465 lines
12 KiB
C
465 lines
12 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
*/
|
|
|
|
#include <libintl.h>
|
|
#include <libuutil.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <strings.h>
|
|
|
|
#include <libzfs.h>
|
|
|
|
#include "zfs_util.h"
|
|
#include "zfs_iter.h"
|
|
|
|
/*
|
|
* This is a private interface used to gather up all the datasets specified on
|
|
* the command line so that we can iterate over them in order.
|
|
*
|
|
* First, we iterate over all filesystems, gathering them together into an
|
|
* AVL tree. We report errors for any explicitly specified datasets
|
|
* that we couldn't open.
|
|
*
|
|
* When finished, we have an AVL tree of ZFS handles. We go through and execute
|
|
* the provided callback for each one, passing whatever data the user supplied.
|
|
*/
|
|
|
|
typedef struct zfs_node {
|
|
zfs_handle_t *zn_handle;
|
|
uu_avl_node_t zn_avlnode;
|
|
} zfs_node_t;
|
|
|
|
typedef struct callback_data {
|
|
uu_avl_t *cb_avl;
|
|
int cb_flags;
|
|
zfs_type_t cb_types;
|
|
zfs_sort_column_t *cb_sortcol;
|
|
zprop_list_t **cb_proplist;
|
|
int cb_depth_limit;
|
|
int cb_depth;
|
|
uint8_t cb_props_table[ZFS_NUM_PROPS];
|
|
} callback_data_t;
|
|
|
|
uu_avl_pool_t *avl_pool;
|
|
|
|
/*
|
|
* Include snaps if they were requested or if this a zfs list where types
|
|
* were not specified and the "listsnapshots" property is set on this pool.
|
|
*/
|
|
static int
|
|
zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb)
|
|
{
|
|
zpool_handle_t *zph;
|
|
|
|
if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0)
|
|
return (cb->cb_types & ZFS_TYPE_SNAPSHOT);
|
|
|
|
zph = zfs_get_pool_handle(zhp);
|
|
return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL));
|
|
}
|
|
|
|
/*
|
|
* Called for each dataset. If the object is of an appropriate type,
|
|
* add it to the avl tree and recurse over any children as necessary.
|
|
*/
|
|
static int
|
|
zfs_callback(zfs_handle_t *zhp, void *data)
|
|
{
|
|
callback_data_t *cb = data;
|
|
int dontclose = 0;
|
|
int include_snaps = zfs_include_snapshots(zhp, cb);
|
|
|
|
if ((zfs_get_type(zhp) & cb->cb_types) ||
|
|
((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) {
|
|
uu_avl_index_t idx;
|
|
zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
|
|
|
|
node->zn_handle = zhp;
|
|
uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
|
|
if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
|
|
&idx) == NULL) {
|
|
if (cb->cb_proplist) {
|
|
if ((*cb->cb_proplist) &&
|
|
!(*cb->cb_proplist)->pl_all)
|
|
zfs_prune_proplist(zhp,
|
|
cb->cb_props_table);
|
|
|
|
if (zfs_expand_proplist(zhp, cb->cb_proplist,
|
|
(cb->cb_flags & ZFS_ITER_RECVD_PROPS))
|
|
!= 0) {
|
|
free(node);
|
|
return (-1);
|
|
}
|
|
}
|
|
uu_avl_insert(cb->cb_avl, node, idx);
|
|
dontclose = 1;
|
|
} else {
|
|
free(node);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Recurse if necessary.
|
|
*/
|
|
if (cb->cb_flags & ZFS_ITER_RECURSE &&
|
|
((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 ||
|
|
cb->cb_depth < cb->cb_depth_limit)) {
|
|
cb->cb_depth++;
|
|
if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM)
|
|
(void) zfs_iter_filesystems(zhp, zfs_callback, data);
|
|
if ((zfs_get_type(zhp) != ZFS_TYPE_SNAPSHOT) && include_snaps)
|
|
(void) zfs_iter_snapshots(zhp, zfs_callback, data);
|
|
cb->cb_depth--;
|
|
}
|
|
|
|
if (!dontclose)
|
|
zfs_close(zhp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
|
|
boolean_t reverse)
|
|
{
|
|
zfs_sort_column_t *col;
|
|
zfs_prop_t prop;
|
|
|
|
if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL &&
|
|
!zfs_prop_user(name))
|
|
return (-1);
|
|
|
|
col = safe_malloc(sizeof (zfs_sort_column_t));
|
|
|
|
col->sc_prop = prop;
|
|
col->sc_reverse = reverse;
|
|
if (prop == ZPROP_INVAL) {
|
|
col->sc_user_prop = safe_malloc(strlen(name) + 1);
|
|
(void) strcpy(col->sc_user_prop, name);
|
|
}
|
|
|
|
if (*sc == NULL) {
|
|
col->sc_last = col;
|
|
*sc = col;
|
|
} else {
|
|
(*sc)->sc_last->sc_next = col;
|
|
(*sc)->sc_last = col;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zfs_free_sort_columns(zfs_sort_column_t *sc)
|
|
{
|
|
zfs_sort_column_t *col;
|
|
|
|
while (sc != NULL) {
|
|
col = sc->sc_next;
|
|
free(sc->sc_user_prop);
|
|
free(sc);
|
|
sc = col;
|
|
}
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
zfs_compare(const void *larg, const void *rarg, void *unused)
|
|
{
|
|
zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
|
|
zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
|
|
const char *lname = zfs_get_name(l);
|
|
const char *rname = zfs_get_name(r);
|
|
char *lat, *rat;
|
|
uint64_t lcreate, rcreate;
|
|
int ret;
|
|
|
|
lat = (char *)strchr(lname, '@');
|
|
rat = (char *)strchr(rname, '@');
|
|
|
|
if (lat != NULL)
|
|
*lat = '\0';
|
|
if (rat != NULL)
|
|
*rat = '\0';
|
|
|
|
ret = strcmp(lname, rname);
|
|
if (ret == 0) {
|
|
/*
|
|
* If we're comparing a dataset to one of its snapshots, we
|
|
* always make the full dataset first.
|
|
*/
|
|
if (lat == NULL) {
|
|
ret = -1;
|
|
} else if (rat == NULL) {
|
|
ret = 1;
|
|
} else {
|
|
/*
|
|
* If we have two snapshots from the same dataset, then
|
|
* we want to sort them according to creation time. We
|
|
* use the hidden CREATETXG property to get an absolute
|
|
* ordering of snapshots.
|
|
*/
|
|
lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
|
|
rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
|
|
|
|
if (lcreate < rcreate)
|
|
ret = -1;
|
|
else if (lcreate > rcreate)
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
if (lat != NULL)
|
|
*lat = '@';
|
|
if (rat != NULL)
|
|
*rat = '@';
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Sort datasets by specified columns.
|
|
*
|
|
* o Numeric types sort in ascending order.
|
|
* o String types sort in alphabetical order.
|
|
* o Types inappropriate for a row sort that row to the literal
|
|
* bottom, regardless of the specified ordering.
|
|
*
|
|
* If no sort columns are specified, or two datasets compare equally
|
|
* across all specified columns, they are sorted alphabetically by name
|
|
* with snapshots grouped under their parents.
|
|
*/
|
|
static int
|
|
zfs_sort(const void *larg, const void *rarg, void *data)
|
|
{
|
|
zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
|
|
zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
|
|
zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
|
|
zfs_sort_column_t *psc;
|
|
|
|
for (psc = sc; psc != NULL; psc = psc->sc_next) {
|
|
char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
|
|
char *lstr, *rstr;
|
|
uint64_t lnum, rnum;
|
|
boolean_t lvalid, rvalid;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We group the checks below the generic code. If 'lstr' and
|
|
* 'rstr' are non-NULL, then we do a string based comparison.
|
|
* Otherwise, we compare 'lnum' and 'rnum'.
|
|
*/
|
|
lstr = rstr = NULL;
|
|
if (psc->sc_prop == ZPROP_INVAL) {
|
|
nvlist_t *luser, *ruser;
|
|
nvlist_t *lval, *rval;
|
|
|
|
luser = zfs_get_user_props(l);
|
|
ruser = zfs_get_user_props(r);
|
|
|
|
lvalid = (nvlist_lookup_nvlist(luser,
|
|
psc->sc_user_prop, &lval) == 0);
|
|
rvalid = (nvlist_lookup_nvlist(ruser,
|
|
psc->sc_user_prop, &rval) == 0);
|
|
|
|
if (lvalid)
|
|
verify(nvlist_lookup_string(lval,
|
|
ZPROP_VALUE, &lstr) == 0);
|
|
if (rvalid)
|
|
verify(nvlist_lookup_string(rval,
|
|
ZPROP_VALUE, &rstr) == 0);
|
|
|
|
} else if (zfs_prop_is_string(psc->sc_prop)) {
|
|
lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
|
|
sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
|
|
rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
|
|
sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
|
|
|
|
lstr = lbuf;
|
|
rstr = rbuf;
|
|
} else {
|
|
lvalid = zfs_prop_valid_for_type(psc->sc_prop,
|
|
zfs_get_type(l));
|
|
rvalid = zfs_prop_valid_for_type(psc->sc_prop,
|
|
zfs_get_type(r));
|
|
|
|
if (lvalid)
|
|
(void) zfs_prop_get_numeric(l, psc->sc_prop,
|
|
&lnum, NULL, NULL, 0);
|
|
if (rvalid)
|
|
(void) zfs_prop_get_numeric(r, psc->sc_prop,
|
|
&rnum, NULL, NULL, 0);
|
|
}
|
|
|
|
if (!lvalid && !rvalid)
|
|
continue;
|
|
else if (!lvalid)
|
|
return (1);
|
|
else if (!rvalid)
|
|
return (-1);
|
|
|
|
if (lstr)
|
|
ret = strcmp(lstr, rstr);
|
|
else if (lnum < rnum)
|
|
ret = -1;
|
|
else if (lnum > rnum)
|
|
ret = 1;
|
|
|
|
if (ret != 0) {
|
|
if (psc->sc_reverse == B_TRUE)
|
|
ret = (ret < 0) ? 1 : -1;
|
|
return (ret);
|
|
}
|
|
}
|
|
|
|
return (zfs_compare(larg, rarg, NULL));
|
|
}
|
|
|
|
int
|
|
zfs_for_each(int argc, char **argv, int flags, zfs_type_t types,
|
|
zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit,
|
|
zfs_iter_f callback, void *data)
|
|
{
|
|
callback_data_t cb = {0};
|
|
int ret = 0;
|
|
zfs_node_t *node;
|
|
uu_avl_walk_t *walk;
|
|
|
|
avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
|
|
offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
|
|
|
|
if (avl_pool == NULL)
|
|
nomem();
|
|
|
|
cb.cb_sortcol = sortcol;
|
|
cb.cb_flags = flags;
|
|
cb.cb_proplist = proplist;
|
|
cb.cb_types = types;
|
|
cb.cb_depth_limit = limit;
|
|
/*
|
|
* If cb_proplist is provided then in the zfs_handles created we
|
|
* retain only those properties listed in cb_proplist and sortcol.
|
|
* The rest are pruned. So, the caller should make sure that no other
|
|
* properties other than those listed in cb_proplist/sortcol are
|
|
* accessed.
|
|
*
|
|
* If cb_proplist is NULL then we retain all the properties. We
|
|
* always retain the zoned property, which some other properties
|
|
* need (userquota & friends), and the createtxg property, which
|
|
* we need to sort snapshots.
|
|
*/
|
|
if (cb.cb_proplist && *cb.cb_proplist) {
|
|
zprop_list_t *p = *cb.cb_proplist;
|
|
|
|
while (p) {
|
|
if (p->pl_prop >= ZFS_PROP_TYPE &&
|
|
p->pl_prop < ZFS_NUM_PROPS) {
|
|
cb.cb_props_table[p->pl_prop] = B_TRUE;
|
|
}
|
|
p = p->pl_next;
|
|
}
|
|
|
|
while (sortcol) {
|
|
if (sortcol->sc_prop >= ZFS_PROP_TYPE &&
|
|
sortcol->sc_prop < ZFS_NUM_PROPS) {
|
|
cb.cb_props_table[sortcol->sc_prop] = B_TRUE;
|
|
}
|
|
sortcol = sortcol->sc_next;
|
|
}
|
|
|
|
cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE;
|
|
cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE;
|
|
} else {
|
|
(void) memset(cb.cb_props_table, B_TRUE,
|
|
sizeof (cb.cb_props_table));
|
|
}
|
|
|
|
if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL)
|
|
nomem();
|
|
|
|
if (argc == 0) {
|
|
/*
|
|
* If given no arguments, iterate over all datasets.
|
|
*/
|
|
cb.cb_flags |= ZFS_ITER_RECURSE;
|
|
ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
|
|
} else {
|
|
int i;
|
|
zfs_handle_t *zhp;
|
|
zfs_type_t argtype;
|
|
|
|
/*
|
|
* If we're recursive, then we always allow filesystems as
|
|
* arguments. If we also are interested in snapshots, then we
|
|
* can take volumes as well.
|
|
*/
|
|
argtype = types;
|
|
if (flags & ZFS_ITER_RECURSE) {
|
|
argtype |= ZFS_TYPE_FILESYSTEM;
|
|
if (types & ZFS_TYPE_SNAPSHOT)
|
|
argtype |= ZFS_TYPE_VOLUME;
|
|
}
|
|
|
|
for (i = 0; i < argc; i++) {
|
|
if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) {
|
|
zhp = zfs_path_to_zhandle(g_zfs, argv[i],
|
|
argtype);
|
|
} else {
|
|
zhp = zfs_open(g_zfs, argv[i], argtype);
|
|
}
|
|
if (zhp != NULL)
|
|
ret |= zfs_callback(zhp, &cb);
|
|
else
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point we've got our AVL tree full of zfs handles, so iterate
|
|
* over each one and execute the real user callback.
|
|
*/
|
|
for (node = uu_avl_first(cb.cb_avl); node != NULL;
|
|
node = uu_avl_next(cb.cb_avl, node))
|
|
ret |= callback(node->zn_handle, data);
|
|
|
|
/*
|
|
* Finally, clean up the AVL tree.
|
|
*/
|
|
if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL)
|
|
nomem();
|
|
|
|
while ((node = uu_avl_walk_next(walk)) != NULL) {
|
|
uu_avl_remove(cb.cb_avl, node);
|
|
zfs_close(node->zn_handle);
|
|
free(node);
|
|
}
|
|
|
|
uu_avl_walk_end(walk);
|
|
uu_avl_destroy(cb.cb_avl);
|
|
uu_avl_pool_destroy(avl_pool);
|
|
|
|
return (ret);
|
|
}
|