freebsd-dev/lib/libthr/thread/thr_cond.c
David Xu bbb64c2143 In current code, statically initialized and destroyed object have
same null value, the code can not distinguish between them, to
fix the problem, now a destroyed object is assigned to a non-null
value, and it will be rejected by some pthread functions.
PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP is changed to number 1, so that
adaptive mutex can be statically initialized correctly.
2010-09-28 04:57:56 +00:00

306 lines
7.8 KiB
C

/*
* Copyright (c) 2005 David Xu <davidxu@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "namespace.h"
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
#include <limits.h>
#include "un-namespace.h"
#include "thr_private.h"
/*
* Prototypes
*/
int __pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int __pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec * abstime);
static int cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);
static int cond_wait_common(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime, int cancel);
static int cond_signal_common(pthread_cond_t *cond, int broadcast);
/*
* Double underscore versions are cancellation points. Single underscore
* versions are not and are provided for libc internal usage (which
* shouldn't introduce cancellation points).
*/
__weak_reference(__pthread_cond_wait, pthread_cond_wait);
__weak_reference(__pthread_cond_timedwait, pthread_cond_timedwait);
__weak_reference(_pthread_cond_init, pthread_cond_init);
__weak_reference(_pthread_cond_destroy, pthread_cond_destroy);
__weak_reference(_pthread_cond_signal, pthread_cond_signal);
__weak_reference(_pthread_cond_broadcast, pthread_cond_broadcast);
static int
cond_init(pthread_cond_t *cond, const pthread_condattr_t *cond_attr)
{
pthread_cond_t pcond;
int rval = 0;
if ((pcond = (pthread_cond_t)
calloc(1, sizeof(struct pthread_cond))) == NULL) {
rval = ENOMEM;
} else {
/*
* Initialise the condition variable structure:
*/
if (cond_attr == NULL || *cond_attr == NULL) {
pcond->c_pshared = 0;
pcond->c_clockid = CLOCK_REALTIME;
} else {
pcond->c_pshared = (*cond_attr)->c_pshared;
pcond->c_clockid = (*cond_attr)->c_clockid;
}
_thr_umutex_init(&pcond->c_lock);
*cond = pcond;
}
/* Return the completion status: */
return (rval);
}
static int
init_static(struct pthread *thread, pthread_cond_t *cond)
{
int ret;
THR_LOCK_ACQUIRE(thread, &_cond_static_lock);
if (*cond == NULL)
ret = cond_init(cond, NULL);
else
ret = 0;
THR_LOCK_RELEASE(thread, &_cond_static_lock);
return (ret);
}
#define CHECK_AND_INIT_COND \
if (__predict_false((cv = (*cond)) <= THR_COND_DESTROYED)) { \
if (cv == THR_COND_INITIALIZER) { \
int ret; \
ret = init_static(_get_curthread(), cond); \
if (ret) \
return (ret); \
} else if (cv == THR_COND_DESTROYED) { \
return (EINVAL); \
} \
cv = *cond; \
}
int
_pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *cond_attr)
{
*cond = NULL;
return (cond_init(cond, cond_attr));
}
int
_pthread_cond_destroy(pthread_cond_t *cond)
{
struct pthread *curthread = _get_curthread();
struct pthread_cond *cv;
int rval = 0;
if ((cv = *cond) == THR_COND_INITIALIZER)
rval = 0;
else if (cv == THR_COND_DESTROYED)
rval = EINVAL;
else {
cv = *cond;
THR_UMUTEX_LOCK(curthread, &cv->c_lock);
*cond = THR_COND_DESTROYED;
THR_UMUTEX_UNLOCK(curthread, &cv->c_lock);
/*
* Free the memory allocated for the condition
* variable structure:
*/
free(cv);
}
return (rval);
}
struct cond_cancel_info
{
pthread_mutex_t *mutex;
pthread_cond_t *cond;
int count;
};
static void
cond_cancel_handler(void *arg)
{
struct pthread *curthread = _get_curthread();
struct cond_cancel_info *info = (struct cond_cancel_info *)arg;
pthread_cond_t cv;
if (info->cond != NULL) {
cv = *(info->cond);
THR_UMUTEX_UNLOCK(curthread, &cv->c_lock);
}
_mutex_cv_lock(info->mutex, info->count);
}
/*
* Cancellation behaivor:
* Thread may be canceled at start, if thread is canceled, it means it
* did not get a wakeup from pthread_cond_signal(), otherwise, it is
* not canceled.
* Thread cancellation never cause wakeup from pthread_cond_signal()
* to be lost.
*/
static int
cond_wait_common(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime, int cancel)
{
struct pthread *curthread = _get_curthread();
struct timespec ts, ts2, *tsp;
struct cond_cancel_info info;
pthread_cond_t cv;
int ret;
/*
* If the condition variable is statically initialized,
* perform the dynamic initialization:
*/
CHECK_AND_INIT_COND
cv = *cond;
THR_UMUTEX_LOCK(curthread, &cv->c_lock);
ret = _mutex_cv_unlock(mutex, &info.count);
if (__predict_false(ret != 0)) {
THR_UMUTEX_UNLOCK(curthread, &cv->c_lock);
return (ret);
}
info.mutex = mutex;
info.cond = cond;
if (abstime != NULL) {
clock_gettime(cv->c_clockid, &ts);
TIMESPEC_SUB(&ts2, abstime, &ts);
tsp = &ts2;
} else
tsp = NULL;
if (cancel) {
THR_CLEANUP_PUSH(curthread, cond_cancel_handler, &info);
_thr_cancel_enter2(curthread, 0);
ret = _thr_ucond_wait(&cv->c_kerncv, &cv->c_lock, tsp, 1);
info.cond = NULL;
_thr_cancel_leave(curthread, (ret != 0));
THR_CLEANUP_POP(curthread, 0);
} else {
ret = _thr_ucond_wait(&cv->c_kerncv, &cv->c_lock, tsp, 0);
}
if (ret == EINTR)
ret = 0;
_mutex_cv_lock(mutex, info.count);
return (ret);
}
int
_pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
return (cond_wait_common(cond, mutex, NULL, 0));
}
int
__pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
return (cond_wait_common(cond, mutex, NULL, 1));
}
int
_pthread_cond_timedwait(pthread_cond_t * cond, pthread_mutex_t * mutex,
const struct timespec * abstime)
{
if (abstime == NULL || abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
abstime->tv_nsec >= 1000000000)
return (EINVAL);
return (cond_wait_common(cond, mutex, abstime, 0));
}
int
__pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime)
{
if (abstime == NULL || abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
abstime->tv_nsec >= 1000000000)
return (EINVAL);
return (cond_wait_common(cond, mutex, abstime, 1));
}
static int
cond_signal_common(pthread_cond_t *cond, int broadcast)
{
struct pthread *curthread = _get_curthread();
pthread_cond_t cv;
int ret = 0;
/*
* If the condition variable is statically initialized, perform dynamic
* initialization.
*/
CHECK_AND_INIT_COND
THR_UMUTEX_LOCK(curthread, &cv->c_lock);
if (!broadcast)
ret = _thr_ucond_signal(&cv->c_kerncv);
else
ret = _thr_ucond_broadcast(&cv->c_kerncv);
THR_UMUTEX_UNLOCK(curthread, &cv->c_lock);
return (ret);
}
int
_pthread_cond_signal(pthread_cond_t * cond)
{
return (cond_signal_common(cond, 0));
}
int
_pthread_cond_broadcast(pthread_cond_t * cond)
{
return (cond_signal_common(cond, 1));
}