/md_var.h>
#include <machine/mmuvar.h>
#include <machine/sigframe.h>
#include <machine/metadata.h>
#include <machine/bootinfo.h>
#include <machine/platform.h>
#include <sys/linker.h>
#include <sys/reboot.h>
#include <powerpc/mpc85xx/ocpbus.h>
#include <powerpc/mpc85xx/mpc85xx.h>
#ifdef DDB
extern vm_offset_t ksym_start, ksym_end;
#endif
#ifdef DEBUG
#define debugf(fmt, args...) printf(fmt, ##args)
#else
#define debugf(fmt, args...)
#endif
extern unsigned char kernel_text[];
extern unsigned char _etext[];
extern unsigned char _edata[];
extern unsigned char __bss_start[];
extern unsigned char __sbss_start[];
extern unsigned char __sbss_end[];
extern unsigned char _end[];
extern void dcache_enable(void);
extern void dcache_inval(void);
extern void icache_enable(void);
extern void icache_inval(void);
struct kva_md_info kmi;
struct pcpu __pcpu[MAXCPU];
struct trapframe frame0;
int cold = 1;
long realmem = 0;
long Maxmem = 0;
struct bootinfo *bootinfo;
char machine[] = "powerpc";
SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");
int cacheline_size = 32;
SYSCTL_INT(_machdep, CPU_CACHELINE, cacheline_size,
CTLFLAG_RD, &cacheline_size, 0, "");
int hw_direct_map = 0;
static void cpu_e500_startup(void *);
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_e500_startup, NULL);
void print_kernel_section_addr(void);
void print_bootinfo(void);
void print_kenv(void);
u_int e500_init(u_int32_t, u_int32_t, void *);
static void
cpu_e500_startup(void *dummy)
{
int indx, size;
/* Initialise the decrementer-based clock. */
decr_init();
/* Good {morning,afternoon,evening,night}. */
cpu_setup(PCPU_GET(cpuid));
printf("real memory = %ld (%ld MB)\n", ptoa(physmem),
ptoa(physmem) / 1048576);
realmem = physmem;
/* Display any holes after the first chunk of extended memory. */
if (bootverbose) {
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
size = phys_avail[indx + 1] - phys_avail[indx];
printf("0x%08x - 0x%08x, %d bytes (%d pages)\n",
phys_avail[indx], phys_avail[indx + 1] - 1,
size, size / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ld (%ld MB)\n", ptoa(cnt.v_free_count),
ptoa(cnt.v_free_count) / 1048576);
/* Set up buffers, so they can be used to read disk labels. */
bufinit();
vm_pager_bufferinit();
}
static char *
kenv_next(char *cp)
{
if (cp != NULL) {
while (*cp != 0)
cp++;
cp++;
if (*cp == 0)
cp = NULL;
}
return (cp);
}
void
print_kenv(void)
{
int len;
char *cp;
debugf("loader passed (static) kenv:\n");
if (kern_envp == NULL) {
debugf(" no env, null ptr\n");
return;
}
debugf(" kern_envp = 0x%08x\n", (u_int32_t)kern_envp);
len = 0;
for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
debugf(" %x %s\n", (u_int32_t)cp, cp);
}
void
print_bootinfo(void)
{
struct bi_mem_region *mr;
struct bi_eth_addr *eth;
int i, j;
debugf("bootinfo:\n");
if (bootinfo == NULL) {
debugf(" no bootinfo, null ptr\n");
return;
}
debugf(" version = 0x%08x\n", bootinfo->bi_version);
debugf(" ccsrbar = 0x%08x\n", bootinfo->bi_bar_base);
debugf(" cpu_clk = 0x%08x\n", bootinfo->bi_cpu_clk);
debugf(" bus_clk = 0x%08x\n", bootinfo->bi_bus_clk);
debugf(" mem regions:\n");
mr = (struct bi_mem_region *)bootinfo->bi_data;
for (i = 0; i < bootinfo->bi_mem_reg_no; i++, mr++)
debugf(" #%d, base = 0x%08x, size = 0x%08x\n", i,
mr->mem_base, mr->mem_size);
debugf(" eth addresses:\n");
eth = (struct bi_eth_addr *)mr;
for (i = 0; i < bootinfo->bi_eth_addr_no; i++, eth++) {
debugf(" #%d, addr = ", i);
for (j = 0; j < 6; j++)
debugf("%02x ", eth->mac_addr[j]);
debugf("\n");
}
}
void
print_kernel_section_addr(void)
{
debugf("kernel image addresses:\n");
debugf(" kernel_text = 0x%08x\n", (uint32_t)kernel_text);
debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext);
debugf(" _edata = 0x%08x\n", (uint32_t)_edata);
debugf(" __sbss_start = 0x%08x\n", (uint32_t)__sbss_start);
debugf(" __sbss_end = 0x%08x\n", (uint32_t)__sbss_end);
debugf(" __sbss_start = 0x%08x\n", (uint32_t)__bss_start);
debugf(" _end = 0x%08x\n", (uint32_t)_end);
}
struct bi_mem_region *
bootinfo_mr(void)
{
return ((struct bi_mem_region *)bootinfo->bi_data);
}
struct bi_eth_addr *
bootinfo_eth(void)
{
struct bi_mem_region *mr;
struct bi_eth_addr *eth;
int i;
/* Advance to the eth section */
mr = bootinfo_mr();
for (i = 0; i < bootinfo->bi_mem_reg_no; i++, mr++)
;
eth = (struct bi_eth_addr *)mr;
return (eth);
}
u_int
e500_init(u_int32_t startkernel, u_int32_t endkernel, void *mdp)
{
struct pcpu *pc;
void *kmdp;
vm_offset_t end;
uint32_t csr;
kmdp = NULL;
end = endkernel;
/*
* Parse metadata and fetch parameters. This must be done as the first
* step as we need bootinfo data to at least init the console
*/
if (mdp != NULL) {
preload_metadata = mdp;
kmdp = preload_search_by_type("elf kernel");
if (kmdp != NULL) {
bootinfo = (struct bootinfo *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_BOOTINFO);
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
#ifdef DDB
ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
#endif
}
} else {
/*
* We should scream but how? - without CCSR bar (in bootinfo)
* cannot even output anything...
*/
/*
* FIXME add return value and handle in the locore so we can
* return to the loader maybe? (this seems not very easy to
* restore everything as the TLB have all been reprogrammed
* in the locore etc...)
*/
while(1);
}
/* Initialize TLB1 handling */
tlb1_init(bootinfo->bi_bar_base);
/* Reset Time Base */
mttb(0);
/* Init params/tunables that can be overridden by the loader. */
init_param1();
/* Start initializing proc0 and thread0. */
proc_linkup0(&proc0, &thread0);
thread0.td_frame = &frame0;
/* Set up per-cpu data and store the pointer in SPR general 0. */
pc = &__pcpu[0];
pcpu_init(pc, 0, sizeof(struct pcpu));
pc->pc_curthread = &thread0;
__asm __volatile("mtsprg 0, %0" :: "r"(pc));
/* Initialize system mutexes. */
mutex_init();
/* Initialize the console before printing anything. */
cninit();
/* Print out some debug info... */
debugf("e500_init: console initialized\n");
debugf(" arg1 startkernel = 0x%08x\n", startkernel);
debugf(" arg2 endkernel = 0x%08x\n", endkernel);
debugf(" arg3 mdp = 0x%08x\n", (u_int32_t)mdp);
debugf(" end = 0x%08x\n", (u_int32_t)end);
debugf(" boothowto = 0x%08x\n", boothowto);
debugf(" kernel ccsrbar = 0x%08x\n", CCSRBAR_VA);
debugf(" MSR = 0x%08x\n", mfmsr());
debugf(" HID0 = 0x%08x\n", mfspr(SPR_HID0));
debugf(" HID1 = 0x%08x\n", mfspr(SPR_HID1));
debugf(" BUCSR = 0x%08x\n", mfspr(SPR_BUCSR));
__asm __volatile("msync; isync");
csr = ccsr_read4(OCP85XX_L2CTL);
debugf(" L2CTL = 0x%08x\n", csr);
print_bootinfo();
print_kernel_section_addr();
print_kenv();
//tlb1_print_entries();
//tlb1_print_tlbentries();
kdb_init();
#ifdef KDB
if (boothowto & RB_KDB)
kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
#endif
/* Initialise platform module */
platform_probe_and_attach();
/* Initialise virtual memory. */
pmap_mmu_install(MMU_TYPE_BOOKE, 0);
pmap_bootstrap(startkernel, end);
debugf("MSR = 0x%08x\n", mfmsr());
//tlb1_print_entries();
//tlb1_print_tlbentries();
/* Initialize params/tunables that are derived from memsize. */
init_param2(physmem);
/* Finish setting up thread0. */
thread0.td_pcb = (struct pcb *)
((thread0.td_kstack + thread0.td_kstack_pages * PAGE_SIZE -
sizeof(struct pcb)) & ~15);
bzero((void *)thread0.td_pcb, sizeof(struct pcb));
pc->pc_curpcb = thread0.td_pcb;
/* Initialise the message buffer. */
msgbufinit(msgbufp, MSGBUF_SIZE);
/* Enable Machine Check interrupt. */
mtmsr(mfmsr() | PSL_ME);
isync();
/* Enable D-cache if applicable */
csr = mfspr(SPR_L1CSR0);
if ((csr & L1CSR0_DCE) == 0) {
dcache_inval();
dcache_enable();
}
csr = mfspr(SPR_L1CSR0);
if ((boothowto & RB_VERBOSE) != 0 || (csr & L1CSR0_DCE) == 0)
printf("L1 D-cache %sabled\n",
(csr & L1CSR0_DCE) ? "en" : "dis");
/* Enable L1 I-cache if applicable. */
csr = mfspr(SPR_L1CSR1);
if ((csr & L1CSR1_ICE) == 0) {
icache_inval();
icache_enable();
}
csr = mfspr(SPR_L1CSR1);
if ((boothowto & RB_VERBOSE) != 0 || (csr & L1CSR1_ICE) == 0)
printf("L1 I-cache %sabled\n",
(csr & L1CSR1_ICE) ? "en" : "dis");
debugf("e500_init: SP = 0x%08x\n", ((uintptr_t)thread0.td_pcb - 16) & ~15);
debugf("e500_init: e\n");
return (((uintptr_t)thread0.td_pcb - 16) & ~15);
}
#define RES_GRANULE 32
extern uint32_t tlb0_miss_locks[];
/* Initialise a struct pcpu. */
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t sz)
{
pcpu->pc_tid_next = TID_MIN;
#ifdef SMP
uint32_t *ptr;
int words_per_gran = RES_GRANULE / sizeof(uint32_t);
ptr = &tlb0_miss_locks[cpuid * words_per_gran];
pcpu->pc_booke_tlb_lock = ptr;
*ptr = MTX_UNOWNED;
*(ptr + 1) = 0; /* recurse counter */
#endif
}
/* Set set up registers on exec. */
void
exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
{
struct trapframe *tf;
struct ps_strings arginfo;
tf = trapframe(td);
bzero(tf, sizeof *tf);
tf->fixreg[1] = -roundup(-stack + 8, 16);
/*
* XXX Machine-independent code has already copied arguments and
* XXX environment to userland. Get them back here.
*/
(void)copyin((char *)PS_STRINGS, &arginfo, sizeof(arginfo));
/*
* Set up arguments for _start():
* _start(argc, argv, envp, obj, cleanup, ps_strings);
*
* Notes:
* - obj and cleanup are the auxilliary and termination
* vectors. They are fixed up by ld.elf_so.
* - ps_strings is a NetBSD extention, and will be
* ignored by executables which are strictly
* compliant with the SVR4 ABI.
*
* XXX We have to set both regs and retval here due to different
* XXX calling convention in trap.c and init_main.c.
*/
/*
* XXX PG: these get overwritten in the syscall return code.
* execve() should return EJUSTRETURN, like it does on NetBSD.
* Emulate by setting the syscall return value cells. The
* registers still have to be set for init's fork trampoline.
*/
td->td_retval[0] = arginfo.ps_nargvstr;
td->td_retval[1] = (register_t)arginfo.ps_argvstr;
tf->fixreg[3] = arginfo.ps_nargvstr;
tf->fixreg[4] = (register_t)arginfo.ps_argvstr;
tf->fixreg[5] = (register_t)arginfo.ps_envstr;
tf->fixreg[6] = 0; /* auxillary vector */
tf->fixreg[7] = 0; /* termination vector */
tf->fixreg[8] = (register_t)PS_STRINGS; /* NetBSD extension */
tf->srr0 = entry;
tf->srr1 = PSL_USERSET;
td->td_pcb->pcb_flags = 0;
}
int
fill_regs(struct thread *td, struct reg *regs)
{
struct trapframe *tf;
tf = td->td_frame;
memcpy(regs, tf, sizeof(struct reg));
return (0);
}
int
fill_fpregs(struct thread *td, struct fpreg *fpregs)
{
return (0);
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* TBD */
}
/*
* Construct a PCB from a trapframe. This is called from kdb_trap() where
* we want to start a backtrace from the function that caused us to enter
* the debugger. We have the context in the trapframe, but base the trace
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
* enough for a backtrace.
*/
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
pcb->pcb_lr = tf->srr0;
pcb->pcb_sp = tf->fixreg[1];
}
/*
* get_mcontext/sendsig helper routine that doesn't touch the
* proc lock.
*/
static int
grab_mcontext(struct thread *td, mcontext_t *mcp, int flags)
{
struct pcb *pcb;
pcb = td->td_pcb;
memset(mcp, 0, sizeof(mcontext_t));
mcp->mc_vers = _MC_VERSION;
mcp->mc_flags = 0;
memcpy(&mcp->mc_frame, td->td_frame, sizeof(struct trapframe));
if (flags & GET_MC_CLEAR_RET) {
mcp->mc_gpr[3] = 0;
mcp->mc_gpr[4] = 0;
}
/* XXX Altivec context ? */
mcp->mc_len = sizeof(*mcp);
return (0);
}
int
get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
{
int error;
error = grab_mcontext(td, mcp, flags);
if (error == 0) {
PROC_LOCK(curthread->td_proc);
mcp->mc_onstack = sigonstack(td->td_frame->fixreg[1]);
PROC_UNLOCK(curthread->td_proc);
}
return (error);
}
int
set_mcontext(struct thread *td, const mcontext_t *mcp)
{
struct pcb *pcb;
struct trapframe *tf;
pcb = td->td_pcb;
tf = td->td_frame;
if (mcp->mc_vers != _MC_VERSION || mcp->mc_len != sizeof(*mcp))
return (EINVAL);
memcpy(tf, mcp->mc_frame, sizeof(mcp->mc_frame));
/* XXX Altivec context? */
return (0);
}
int
sigreturn(struct thread *td, struct sigreturn_args *uap)
{
ucontext_t uc;
int error;
CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
return (EFAULT);
}
error = set_mcontext(td, &uc.uc_mcontext);
if (error != 0)
return (error);
kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x",
td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]);
return (EJUSTRETURN);
}
#ifdef COMPAT_FREEBSD4
int
freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
{
return sigreturn(td, (struct sigreturn_args *)uap);
}
#endif
/*
* cpu_idle
*
* Set Wait state enable.
*/
void
cpu_idle (int busy)
{
register_t msr;
msr = mfmsr();
#ifdef INVARIANTS
if ((msr & PSL_EE) != PSL_EE) {
struct thread *td = curthread;
printf("td msr %x\n", td->td_md.md_saved_msr);
panic("ints disabled in idleproc!");
}
#endif
#if 0
/*
* Freescale E500 core RM section 6.4.1
*/
msr = msr | PSL_WE;
__asm__(" msync;"
" mtmsr %0;"
" isync;"
"loop: b loop" :
/* no output */ :
"r" (msr));
#endif
}
int
cpu_idle_wakeup(int cpu)
{
return (0);
}
void
spinlock_enter(void)
{
struct thread *td;
td = curthread;
if (td->td_md.md_spinlock_count == 0)
td->td_md.md_saved_msr = intr_disable();
td->td_md.md_spinlock_count++;
critical_enter();
}
void
spinlock_exit(void)
{
struct thread *td;
td = curthread;
critical_exit();
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0)
intr_restore(td->td_md.md_saved_msr);
}
/* Shutdown the CPU as much as possible. */
void
cpu_halt(void)
{
mtmsr(mfmsr() & ~(PSL_CE | PSL_EE | PSL_ME | PSL_DE));
while (1);
}
int
set_regs(struct thread *td, struct reg *regs)
{
struct trapframe *tf;
tf = td->td_frame;
memcpy(tf, regs, sizeof(struct reg));
return (0);
}
int
fill_dbregs(struct thread *td, struct dbreg *dbregs)
{
/* No debug registers on PowerPC */
return (ENOSYS);
}
int
set_dbregs(struct thread *td, struct dbreg *dbregs)
{
/* No debug registers on PowerPC */
return (ENOSYS);
}
int
set_fpregs(struct thread *td, struct fpreg *fpregs)
{
return (0);
}
int
ptrace_set_pc(struct thread *td, unsigned long addr)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr0 = (register_t)addr;
return (0);
}
int
ptrace_single_step(struct thread *td)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr1 |= PSL_DE;
tf->cpu.booke.dbcr0 |= (DBCR0_IDM | DBCR0_IC);
return (0);
}
int
ptrace_clear_single_step(struct thread *td)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr1 &= ~PSL_DE;
tf->cpu.booke.dbcr0 &= ~(DBCR0_IDM | DBCR0_IC);
return (0);
}
void
kdb_cpu_clear_singlestep(void)
{
register_t r;
r = mfspr(SPR_DBCR0);
mtspr(SPR_DBCR0, r & ~DBCR0_IC);
kdb_frame->srr1 &= ~PSL_DE;
}
void
kdb_cpu_set_singlestep(void)
{
register_t r;
r = mfspr(SPR_DBCR0);
mtspr(SPR_DBCR0, r | DBCR0_IC | DBCR0_IDM);
kdb_frame->srr1 |= PSL_DE;
}
void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct trapframe *tf;
struct sigframe *sfp;
struct sigacts *psp;
struct sigframe sf;
struct thread *td;
struct proc *p;
int oonstack, rndfsize;
int sig, code;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
sig = ksi->ksi_signo;
code = ksi->ksi_code;
psp = p->p_sigacts;
mtx_assert(&psp->ps_mtx, MA_OWNED);
tf = td->td_frame;
oonstack = sigonstack(tf->fixreg[1]);
rndfsize = ((sizeof(sf) + 15) / 16) * 16;
CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
catcher, sig);
/*
* Save user context
*/
memset(&sf, 0, sizeof(sf));
grab_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
sf.sf_uc.uc_sigmask = *mask;
sf.sf_uc.uc_stack = td->td_sigstk;
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
/*
* Allocate and validate space for the signal handler context.
*/
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
sfp = (struct sigframe *)((caddr_t)td->td_sigstk.ss_sp +
td->td_sigstk.ss_size - rndfsize);
} else {
sfp = (struct sigframe *)(tf->fixreg[1] - rndfsize);
}
/*
* Translate the signal if appropriate (Linux emu ?)
*/
if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
/*
* Save the floating-point state, if necessary, then copy it.
*/
/* XXX */
/*
* Set up the registers to return to sigcode.
*
* r1/sp - sigframe ptr
* lr - sig function, dispatched to by blrl in trampoline
* r3 - sig number
* r4 - SIGINFO ? &siginfo : exception code
* r5 - user context
* srr0 - trampoline function addr
*/
tf->lr = (register_t)catcher;
tf->fixreg[1] = (register_t)sfp;
tf->fixreg[FIRSTARG] = sig;
tf->fixreg[FIRSTARG+2] = (register_t)&sfp->sf_uc;
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
/*
* Signal handler installed with SA_SIGINFO.
*/
tf->fixreg[FIRSTARG+1] = (register_t)&sfp->sf_si;
/*
* Fill siginfo structure.
*/
sf.sf_si = ksi->ksi_info;
sf.sf_si.si_signo = sig;
sf.sf_si.si_addr = (void *) ((tf->exc == EXC_DSI) ?
tf->cpu.booke.dear : tf->srr0);
} else {
/* Old FreeBSD-style arguments. */
tf->fixreg[FIRSTARG+1] = code;
tf->fixreg[FIRSTARG+3] = (tf->exc == EXC_DSI) ?
tf->cpu.booke.dear : tf->srr0;
}
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(p);
tf->srr0 = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
/*
* copy the frame out to userland.
*/
if (copyout((caddr_t)&sf, (caddr_t)sfp, sizeof(sf)) != 0) {
/*
* Process has trashed its stack. Kill it.
*/
CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
PROC_LOCK(p);
sigexit(td, SIGILL);
}
CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td,
tf->srr0, tf->fixreg[1]);
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
void
bzero(void *buf, size_t len)
{
caddr_t p;
p = buf;
while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) {
*p++ = 0;
len--;
}
while (len >= sizeof(u_long) * 8) {
*(u_long*) p = 0;
*((u_long*) p + 1) = 0;
*((u_long*) p + 2) = 0;
*((u_long*) p + 3) = 0;
len -= sizeof(u_long) * 8;
*((u_long*) p + 4) = 0;
*((u_long*) p + 5) = 0;
*((u_long*) p + 6) = 0;
*((u_long*) p + 7) = 0;
p += sizeof(u_long) * 8;
}
while (len >= sizeof(u_long)) {
*(u_long*) p = 0;
len -= sizeof(u_long);
p += sizeof(u_long);
}
while (len) {
*p++ = 0;
len--;
}
}
/*
* XXX what is the better/proper place for this routine?
*/
int
mem_valid(vm_offset_t addr, int len)
{
return (1);
}