685dc743dc
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
3334 lines
85 KiB
C
3334 lines
85 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2014-2019 Netflix Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_kern_tls.h"
|
|
#include "opt_ratelimit.h"
|
|
#include "opt_rss.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/domainset.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/ktls.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rmlock.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/vmmeter.h>
|
|
#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
|
|
#include <machine/pcb.h>
|
|
#endif
|
|
#include <machine/vmparam.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#ifdef RSS
|
|
#include <net/netisr.h>
|
|
#include <net/rss_config.h>
|
|
#endif
|
|
#include <net/route.h>
|
|
#include <net/route/nhop.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/tcp_var.h>
|
|
#ifdef TCP_OFFLOAD
|
|
#include <netinet/tcp_offload.h>
|
|
#endif
|
|
#include <opencrypto/cryptodev.h>
|
|
#include <opencrypto/ktls.h>
|
|
#include <vm/uma_dbg.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pagequeue.h>
|
|
|
|
struct ktls_wq {
|
|
struct mtx mtx;
|
|
STAILQ_HEAD(, mbuf) m_head;
|
|
STAILQ_HEAD(, socket) so_head;
|
|
bool running;
|
|
int lastallocfail;
|
|
} __aligned(CACHE_LINE_SIZE);
|
|
|
|
struct ktls_reclaim_thread {
|
|
uint64_t wakeups;
|
|
uint64_t reclaims;
|
|
struct thread *td;
|
|
int running;
|
|
};
|
|
|
|
struct ktls_domain_info {
|
|
int count;
|
|
int cpu[MAXCPU];
|
|
struct ktls_reclaim_thread reclaim_td;
|
|
};
|
|
|
|
struct ktls_domain_info ktls_domains[MAXMEMDOM];
|
|
static struct ktls_wq *ktls_wq;
|
|
static struct proc *ktls_proc;
|
|
static uma_zone_t ktls_session_zone;
|
|
static uma_zone_t ktls_buffer_zone;
|
|
static uint16_t ktls_cpuid_lookup[MAXCPU];
|
|
static int ktls_init_state;
|
|
static struct sx ktls_init_lock;
|
|
SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
|
|
|
|
SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Kernel TLS offload");
|
|
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Kernel TLS offload stats");
|
|
|
|
#ifdef RSS
|
|
static int ktls_bind_threads = 1;
|
|
#else
|
|
static int ktls_bind_threads;
|
|
#endif
|
|
SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
|
|
&ktls_bind_threads, 0,
|
|
"Bind crypto threads to cores (1) or cores and domains (2) at boot");
|
|
|
|
static u_int ktls_maxlen = 16384;
|
|
SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
|
|
&ktls_maxlen, 0, "Maximum TLS record size");
|
|
|
|
static int ktls_number_threads;
|
|
SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
|
|
&ktls_number_threads, 0,
|
|
"Number of TLS threads in thread-pool");
|
|
|
|
unsigned int ktls_ifnet_max_rexmit_pct = 2;
|
|
SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
|
|
&ktls_ifnet_max_rexmit_pct, 2,
|
|
"Max percent bytes retransmitted before ifnet TLS is disabled");
|
|
|
|
static bool ktls_offload_enable;
|
|
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
|
|
&ktls_offload_enable, 0,
|
|
"Enable support for kernel TLS offload");
|
|
|
|
static bool ktls_cbc_enable = true;
|
|
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
|
|
&ktls_cbc_enable, 1,
|
|
"Enable support of AES-CBC crypto for kernel TLS");
|
|
|
|
static bool ktls_sw_buffer_cache = true;
|
|
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
|
|
&ktls_sw_buffer_cache, 1,
|
|
"Enable caching of output buffers for SW encryption");
|
|
|
|
static int ktls_max_reclaim = 1024;
|
|
SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN,
|
|
&ktls_max_reclaim, 128,
|
|
"Max number of 16k buffers to reclaim in thread context");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
|
|
&ktls_tasks_active, "Number of active tasks");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
|
|
&ktls_cnt_tx_pending,
|
|
"Number of TLS 1.0 records waiting for earlier TLS records");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
|
|
&ktls_cnt_tx_queued,
|
|
"Number of TLS records in queue to tasks for SW encryption");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
|
|
&ktls_cnt_rx_queued,
|
|
"Number of TLS sockets in queue to tasks for SW decryption");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
|
|
CTLFLAG_RD, &ktls_offload_total,
|
|
"Total successful TLS setups (parameters set)");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
|
|
CTLFLAG_RD, &ktls_offload_enable_calls,
|
|
"Total number of TLS enable calls made");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
|
|
&ktls_offload_active, "Total Active TLS sessions");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
|
|
&ktls_offload_corrupted_records, "Total corrupted TLS records received");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
|
|
&ktls_offload_failed_crypto, "Total TLS crypto failures");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
|
|
&ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
|
|
&ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
|
|
&ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
|
|
&ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
|
|
&ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD,
|
|
&ktls_destroy_task,
|
|
"Number of times ktls session was destroyed via taskqueue");
|
|
|
|
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"Software TLS session stats");
|
|
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"Hardware (ifnet) TLS session stats");
|
|
#ifdef TCP_OFFLOAD
|
|
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"TOE TLS session stats");
|
|
#endif
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
|
|
"Active number of software TLS sessions using AES-CBC");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
|
|
"Active number of software TLS sessions using AES-GCM");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
|
|
&ktls_sw_chacha20,
|
|
"Active number of software TLS sessions using Chacha20-Poly1305");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
|
|
&ktls_ifnet_cbc,
|
|
"Active number of ifnet TLS sessions using AES-CBC");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
|
|
&ktls_ifnet_gcm,
|
|
"Active number of ifnet TLS sessions using AES-GCM");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
|
|
&ktls_ifnet_chacha20,
|
|
"Active number of ifnet TLS sessions using Chacha20-Poly1305");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
|
|
&ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
|
|
&ktls_ifnet_reset_dropped,
|
|
"TLS sessions dropped after failing to update ifnet send tag");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
|
|
&ktls_ifnet_reset_failed,
|
|
"TLS sessions that failed to allocate a new ifnet send tag");
|
|
|
|
static int ktls_ifnet_permitted;
|
|
SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
|
|
&ktls_ifnet_permitted, 1,
|
|
"Whether to permit hardware (ifnet) TLS sessions");
|
|
|
|
#ifdef TCP_OFFLOAD
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
|
|
&ktls_toe_cbc,
|
|
"Active number of TOE TLS sessions using AES-CBC");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
|
|
&ktls_toe_gcm,
|
|
"Active number of TOE TLS sessions using AES-GCM");
|
|
|
|
static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
|
|
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
|
|
&ktls_toe_chacha20,
|
|
"Active number of TOE TLS sessions using Chacha20-Poly1305");
|
|
#endif
|
|
|
|
static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
|
|
|
|
static void ktls_reset_receive_tag(void *context, int pending);
|
|
static void ktls_reset_send_tag(void *context, int pending);
|
|
static void ktls_work_thread(void *ctx);
|
|
static void ktls_reclaim_thread(void *ctx);
|
|
|
|
static u_int
|
|
ktls_get_cpu(struct socket *so)
|
|
{
|
|
struct inpcb *inp;
|
|
#ifdef NUMA
|
|
struct ktls_domain_info *di;
|
|
#endif
|
|
u_int cpuid;
|
|
|
|
inp = sotoinpcb(so);
|
|
#ifdef RSS
|
|
cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
|
|
if (cpuid != NETISR_CPUID_NONE)
|
|
return (cpuid);
|
|
#endif
|
|
/*
|
|
* Just use the flowid to shard connections in a repeatable
|
|
* fashion. Note that TLS 1.0 sessions rely on the
|
|
* serialization provided by having the same connection use
|
|
* the same queue.
|
|
*/
|
|
#ifdef NUMA
|
|
if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
|
|
di = &ktls_domains[inp->inp_numa_domain];
|
|
cpuid = di->cpu[inp->inp_flowid % di->count];
|
|
} else
|
|
#endif
|
|
cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
|
|
return (cpuid);
|
|
}
|
|
|
|
static int
|
|
ktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
|
|
{
|
|
vm_page_t m;
|
|
int i, req;
|
|
|
|
KASSERT((ktls_maxlen & PAGE_MASK) == 0,
|
|
("%s: ktls max length %d is not page size-aligned",
|
|
__func__, ktls_maxlen));
|
|
|
|
req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
|
|
for (i = 0; i < count; i++) {
|
|
m = vm_page_alloc_noobj_contig_domain(domain, req,
|
|
atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
|
|
VM_MEMATTR_DEFAULT);
|
|
if (m == NULL)
|
|
break;
|
|
store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
|
|
}
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
ktls_buffer_release(void *arg __unused, void **store, int count)
|
|
{
|
|
vm_page_t m;
|
|
int i, j;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
|
|
for (j = 0; j < atop(ktls_maxlen); j++) {
|
|
(void)vm_page_unwire_noq(m + j);
|
|
vm_page_free(m + j);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ktls_free_mext_contig(struct mbuf *m)
|
|
{
|
|
M_ASSERTEXTPG(m);
|
|
uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
|
|
}
|
|
|
|
static int
|
|
ktls_init(void)
|
|
{
|
|
struct thread *td;
|
|
struct pcpu *pc;
|
|
int count, domain, error, i;
|
|
|
|
ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
|
|
M_WAITOK | M_ZERO);
|
|
|
|
ktls_session_zone = uma_zcreate("ktls_session",
|
|
sizeof(struct ktls_session),
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_CACHE, 0);
|
|
|
|
if (ktls_sw_buffer_cache) {
|
|
ktls_buffer_zone = uma_zcache_create("ktls_buffers",
|
|
roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
|
|
ktls_buffer_import, ktls_buffer_release, NULL,
|
|
UMA_ZONE_FIRSTTOUCH);
|
|
}
|
|
|
|
/*
|
|
* Initialize the workqueues to run the TLS work. We create a
|
|
* work queue for each CPU.
|
|
*/
|
|
CPU_FOREACH(i) {
|
|
STAILQ_INIT(&ktls_wq[i].m_head);
|
|
STAILQ_INIT(&ktls_wq[i].so_head);
|
|
mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
|
|
if (ktls_bind_threads > 1) {
|
|
pc = pcpu_find(i);
|
|
domain = pc->pc_domain;
|
|
count = ktls_domains[domain].count;
|
|
ktls_domains[domain].cpu[count] = i;
|
|
ktls_domains[domain].count++;
|
|
}
|
|
ktls_cpuid_lookup[ktls_number_threads] = i;
|
|
ktls_number_threads++;
|
|
}
|
|
|
|
/*
|
|
* If we somehow have an empty domain, fall back to choosing
|
|
* among all KTLS threads.
|
|
*/
|
|
if (ktls_bind_threads > 1) {
|
|
for (i = 0; i < vm_ndomains; i++) {
|
|
if (ktls_domains[i].count == 0) {
|
|
ktls_bind_threads = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Start kthreads for each workqueue. */
|
|
CPU_FOREACH(i) {
|
|
error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
|
|
&ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
|
|
if (error) {
|
|
printf("Can't add KTLS thread %d error %d\n", i, error);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start an allocation thread per-domain to perform blocking allocations
|
|
* of 16k physically contiguous TLS crypto destination buffers.
|
|
*/
|
|
if (ktls_sw_buffer_cache) {
|
|
for (domain = 0; domain < vm_ndomains; domain++) {
|
|
if (VM_DOMAIN_EMPTY(domain))
|
|
continue;
|
|
if (CPU_EMPTY(&cpuset_domain[domain]))
|
|
continue;
|
|
error = kproc_kthread_add(ktls_reclaim_thread,
|
|
&ktls_domains[domain], &ktls_proc,
|
|
&ktls_domains[domain].reclaim_td.td,
|
|
0, 0, "KTLS", "reclaim_%d", domain);
|
|
if (error) {
|
|
printf("Can't add KTLS reclaim thread %d error %d\n",
|
|
domain, error);
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bootverbose)
|
|
printf("KTLS: Initialized %d threads\n", ktls_number_threads);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ktls_start_kthreads(void)
|
|
{
|
|
int error, state;
|
|
|
|
start:
|
|
state = atomic_load_acq_int(&ktls_init_state);
|
|
if (__predict_true(state > 0))
|
|
return (0);
|
|
if (state < 0)
|
|
return (ENXIO);
|
|
|
|
sx_xlock(&ktls_init_lock);
|
|
if (ktls_init_state != 0) {
|
|
sx_xunlock(&ktls_init_lock);
|
|
goto start;
|
|
}
|
|
|
|
error = ktls_init();
|
|
if (error == 0)
|
|
state = 1;
|
|
else
|
|
state = -1;
|
|
atomic_store_rel_int(&ktls_init_state, state);
|
|
sx_xunlock(&ktls_init_lock);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ktls_create_session(struct socket *so, struct tls_enable *en,
|
|
struct ktls_session **tlsp, int direction)
|
|
{
|
|
struct ktls_session *tls;
|
|
int error;
|
|
|
|
/* Only TLS 1.0 - 1.3 are supported. */
|
|
if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
|
|
return (EINVAL);
|
|
if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
|
|
en->tls_vminor > TLS_MINOR_VER_THREE)
|
|
return (EINVAL);
|
|
|
|
if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
|
|
return (EINVAL);
|
|
if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
|
|
return (EINVAL);
|
|
if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
|
|
return (EINVAL);
|
|
|
|
/* All supported algorithms require a cipher key. */
|
|
if (en->cipher_key_len == 0)
|
|
return (EINVAL);
|
|
|
|
/* No flags are currently supported. */
|
|
if (en->flags != 0)
|
|
return (EINVAL);
|
|
|
|
/* Common checks for supported algorithms. */
|
|
switch (en->cipher_algorithm) {
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
/*
|
|
* auth_algorithm isn't used, but permit GMAC values
|
|
* for compatibility.
|
|
*/
|
|
switch (en->auth_algorithm) {
|
|
case 0:
|
|
#ifdef COMPAT_FREEBSD12
|
|
/* XXX: Really 13.0-current COMPAT. */
|
|
case CRYPTO_AES_128_NIST_GMAC:
|
|
case CRYPTO_AES_192_NIST_GMAC:
|
|
case CRYPTO_AES_256_NIST_GMAC:
|
|
#endif
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if (en->auth_key_len != 0)
|
|
return (EINVAL);
|
|
switch (en->tls_vminor) {
|
|
case TLS_MINOR_VER_TWO:
|
|
if (en->iv_len != TLS_AEAD_GCM_LEN)
|
|
return (EINVAL);
|
|
break;
|
|
case TLS_MINOR_VER_THREE:
|
|
if (en->iv_len != TLS_1_3_GCM_IV_LEN)
|
|
return (EINVAL);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
case CRYPTO_AES_CBC:
|
|
switch (en->auth_algorithm) {
|
|
case CRYPTO_SHA1_HMAC:
|
|
break;
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
if (en->tls_vminor != TLS_MINOR_VER_TWO)
|
|
return (EINVAL);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
if (en->auth_key_len == 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2
|
|
* use explicit IVs.
|
|
*/
|
|
switch (en->tls_vminor) {
|
|
case TLS_MINOR_VER_ZERO:
|
|
if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
|
|
return (EINVAL);
|
|
break;
|
|
case TLS_MINOR_VER_ONE:
|
|
case TLS_MINOR_VER_TWO:
|
|
/* Ignore any supplied IV. */
|
|
en->iv_len = 0;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
case CRYPTO_CHACHA20_POLY1305:
|
|
if (en->auth_algorithm != 0 || en->auth_key_len != 0)
|
|
return (EINVAL);
|
|
if (en->tls_vminor != TLS_MINOR_VER_TWO &&
|
|
en->tls_vminor != TLS_MINOR_VER_THREE)
|
|
return (EINVAL);
|
|
if (en->iv_len != TLS_CHACHA20_IV_LEN)
|
|
return (EINVAL);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
error = ktls_start_kthreads();
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
|
|
|
|
counter_u64_add(ktls_offload_active, 1);
|
|
|
|
refcount_init(&tls->refcount, 1);
|
|
if (direction == KTLS_RX) {
|
|
TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls);
|
|
} else {
|
|
TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
|
|
tls->inp = so->so_pcb;
|
|
in_pcbref(tls->inp);
|
|
tls->tx = true;
|
|
}
|
|
|
|
tls->wq_index = ktls_get_cpu(so);
|
|
|
|
tls->params.cipher_algorithm = en->cipher_algorithm;
|
|
tls->params.auth_algorithm = en->auth_algorithm;
|
|
tls->params.tls_vmajor = en->tls_vmajor;
|
|
tls->params.tls_vminor = en->tls_vminor;
|
|
tls->params.flags = en->flags;
|
|
tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
|
|
|
|
/* Set the header and trailer lengths. */
|
|
tls->params.tls_hlen = sizeof(struct tls_record_layer);
|
|
switch (en->cipher_algorithm) {
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
/*
|
|
* TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
|
|
* nonce. TLS 1.3 uses a 12 byte implicit IV.
|
|
*/
|
|
if (en->tls_vminor < TLS_MINOR_VER_THREE)
|
|
tls->params.tls_hlen += sizeof(uint64_t);
|
|
tls->params.tls_tlen = AES_GMAC_HASH_LEN;
|
|
tls->params.tls_bs = 1;
|
|
break;
|
|
case CRYPTO_AES_CBC:
|
|
switch (en->auth_algorithm) {
|
|
case CRYPTO_SHA1_HMAC:
|
|
if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
|
|
/* Implicit IV, no nonce. */
|
|
tls->sequential_records = true;
|
|
tls->next_seqno = be64dec(en->rec_seq);
|
|
STAILQ_INIT(&tls->pending_records);
|
|
} else {
|
|
tls->params.tls_hlen += AES_BLOCK_LEN;
|
|
}
|
|
tls->params.tls_tlen = AES_BLOCK_LEN +
|
|
SHA1_HASH_LEN;
|
|
break;
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
tls->params.tls_hlen += AES_BLOCK_LEN;
|
|
tls->params.tls_tlen = AES_BLOCK_LEN +
|
|
SHA2_256_HASH_LEN;
|
|
break;
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
tls->params.tls_hlen += AES_BLOCK_LEN;
|
|
tls->params.tls_tlen = AES_BLOCK_LEN +
|
|
SHA2_384_HASH_LEN;
|
|
break;
|
|
default:
|
|
panic("invalid hmac");
|
|
}
|
|
tls->params.tls_bs = AES_BLOCK_LEN;
|
|
break;
|
|
case CRYPTO_CHACHA20_POLY1305:
|
|
/*
|
|
* Chacha20 uses a 12 byte implicit IV.
|
|
*/
|
|
tls->params.tls_tlen = POLY1305_HASH_LEN;
|
|
tls->params.tls_bs = 1;
|
|
break;
|
|
default:
|
|
panic("invalid cipher");
|
|
}
|
|
|
|
/*
|
|
* TLS 1.3 includes optional padding which we do not support,
|
|
* and also puts the "real" record type at the end of the
|
|
* encrypted data.
|
|
*/
|
|
if (en->tls_vminor == TLS_MINOR_VER_THREE)
|
|
tls->params.tls_tlen += sizeof(uint8_t);
|
|
|
|
KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
|
|
("TLS header length too long: %d", tls->params.tls_hlen));
|
|
KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
|
|
("TLS trailer length too long: %d", tls->params.tls_tlen));
|
|
|
|
if (en->auth_key_len != 0) {
|
|
tls->params.auth_key_len = en->auth_key_len;
|
|
tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
|
|
M_WAITOK);
|
|
error = copyin(en->auth_key, tls->params.auth_key,
|
|
en->auth_key_len);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
tls->params.cipher_key_len = en->cipher_key_len;
|
|
tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
|
|
error = copyin(en->cipher_key, tls->params.cipher_key,
|
|
en->cipher_key_len);
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* This holds the implicit portion of the nonce for AEAD
|
|
* ciphers and the initial implicit IV for TLS 1.0. The
|
|
* explicit portions of the IV are generated in ktls_frame().
|
|
*/
|
|
if (en->iv_len != 0) {
|
|
tls->params.iv_len = en->iv_len;
|
|
error = copyin(en->iv, tls->params.iv, en->iv_len);
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* For TLS 1.2 with GCM, generate an 8-byte nonce as a
|
|
* counter to generate unique explicit IVs.
|
|
*
|
|
* Store this counter in the last 8 bytes of the IV
|
|
* array so that it is 8-byte aligned.
|
|
*/
|
|
if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
|
|
en->tls_vminor == TLS_MINOR_VER_TWO)
|
|
arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
|
|
}
|
|
|
|
*tlsp = tls;
|
|
return (0);
|
|
|
|
out:
|
|
ktls_free(tls);
|
|
return (error);
|
|
}
|
|
|
|
static struct ktls_session *
|
|
ktls_clone_session(struct ktls_session *tls, int direction)
|
|
{
|
|
struct ktls_session *tls_new;
|
|
|
|
tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
|
|
|
|
counter_u64_add(ktls_offload_active, 1);
|
|
|
|
refcount_init(&tls_new->refcount, 1);
|
|
if (direction == KTLS_RX) {
|
|
TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag,
|
|
tls_new);
|
|
} else {
|
|
TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag,
|
|
tls_new);
|
|
tls_new->inp = tls->inp;
|
|
tls_new->tx = true;
|
|
in_pcbref(tls_new->inp);
|
|
}
|
|
|
|
/* Copy fields from existing session. */
|
|
tls_new->params = tls->params;
|
|
tls_new->wq_index = tls->wq_index;
|
|
|
|
/* Deep copy keys. */
|
|
if (tls_new->params.auth_key != NULL) {
|
|
tls_new->params.auth_key = malloc(tls->params.auth_key_len,
|
|
M_KTLS, M_WAITOK);
|
|
memcpy(tls_new->params.auth_key, tls->params.auth_key,
|
|
tls->params.auth_key_len);
|
|
}
|
|
|
|
tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
|
|
M_WAITOK);
|
|
memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
|
|
tls->params.cipher_key_len);
|
|
|
|
return (tls_new);
|
|
}
|
|
|
|
#ifdef TCP_OFFLOAD
|
|
static int
|
|
ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
|
|
{
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
int error;
|
|
|
|
inp = so->so_pcb;
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_flags & INP_DROPPED) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
if (inp->inp_socket == NULL) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
tp = intotcpcb(inp);
|
|
if (!(tp->t_flags & TF_TOE)) {
|
|
INP_WUNLOCK(inp);
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
error = tcp_offload_alloc_tls_session(tp, tls, direction);
|
|
INP_WUNLOCK(inp);
|
|
if (error == 0) {
|
|
tls->mode = TCP_TLS_MODE_TOE;
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_toe_cbc, 1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_toe_gcm, 1);
|
|
break;
|
|
case CRYPTO_CHACHA20_POLY1305:
|
|
counter_u64_add(ktls_toe_chacha20, 1);
|
|
break;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Common code used when first enabling ifnet TLS on a connection or
|
|
* when allocating a new ifnet TLS session due to a routing change.
|
|
* This function allocates a new TLS send tag on whatever interface
|
|
* the connection is currently routed over.
|
|
*/
|
|
static int
|
|
ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
|
|
struct m_snd_tag **mstp)
|
|
{
|
|
union if_snd_tag_alloc_params params;
|
|
struct ifnet *ifp;
|
|
struct nhop_object *nh;
|
|
struct tcpcb *tp;
|
|
int error;
|
|
|
|
INP_RLOCK(inp);
|
|
if (inp->inp_flags & INP_DROPPED) {
|
|
INP_RUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
if (inp->inp_socket == NULL) {
|
|
INP_RUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
tp = intotcpcb(inp);
|
|
|
|
/*
|
|
* Check administrative controls on ifnet TLS to determine if
|
|
* ifnet TLS should be denied.
|
|
*
|
|
* - Always permit 'force' requests.
|
|
* - ktls_ifnet_permitted == 0: always deny.
|
|
*/
|
|
if (!force && ktls_ifnet_permitted == 0) {
|
|
INP_RUNLOCK(inp);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* XXX: Use the cached route in the inpcb to find the
|
|
* interface. This should perhaps instead use
|
|
* rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only
|
|
* enabled after a connection has completed key negotiation in
|
|
* userland, the cached route will be present in practice.
|
|
*/
|
|
nh = inp->inp_route.ro_nh;
|
|
if (nh == NULL) {
|
|
INP_RUNLOCK(inp);
|
|
return (ENXIO);
|
|
}
|
|
ifp = nh->nh_ifp;
|
|
if_ref(ifp);
|
|
|
|
/*
|
|
* Allocate a TLS + ratelimit tag if the connection has an
|
|
* existing pacing rate.
|
|
*/
|
|
if (tp->t_pacing_rate != -1 &&
|
|
(if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) {
|
|
params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
|
|
params.tls_rate_limit.inp = inp;
|
|
params.tls_rate_limit.tls = tls;
|
|
params.tls_rate_limit.max_rate = tp->t_pacing_rate;
|
|
} else {
|
|
params.hdr.type = IF_SND_TAG_TYPE_TLS;
|
|
params.tls.inp = inp;
|
|
params.tls.tls = tls;
|
|
}
|
|
params.hdr.flowid = inp->inp_flowid;
|
|
params.hdr.flowtype = inp->inp_flowtype;
|
|
params.hdr.numa_domain = inp->inp_numa_domain;
|
|
INP_RUNLOCK(inp);
|
|
|
|
if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
} else {
|
|
if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
}
|
|
error = m_snd_tag_alloc(ifp, ¶ms, mstp);
|
|
out:
|
|
if_rele(ifp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Allocate an initial TLS receive tag for doing HW decryption of TLS
|
|
* data.
|
|
*
|
|
* This function allocates a new TLS receive tag on whatever interface
|
|
* the connection is currently routed over. If the connection ends up
|
|
* using a different interface for receive this will get fixed up via
|
|
* ktls_input_ifp_mismatch as future packets arrive.
|
|
*/
|
|
static int
|
|
ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls,
|
|
struct m_snd_tag **mstp)
|
|
{
|
|
union if_snd_tag_alloc_params params;
|
|
struct ifnet *ifp;
|
|
struct nhop_object *nh;
|
|
int error;
|
|
|
|
if (!ktls_ocf_recrypt_supported(tls))
|
|
return (ENXIO);
|
|
|
|
INP_RLOCK(inp);
|
|
if (inp->inp_flags & INP_DROPPED) {
|
|
INP_RUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
if (inp->inp_socket == NULL) {
|
|
INP_RUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
|
|
/*
|
|
* Check administrative controls on ifnet TLS to determine if
|
|
* ifnet TLS should be denied.
|
|
*/
|
|
if (ktls_ifnet_permitted == 0) {
|
|
INP_RUNLOCK(inp);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* XXX: As with ktls_alloc_snd_tag, use the cached route in
|
|
* the inpcb to find the interface.
|
|
*/
|
|
nh = inp->inp_route.ro_nh;
|
|
if (nh == NULL) {
|
|
INP_RUNLOCK(inp);
|
|
return (ENXIO);
|
|
}
|
|
ifp = nh->nh_ifp;
|
|
if_ref(ifp);
|
|
tls->rx_ifp = ifp;
|
|
|
|
params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
|
|
params.hdr.flowid = inp->inp_flowid;
|
|
params.hdr.flowtype = inp->inp_flowtype;
|
|
params.hdr.numa_domain = inp->inp_numa_domain;
|
|
params.tls_rx.inp = inp;
|
|
params.tls_rx.tls = tls;
|
|
params.tls_rx.vlan_id = 0;
|
|
|
|
INP_RUNLOCK(inp);
|
|
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
} else {
|
|
if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
}
|
|
error = m_snd_tag_alloc(ifp, ¶ms, mstp);
|
|
|
|
/*
|
|
* If this connection is over a vlan, vlan_snd_tag_alloc
|
|
* rewrites vlan_id with the saved interface. Save the VLAN
|
|
* ID for use in ktls_reset_receive_tag which allocates new
|
|
* receive tags directly from the leaf interface bypassing
|
|
* if_vlan.
|
|
*/
|
|
if (error == 0)
|
|
tls->rx_vlan_id = params.tls_rx.vlan_id;
|
|
out:
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction,
|
|
bool force)
|
|
{
|
|
struct m_snd_tag *mst;
|
|
int error;
|
|
|
|
switch (direction) {
|
|
case KTLS_TX:
|
|
error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
|
|
if (__predict_false(error != 0))
|
|
goto done;
|
|
break;
|
|
case KTLS_RX:
|
|
KASSERT(!force, ("%s: forced receive tag", __func__));
|
|
error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst);
|
|
if (__predict_false(error != 0))
|
|
goto done;
|
|
break;
|
|
default:
|
|
__assert_unreachable();
|
|
}
|
|
|
|
tls->mode = TCP_TLS_MODE_IFNET;
|
|
tls->snd_tag = mst;
|
|
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_ifnet_cbc, 1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_ifnet_gcm, 1);
|
|
break;
|
|
case CRYPTO_CHACHA20_POLY1305:
|
|
counter_u64_add(ktls_ifnet_chacha20, 1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
done:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
ktls_use_sw(struct ktls_session *tls)
|
|
{
|
|
tls->mode = TCP_TLS_MODE_SW;
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_sw_cbc, 1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_sw_gcm, 1);
|
|
break;
|
|
case CRYPTO_CHACHA20_POLY1305:
|
|
counter_u64_add(ktls_sw_chacha20, 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
|
|
{
|
|
int error;
|
|
|
|
error = ktls_ocf_try(so, tls, direction);
|
|
if (error)
|
|
return (error);
|
|
ktls_use_sw(tls);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* KTLS RX stores data in the socket buffer as a list of TLS records,
|
|
* where each record is stored as a control message containg the TLS
|
|
* header followed by data mbufs containing the decrypted data. This
|
|
* is different from KTLS TX which always uses an mb_ext_pgs mbuf for
|
|
* both encrypted and decrypted data. TLS records decrypted by a NIC
|
|
* should be queued to the socket buffer as records, but encrypted
|
|
* data which needs to be decrypted by software arrives as a stream of
|
|
* regular mbufs which need to be converted. In addition, there may
|
|
* already be pending encrypted data in the socket buffer when KTLS RX
|
|
* is enabled.
|
|
*
|
|
* To manage not-yet-decrypted data for KTLS RX, the following scheme
|
|
* is used:
|
|
*
|
|
* - A single chain of NOTREADY mbufs is hung off of sb_mtls.
|
|
*
|
|
* - ktls_check_rx checks this chain of mbufs reading the TLS header
|
|
* from the first mbuf. Once all of the data for that TLS record is
|
|
* queued, the socket is queued to a worker thread.
|
|
*
|
|
* - The worker thread calls ktls_decrypt to decrypt TLS records in
|
|
* the TLS chain. Each TLS record is detached from the TLS chain,
|
|
* decrypted, and inserted into the regular socket buffer chain as
|
|
* record starting with a control message holding the TLS header and
|
|
* a chain of mbufs holding the encrypted data.
|
|
*/
|
|
|
|
static void
|
|
sb_mark_notready(struct sockbuf *sb)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = sb->sb_mb;
|
|
sb->sb_mtls = m;
|
|
sb->sb_mb = NULL;
|
|
sb->sb_mbtail = NULL;
|
|
sb->sb_lastrecord = NULL;
|
|
for (; m != NULL; m = m->m_next) {
|
|
KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
|
|
__func__));
|
|
KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
|
|
__func__));
|
|
KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
|
|
__func__));
|
|
m->m_flags |= M_NOTREADY;
|
|
sb->sb_acc -= m->m_len;
|
|
sb->sb_tlscc += m->m_len;
|
|
sb->sb_mtlstail = m;
|
|
}
|
|
KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
|
|
("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
|
|
sb->sb_ccc));
|
|
}
|
|
|
|
/*
|
|
* Return information about the pending TLS data in a socket
|
|
* buffer. On return, 'seqno' is set to the sequence number
|
|
* of the next TLS record to be received, 'resid' is set to
|
|
* the amount of bytes still needed for the last pending
|
|
* record. The function returns 'false' if the last pending
|
|
* record contains a partial TLS header. In that case, 'resid'
|
|
* is the number of bytes needed to complete the TLS header.
|
|
*/
|
|
bool
|
|
ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
|
|
{
|
|
struct tls_record_layer hdr;
|
|
struct mbuf *m;
|
|
uint64_t seqno;
|
|
size_t resid;
|
|
u_int offset, record_len;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
MPASS(sb->sb_flags & SB_TLS_RX);
|
|
seqno = sb->sb_tls_seqno;
|
|
resid = sb->sb_tlscc;
|
|
m = sb->sb_mtls;
|
|
offset = 0;
|
|
|
|
if (resid == 0) {
|
|
*seqnop = seqno;
|
|
*residp = 0;
|
|
return (true);
|
|
}
|
|
|
|
for (;;) {
|
|
seqno++;
|
|
|
|
if (resid < sizeof(hdr)) {
|
|
*seqnop = seqno;
|
|
*residp = sizeof(hdr) - resid;
|
|
return (false);
|
|
}
|
|
|
|
m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
|
|
|
|
record_len = sizeof(hdr) + ntohs(hdr.tls_length);
|
|
if (resid <= record_len) {
|
|
*seqnop = seqno;
|
|
*residp = record_len - resid;
|
|
return (true);
|
|
}
|
|
resid -= record_len;
|
|
|
|
while (record_len != 0) {
|
|
if (m->m_len - offset > record_len) {
|
|
offset += record_len;
|
|
break;
|
|
}
|
|
|
|
record_len -= (m->m_len - offset);
|
|
offset = 0;
|
|
m = m->m_next;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
ktls_enable_rx(struct socket *so, struct tls_enable *en)
|
|
{
|
|
struct ktls_session *tls;
|
|
int error;
|
|
|
|
if (!ktls_offload_enable)
|
|
return (ENOTSUP);
|
|
|
|
counter_u64_add(ktls_offload_enable_calls, 1);
|
|
|
|
/*
|
|
* This should always be true since only the TCP socket option
|
|
* invokes this function.
|
|
*/
|
|
if (so->so_proto->pr_protocol != IPPROTO_TCP)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* XXX: Don't overwrite existing sessions. We should permit
|
|
* this to support rekeying in the future.
|
|
*/
|
|
if (so->so_rcv.sb_tls_info != NULL)
|
|
return (EALREADY);
|
|
|
|
if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
|
|
return (ENOTSUP);
|
|
|
|
error = ktls_create_session(so, en, &tls, KTLS_RX);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = ktls_ocf_try(so, tls, KTLS_RX);
|
|
if (error) {
|
|
ktls_free(tls);
|
|
return (error);
|
|
}
|
|
|
|
/* Mark the socket as using TLS offload. */
|
|
SOCK_RECVBUF_LOCK(so);
|
|
if (SOLISTENING(so)) {
|
|
SOCK_RECVBUF_UNLOCK(so);
|
|
ktls_free(tls);
|
|
return (EINVAL);
|
|
}
|
|
so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
|
|
so->so_rcv.sb_tls_info = tls;
|
|
so->so_rcv.sb_flags |= SB_TLS_RX;
|
|
|
|
/* Mark existing data as not ready until it can be decrypted. */
|
|
sb_mark_notready(&so->so_rcv);
|
|
ktls_check_rx(&so->so_rcv);
|
|
SOCK_RECVBUF_UNLOCK(so);
|
|
|
|
/* Prefer TOE -> ifnet TLS -> software TLS. */
|
|
#ifdef TCP_OFFLOAD
|
|
error = ktls_try_toe(so, tls, KTLS_RX);
|
|
if (error)
|
|
#endif
|
|
error = ktls_try_ifnet(so, tls, KTLS_RX, false);
|
|
if (error)
|
|
ktls_use_sw(tls);
|
|
|
|
counter_u64_add(ktls_offload_total, 1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ktls_enable_tx(struct socket *so, struct tls_enable *en)
|
|
{
|
|
struct ktls_session *tls;
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
int error;
|
|
|
|
if (!ktls_offload_enable)
|
|
return (ENOTSUP);
|
|
|
|
counter_u64_add(ktls_offload_enable_calls, 1);
|
|
|
|
/*
|
|
* This should always be true since only the TCP socket option
|
|
* invokes this function.
|
|
*/
|
|
if (so->so_proto->pr_protocol != IPPROTO_TCP)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* XXX: Don't overwrite existing sessions. We should permit
|
|
* this to support rekeying in the future.
|
|
*/
|
|
if (so->so_snd.sb_tls_info != NULL)
|
|
return (EALREADY);
|
|
|
|
if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
|
|
return (ENOTSUP);
|
|
|
|
/* TLS requires ext pgs */
|
|
if (mb_use_ext_pgs == 0)
|
|
return (ENXIO);
|
|
|
|
error = ktls_create_session(so, en, &tls, KTLS_TX);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Prefer TOE -> ifnet TLS -> software TLS. */
|
|
#ifdef TCP_OFFLOAD
|
|
error = ktls_try_toe(so, tls, KTLS_TX);
|
|
if (error)
|
|
#endif
|
|
error = ktls_try_ifnet(so, tls, KTLS_TX, false);
|
|
if (error)
|
|
error = ktls_try_sw(so, tls, KTLS_TX);
|
|
|
|
if (error) {
|
|
ktls_free(tls);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Serialize with sosend_generic() and make sure that we're not
|
|
* operating on a listening socket.
|
|
*/
|
|
error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
|
|
if (error) {
|
|
ktls_free(tls);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Write lock the INP when setting sb_tls_info so that
|
|
* routines in tcp_ratelimit.c can read sb_tls_info while
|
|
* holding the INP lock.
|
|
*/
|
|
inp = so->so_pcb;
|
|
INP_WLOCK(inp);
|
|
SOCK_SENDBUF_LOCK(so);
|
|
so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
|
|
so->so_snd.sb_tls_info = tls;
|
|
if (tls->mode != TCP_TLS_MODE_SW) {
|
|
tp = intotcpcb(inp);
|
|
MPASS(tp->t_nic_ktls_xmit == 0);
|
|
tp->t_nic_ktls_xmit = 1;
|
|
if (tp->t_fb->tfb_hwtls_change != NULL)
|
|
(*tp->t_fb->tfb_hwtls_change)(tp, 1);
|
|
}
|
|
SOCK_SENDBUF_UNLOCK(so);
|
|
INP_WUNLOCK(inp);
|
|
SOCK_IO_SEND_UNLOCK(so);
|
|
|
|
counter_u64_add(ktls_offload_total, 1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ktls_get_rx_mode(struct socket *so, int *modep)
|
|
{
|
|
struct ktls_session *tls;
|
|
struct inpcb *inp __diagused;
|
|
|
|
if (SOLISTENING(so))
|
|
return (EINVAL);
|
|
inp = so->so_pcb;
|
|
INP_WLOCK_ASSERT(inp);
|
|
SOCK_RECVBUF_LOCK(so);
|
|
tls = so->so_rcv.sb_tls_info;
|
|
if (tls == NULL)
|
|
*modep = TCP_TLS_MODE_NONE;
|
|
else
|
|
*modep = tls->mode;
|
|
SOCK_RECVBUF_UNLOCK(so);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
|
|
*
|
|
* This function gets information about the next TCP- and TLS-
|
|
* sequence number to be processed by the TLS receive worker
|
|
* thread. The information is extracted from the given "inpcb"
|
|
* structure. The values are stored in host endian format at the two
|
|
* given output pointer locations. The TCP sequence number points to
|
|
* the beginning of the TLS header.
|
|
*
|
|
* This function returns zero on success, else a non-zero error code
|
|
* is returned.
|
|
*/
|
|
int
|
|
ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
|
|
{
|
|
struct socket *so;
|
|
struct tcpcb *tp;
|
|
|
|
INP_RLOCK(inp);
|
|
so = inp->inp_socket;
|
|
if (__predict_false(so == NULL)) {
|
|
INP_RUNLOCK(inp);
|
|
return (EINVAL);
|
|
}
|
|
if (inp->inp_flags & INP_DROPPED) {
|
|
INP_RUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
|
|
tp = intotcpcb(inp);
|
|
MPASS(tp != NULL);
|
|
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
*tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
|
|
*tlsseq = so->so_rcv.sb_tls_seqno;
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
|
|
INP_RUNLOCK(inp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ktls_get_tx_mode(struct socket *so, int *modep)
|
|
{
|
|
struct ktls_session *tls;
|
|
struct inpcb *inp __diagused;
|
|
|
|
if (SOLISTENING(so))
|
|
return (EINVAL);
|
|
inp = so->so_pcb;
|
|
INP_WLOCK_ASSERT(inp);
|
|
SOCK_SENDBUF_LOCK(so);
|
|
tls = so->so_snd.sb_tls_info;
|
|
if (tls == NULL)
|
|
*modep = TCP_TLS_MODE_NONE;
|
|
else
|
|
*modep = tls->mode;
|
|
SOCK_SENDBUF_UNLOCK(so);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Switch between SW and ifnet TLS sessions as requested.
|
|
*/
|
|
int
|
|
ktls_set_tx_mode(struct socket *so, int mode)
|
|
{
|
|
struct ktls_session *tls, *tls_new;
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
int error;
|
|
|
|
if (SOLISTENING(so))
|
|
return (EINVAL);
|
|
switch (mode) {
|
|
case TCP_TLS_MODE_SW:
|
|
case TCP_TLS_MODE_IFNET:
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
inp = so->so_pcb;
|
|
INP_WLOCK_ASSERT(inp);
|
|
tp = intotcpcb(inp);
|
|
|
|
if (mode == TCP_TLS_MODE_IFNET) {
|
|
/* Don't allow enabling ifnet ktls multiple times */
|
|
if (tp->t_nic_ktls_xmit)
|
|
return (EALREADY);
|
|
|
|
/*
|
|
* Don't enable ifnet ktls if we disabled it due to an
|
|
* excessive retransmission rate
|
|
*/
|
|
if (tp->t_nic_ktls_xmit_dis)
|
|
return (ENXIO);
|
|
}
|
|
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
tls = so->so_snd.sb_tls_info;
|
|
if (tls == NULL) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (0);
|
|
}
|
|
|
|
if (tls->mode == mode) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (0);
|
|
}
|
|
|
|
tls = ktls_hold(tls);
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
INP_WUNLOCK(inp);
|
|
|
|
tls_new = ktls_clone_session(tls, KTLS_TX);
|
|
|
|
if (mode == TCP_TLS_MODE_IFNET)
|
|
error = ktls_try_ifnet(so, tls_new, KTLS_TX, true);
|
|
else
|
|
error = ktls_try_sw(so, tls_new, KTLS_TX);
|
|
if (error) {
|
|
counter_u64_add(ktls_switch_failed, 1);
|
|
ktls_free(tls_new);
|
|
ktls_free(tls);
|
|
INP_WLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
|
|
if (error) {
|
|
counter_u64_add(ktls_switch_failed, 1);
|
|
ktls_free(tls_new);
|
|
ktls_free(tls);
|
|
INP_WLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* If we raced with another session change, keep the existing
|
|
* session.
|
|
*/
|
|
if (tls != so->so_snd.sb_tls_info) {
|
|
counter_u64_add(ktls_switch_failed, 1);
|
|
SOCK_IO_SEND_UNLOCK(so);
|
|
ktls_free(tls_new);
|
|
ktls_free(tls);
|
|
INP_WLOCK(inp);
|
|
return (EBUSY);
|
|
}
|
|
|
|
INP_WLOCK(inp);
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
so->so_snd.sb_tls_info = tls_new;
|
|
if (tls_new->mode != TCP_TLS_MODE_SW) {
|
|
MPASS(tp->t_nic_ktls_xmit == 0);
|
|
tp->t_nic_ktls_xmit = 1;
|
|
if (tp->t_fb->tfb_hwtls_change != NULL)
|
|
(*tp->t_fb->tfb_hwtls_change)(tp, 1);
|
|
}
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
SOCK_IO_SEND_UNLOCK(so);
|
|
|
|
/*
|
|
* Drop two references on 'tls'. The first is for the
|
|
* ktls_hold() above. The second drops the reference from the
|
|
* socket buffer.
|
|
*/
|
|
KASSERT(tls->refcount >= 2, ("too few references on old session"));
|
|
ktls_free(tls);
|
|
ktls_free(tls);
|
|
|
|
if (mode == TCP_TLS_MODE_IFNET)
|
|
counter_u64_add(ktls_switch_to_ifnet, 1);
|
|
else
|
|
counter_u64_add(ktls_switch_to_sw, 1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Try to allocate a new TLS receive tag. This task is scheduled when
|
|
* sbappend_ktls_rx detects an input path change. If a new tag is
|
|
* allocated, replace the tag in the TLS session. If a new tag cannot
|
|
* be allocated, let the session fall back to software decryption.
|
|
*/
|
|
static void
|
|
ktls_reset_receive_tag(void *context, int pending)
|
|
{
|
|
union if_snd_tag_alloc_params params;
|
|
struct ktls_session *tls;
|
|
struct m_snd_tag *mst;
|
|
struct inpcb *inp;
|
|
struct ifnet *ifp;
|
|
struct socket *so;
|
|
int error;
|
|
|
|
MPASS(pending == 1);
|
|
|
|
tls = context;
|
|
so = tls->so;
|
|
inp = so->so_pcb;
|
|
ifp = NULL;
|
|
|
|
INP_RLOCK(inp);
|
|
if (inp->inp_flags & INP_DROPPED) {
|
|
INP_RUNLOCK(inp);
|
|
goto out;
|
|
}
|
|
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
mst = tls->snd_tag;
|
|
tls->snd_tag = NULL;
|
|
if (mst != NULL)
|
|
m_snd_tag_rele(mst);
|
|
|
|
ifp = tls->rx_ifp;
|
|
if_ref(ifp);
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
|
|
params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
|
|
params.hdr.flowid = inp->inp_flowid;
|
|
params.hdr.flowtype = inp->inp_flowtype;
|
|
params.hdr.numa_domain = inp->inp_numa_domain;
|
|
params.tls_rx.inp = inp;
|
|
params.tls_rx.tls = tls;
|
|
params.tls_rx.vlan_id = tls->rx_vlan_id;
|
|
INP_RUNLOCK(inp);
|
|
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0)
|
|
goto out;
|
|
} else {
|
|
if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0)
|
|
goto out;
|
|
}
|
|
|
|
error = m_snd_tag_alloc(ifp, ¶ms, &mst);
|
|
if (error == 0) {
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
tls->snd_tag = mst;
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
|
|
counter_u64_add(ktls_ifnet_reset, 1);
|
|
} else {
|
|
/*
|
|
* Just fall back to software decryption if a tag
|
|
* cannot be allocated leaving the connection intact.
|
|
* If a future input path change switches to another
|
|
* interface this connection will resume ifnet TLS.
|
|
*/
|
|
counter_u64_add(ktls_ifnet_reset_failed, 1);
|
|
}
|
|
|
|
out:
|
|
mtx_pool_lock(mtxpool_sleep, tls);
|
|
tls->reset_pending = false;
|
|
mtx_pool_unlock(mtxpool_sleep, tls);
|
|
|
|
if (ifp != NULL)
|
|
if_rele(ifp);
|
|
sorele(so);
|
|
ktls_free(tls);
|
|
}
|
|
|
|
/*
|
|
* Try to allocate a new TLS send tag. This task is scheduled when
|
|
* ip_output detects a route change while trying to transmit a packet
|
|
* holding a TLS record. If a new tag is allocated, replace the tag
|
|
* in the TLS session. Subsequent packets on the connection will use
|
|
* the new tag. If a new tag cannot be allocated, drop the
|
|
* connection.
|
|
*/
|
|
static void
|
|
ktls_reset_send_tag(void *context, int pending)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct ktls_session *tls;
|
|
struct m_snd_tag *old, *new;
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
int error;
|
|
|
|
MPASS(pending == 1);
|
|
|
|
tls = context;
|
|
inp = tls->inp;
|
|
|
|
/*
|
|
* Free the old tag first before allocating a new one.
|
|
* ip[6]_output_send() will treat a NULL send tag the same as
|
|
* an ifp mismatch and drop packets until a new tag is
|
|
* allocated.
|
|
*
|
|
* Write-lock the INP when changing tls->snd_tag since
|
|
* ip[6]_output_send() holds a read-lock when reading the
|
|
* pointer.
|
|
*/
|
|
INP_WLOCK(inp);
|
|
old = tls->snd_tag;
|
|
tls->snd_tag = NULL;
|
|
INP_WUNLOCK(inp);
|
|
if (old != NULL)
|
|
m_snd_tag_rele(old);
|
|
|
|
error = ktls_alloc_snd_tag(inp, tls, true, &new);
|
|
|
|
if (error == 0) {
|
|
INP_WLOCK(inp);
|
|
tls->snd_tag = new;
|
|
mtx_pool_lock(mtxpool_sleep, tls);
|
|
tls->reset_pending = false;
|
|
mtx_pool_unlock(mtxpool_sleep, tls);
|
|
INP_WUNLOCK(inp);
|
|
|
|
counter_u64_add(ktls_ifnet_reset, 1);
|
|
|
|
/*
|
|
* XXX: Should we kick tcp_output explicitly now that
|
|
* the send tag is fixed or just rely on timers?
|
|
*/
|
|
} else {
|
|
NET_EPOCH_ENTER(et);
|
|
INP_WLOCK(inp);
|
|
if (!(inp->inp_flags & INP_DROPPED)) {
|
|
tp = intotcpcb(inp);
|
|
CURVNET_SET(inp->inp_vnet);
|
|
tp = tcp_drop(tp, ECONNABORTED);
|
|
CURVNET_RESTORE();
|
|
if (tp != NULL) {
|
|
counter_u64_add(ktls_ifnet_reset_dropped, 1);
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
} else
|
|
INP_WUNLOCK(inp);
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
counter_u64_add(ktls_ifnet_reset_failed, 1);
|
|
|
|
/*
|
|
* Leave reset_pending true to avoid future tasks while
|
|
* the socket goes away.
|
|
*/
|
|
}
|
|
|
|
ktls_free(tls);
|
|
}
|
|
|
|
void
|
|
ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp)
|
|
{
|
|
struct ktls_session *tls;
|
|
struct socket *so;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
|
|
__func__, sb));
|
|
so = __containerof(sb, struct socket, so_rcv);
|
|
|
|
tls = sb->sb_tls_info;
|
|
if_rele(tls->rx_ifp);
|
|
if_ref(ifp);
|
|
tls->rx_ifp = ifp;
|
|
|
|
/*
|
|
* See if we should schedule a task to update the receive tag for
|
|
* this session.
|
|
*/
|
|
mtx_pool_lock(mtxpool_sleep, tls);
|
|
if (!tls->reset_pending) {
|
|
(void) ktls_hold(tls);
|
|
soref(so);
|
|
tls->so = so;
|
|
tls->reset_pending = true;
|
|
taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
|
|
}
|
|
mtx_pool_unlock(mtxpool_sleep, tls);
|
|
}
|
|
|
|
int
|
|
ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
|
|
{
|
|
|
|
if (inp == NULL)
|
|
return (ENOBUFS);
|
|
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
/*
|
|
* See if we should schedule a task to update the send tag for
|
|
* this session.
|
|
*/
|
|
mtx_pool_lock(mtxpool_sleep, tls);
|
|
if (!tls->reset_pending) {
|
|
(void) ktls_hold(tls);
|
|
tls->reset_pending = true;
|
|
taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
|
|
}
|
|
mtx_pool_unlock(mtxpool_sleep, tls);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
#ifdef RATELIMIT
|
|
int
|
|
ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
|
|
{
|
|
union if_snd_tag_modify_params params = {
|
|
.rate_limit.max_rate = max_pacing_rate,
|
|
.rate_limit.flags = M_NOWAIT,
|
|
};
|
|
struct m_snd_tag *mst;
|
|
|
|
/* Can't get to the inp, but it should be locked. */
|
|
/* INP_LOCK_ASSERT(inp); */
|
|
|
|
MPASS(tls->mode == TCP_TLS_MODE_IFNET);
|
|
|
|
if (tls->snd_tag == NULL) {
|
|
/*
|
|
* Resetting send tag, ignore this change. The
|
|
* pending reset may or may not see this updated rate
|
|
* in the tcpcb. If it doesn't, we will just lose
|
|
* this rate change.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
mst = tls->snd_tag;
|
|
|
|
MPASS(mst != NULL);
|
|
MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
|
|
|
|
return (mst->sw->snd_tag_modify(mst, ¶ms));
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ktls_destroy_help(void *context, int pending __unused)
|
|
{
|
|
ktls_destroy(context);
|
|
}
|
|
|
|
void
|
|
ktls_destroy(struct ktls_session *tls)
|
|
{
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
bool wlocked;
|
|
|
|
MPASS(tls->refcount == 0);
|
|
|
|
inp = tls->inp;
|
|
if (tls->tx) {
|
|
wlocked = INP_WLOCKED(inp);
|
|
if (!wlocked && !INP_TRY_WLOCK(inp)) {
|
|
/*
|
|
* rwlocks read locks are anonymous, and there
|
|
* is no way to know if our current thread
|
|
* holds an rlock on the inp. As a rough
|
|
* estimate, check to see if the thread holds
|
|
* *any* rlocks at all. If it does not, then we
|
|
* know that we don't hold the inp rlock, and
|
|
* can safely take the wlock
|
|
*/
|
|
if (curthread->td_rw_rlocks == 0) {
|
|
INP_WLOCK(inp);
|
|
} else {
|
|
/*
|
|
* We might hold the rlock, so let's
|
|
* do the destroy in a taskqueue
|
|
* context to avoid a potential
|
|
* deadlock. This should be very
|
|
* rare.
|
|
*/
|
|
counter_u64_add(ktls_destroy_task, 1);
|
|
TASK_INIT(&tls->destroy_task, 0,
|
|
ktls_destroy_help, tls);
|
|
(void)taskqueue_enqueue(taskqueue_thread,
|
|
&tls->destroy_task);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tls->sequential_records) {
|
|
struct mbuf *m, *n;
|
|
int page_count;
|
|
|
|
STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
|
|
page_count = m->m_epg_enc_cnt;
|
|
while (page_count > 0) {
|
|
KASSERT(page_count >= m->m_epg_nrdy,
|
|
("%s: too few pages", __func__));
|
|
page_count -= m->m_epg_nrdy;
|
|
m = m_free(m);
|
|
}
|
|
}
|
|
}
|
|
|
|
counter_u64_add(ktls_offload_active, -1);
|
|
switch (tls->mode) {
|
|
case TCP_TLS_MODE_SW:
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_sw_cbc, -1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_sw_gcm, -1);
|
|
break;
|
|
case CRYPTO_CHACHA20_POLY1305:
|
|
counter_u64_add(ktls_sw_chacha20, -1);
|
|
break;
|
|
}
|
|
break;
|
|
case TCP_TLS_MODE_IFNET:
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_ifnet_cbc, -1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_ifnet_gcm, -1);
|
|
break;
|
|
case CRYPTO_CHACHA20_POLY1305:
|
|
counter_u64_add(ktls_ifnet_chacha20, -1);
|
|
break;
|
|
}
|
|
if (tls->snd_tag != NULL)
|
|
m_snd_tag_rele(tls->snd_tag);
|
|
if (tls->rx_ifp != NULL)
|
|
if_rele(tls->rx_ifp);
|
|
if (tls->tx) {
|
|
INP_WLOCK_ASSERT(inp);
|
|
tp = intotcpcb(inp);
|
|
MPASS(tp->t_nic_ktls_xmit == 1);
|
|
tp->t_nic_ktls_xmit = 0;
|
|
}
|
|
break;
|
|
#ifdef TCP_OFFLOAD
|
|
case TCP_TLS_MODE_TOE:
|
|
switch (tls->params.cipher_algorithm) {
|
|
case CRYPTO_AES_CBC:
|
|
counter_u64_add(ktls_toe_cbc, -1);
|
|
break;
|
|
case CRYPTO_AES_NIST_GCM_16:
|
|
counter_u64_add(ktls_toe_gcm, -1);
|
|
break;
|
|
case CRYPTO_CHACHA20_POLY1305:
|
|
counter_u64_add(ktls_toe_chacha20, -1);
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
if (tls->ocf_session != NULL)
|
|
ktls_ocf_free(tls);
|
|
if (tls->params.auth_key != NULL) {
|
|
zfree(tls->params.auth_key, M_KTLS);
|
|
tls->params.auth_key = NULL;
|
|
tls->params.auth_key_len = 0;
|
|
}
|
|
if (tls->params.cipher_key != NULL) {
|
|
zfree(tls->params.cipher_key, M_KTLS);
|
|
tls->params.cipher_key = NULL;
|
|
tls->params.cipher_key_len = 0;
|
|
}
|
|
if (tls->tx) {
|
|
INP_WLOCK_ASSERT(inp);
|
|
if (!in_pcbrele_wlocked(inp) && !wlocked)
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
|
|
|
|
uma_zfree(ktls_session_zone, tls);
|
|
}
|
|
|
|
void
|
|
ktls_seq(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
|
|
for (; m != NULL; m = m->m_next) {
|
|
KASSERT((m->m_flags & M_EXTPG) != 0,
|
|
("ktls_seq: mapped mbuf %p", m));
|
|
|
|
m->m_epg_seqno = sb->sb_tls_seqno;
|
|
sb->sb_tls_seqno++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add TLS framing (headers and trailers) to a chain of mbufs. Each
|
|
* mbuf in the chain must be an unmapped mbuf. The payload of the
|
|
* mbuf must be populated with the payload of each TLS record.
|
|
*
|
|
* The record_type argument specifies the TLS record type used when
|
|
* populating the TLS header.
|
|
*
|
|
* The enq_count argument on return is set to the number of pages of
|
|
* payload data for this entire chain that need to be encrypted via SW
|
|
* encryption. The returned value should be passed to ktls_enqueue
|
|
* when scheduling encryption of this chain of mbufs. To handle the
|
|
* special case of empty fragments for TLS 1.0 sessions, an empty
|
|
* fragment counts as one page.
|
|
*/
|
|
void
|
|
ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
|
|
uint8_t record_type)
|
|
{
|
|
struct tls_record_layer *tlshdr;
|
|
struct mbuf *m;
|
|
uint64_t *noncep;
|
|
uint16_t tls_len;
|
|
int maxlen __diagused;
|
|
|
|
maxlen = tls->params.max_frame_len;
|
|
*enq_cnt = 0;
|
|
for (m = top; m != NULL; m = m->m_next) {
|
|
/*
|
|
* All mbufs in the chain should be TLS records whose
|
|
* payload does not exceed the maximum frame length.
|
|
*
|
|
* Empty TLS 1.0 records are permitted when using CBC.
|
|
*/
|
|
KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
|
|
(m->m_len > 0 || ktls_permit_empty_frames(tls)),
|
|
("ktls_frame: m %p len %d", m, m->m_len));
|
|
|
|
/*
|
|
* TLS frames require unmapped mbufs to store session
|
|
* info.
|
|
*/
|
|
KASSERT((m->m_flags & M_EXTPG) != 0,
|
|
("ktls_frame: mapped mbuf %p (top = %p)", m, top));
|
|
|
|
tls_len = m->m_len;
|
|
|
|
/* Save a reference to the session. */
|
|
m->m_epg_tls = ktls_hold(tls);
|
|
|
|
m->m_epg_hdrlen = tls->params.tls_hlen;
|
|
m->m_epg_trllen = tls->params.tls_tlen;
|
|
if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
|
|
int bs, delta;
|
|
|
|
/*
|
|
* AES-CBC pads messages to a multiple of the
|
|
* block size. Note that the padding is
|
|
* applied after the digest and the encryption
|
|
* is done on the "plaintext || mac || padding".
|
|
* At least one byte of padding is always
|
|
* present.
|
|
*
|
|
* Compute the final trailer length assuming
|
|
* at most one block of padding.
|
|
* tls->params.tls_tlen is the maximum
|
|
* possible trailer length (padding + digest).
|
|
* delta holds the number of excess padding
|
|
* bytes if the maximum were used. Those
|
|
* extra bytes are removed.
|
|
*/
|
|
bs = tls->params.tls_bs;
|
|
delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
|
|
m->m_epg_trllen -= delta;
|
|
}
|
|
m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
|
|
|
|
/* Populate the TLS header. */
|
|
tlshdr = (void *)m->m_epg_hdr;
|
|
tlshdr->tls_vmajor = tls->params.tls_vmajor;
|
|
|
|
/*
|
|
* TLS 1.3 masquarades as TLS 1.2 with a record type
|
|
* of TLS_RLTYPE_APP.
|
|
*/
|
|
if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
|
|
tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
|
|
tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
|
|
tlshdr->tls_type = TLS_RLTYPE_APP;
|
|
/* save the real record type for later */
|
|
m->m_epg_record_type = record_type;
|
|
m->m_epg_trail[0] = record_type;
|
|
} else {
|
|
tlshdr->tls_vminor = tls->params.tls_vminor;
|
|
tlshdr->tls_type = record_type;
|
|
}
|
|
tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
|
|
|
|
/*
|
|
* Store nonces / explicit IVs after the end of the
|
|
* TLS header.
|
|
*
|
|
* For GCM with TLS 1.2, an 8 byte nonce is copied
|
|
* from the end of the IV. The nonce is then
|
|
* incremented for use by the next record.
|
|
*
|
|
* For CBC, a random nonce is inserted for TLS 1.1+.
|
|
*/
|
|
if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
|
|
tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
|
|
noncep = (uint64_t *)(tls->params.iv + 8);
|
|
be64enc(tlshdr + 1, *noncep);
|
|
(*noncep)++;
|
|
} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
|
|
tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
|
|
arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
|
|
|
|
/*
|
|
* When using SW encryption, mark the mbuf not ready.
|
|
* It will be marked ready via sbready() after the
|
|
* record has been encrypted.
|
|
*
|
|
* When using ifnet TLS, unencrypted TLS records are
|
|
* sent down the stack to the NIC.
|
|
*/
|
|
if (tls->mode == TCP_TLS_MODE_SW) {
|
|
m->m_flags |= M_NOTREADY;
|
|
if (__predict_false(tls_len == 0)) {
|
|
/* TLS 1.0 empty fragment. */
|
|
m->m_epg_nrdy = 1;
|
|
} else
|
|
m->m_epg_nrdy = m->m_epg_npgs;
|
|
*enq_cnt += m->m_epg_nrdy;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
ktls_permit_empty_frames(struct ktls_session *tls)
|
|
{
|
|
return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
|
|
tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
|
|
}
|
|
|
|
void
|
|
ktls_check_rx(struct sockbuf *sb)
|
|
{
|
|
struct tls_record_layer hdr;
|
|
struct ktls_wq *wq;
|
|
struct socket *so;
|
|
bool running;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
|
|
__func__, sb));
|
|
so = __containerof(sb, struct socket, so_rcv);
|
|
|
|
if (sb->sb_flags & SB_TLS_RX_RUNNING)
|
|
return;
|
|
|
|
/* Is there enough queued for a TLS header? */
|
|
if (sb->sb_tlscc < sizeof(hdr)) {
|
|
if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
|
|
so->so_error = EMSGSIZE;
|
|
return;
|
|
}
|
|
|
|
m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
|
|
|
|
/* Is the entire record queued? */
|
|
if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
|
|
if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
|
|
so->so_error = EMSGSIZE;
|
|
return;
|
|
}
|
|
|
|
sb->sb_flags |= SB_TLS_RX_RUNNING;
|
|
|
|
soref(so);
|
|
wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
|
|
mtx_lock(&wq->mtx);
|
|
STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
|
|
running = wq->running;
|
|
mtx_unlock(&wq->mtx);
|
|
if (!running)
|
|
wakeup(wq);
|
|
counter_u64_add(ktls_cnt_rx_queued, 1);
|
|
}
|
|
|
|
static struct mbuf *
|
|
ktls_detach_record(struct sockbuf *sb, int len)
|
|
{
|
|
struct mbuf *m, *n, *top;
|
|
int remain;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
MPASS(len <= sb->sb_tlscc);
|
|
|
|
/*
|
|
* If TLS chain is the exact size of the record,
|
|
* just grab the whole record.
|
|
*/
|
|
top = sb->sb_mtls;
|
|
if (sb->sb_tlscc == len) {
|
|
sb->sb_mtls = NULL;
|
|
sb->sb_mtlstail = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* While it would be nice to use m_split() here, we need
|
|
* to know exactly what m_split() allocates to update the
|
|
* accounting, so do it inline instead.
|
|
*/
|
|
remain = len;
|
|
for (m = top; remain > m->m_len; m = m->m_next)
|
|
remain -= m->m_len;
|
|
|
|
/* Easy case: don't have to split 'm'. */
|
|
if (remain == m->m_len) {
|
|
sb->sb_mtls = m->m_next;
|
|
if (sb->sb_mtls == NULL)
|
|
sb->sb_mtlstail = NULL;
|
|
m->m_next = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Need to allocate an mbuf to hold the remainder of 'm'. Try
|
|
* with M_NOWAIT first.
|
|
*/
|
|
n = m_get(M_NOWAIT, MT_DATA);
|
|
if (n == NULL) {
|
|
/*
|
|
* Use M_WAITOK with socket buffer unlocked. If
|
|
* 'sb_mtls' changes while the lock is dropped, return
|
|
* NULL to force the caller to retry.
|
|
*/
|
|
SOCKBUF_UNLOCK(sb);
|
|
|
|
n = m_get(M_WAITOK, MT_DATA);
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
if (sb->sb_mtls != top) {
|
|
m_free(n);
|
|
return (NULL);
|
|
}
|
|
}
|
|
n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED));
|
|
|
|
/* Store remainder in 'n'. */
|
|
n->m_len = m->m_len - remain;
|
|
if (m->m_flags & M_EXT) {
|
|
n->m_data = m->m_data + remain;
|
|
mb_dupcl(n, m);
|
|
} else {
|
|
bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
|
|
}
|
|
|
|
/* Trim 'm' and update accounting. */
|
|
m->m_len -= n->m_len;
|
|
sb->sb_tlscc -= n->m_len;
|
|
sb->sb_ccc -= n->m_len;
|
|
|
|
/* Account for 'n'. */
|
|
sballoc_ktls_rx(sb, n);
|
|
|
|
/* Insert 'n' into the TLS chain. */
|
|
sb->sb_mtls = n;
|
|
n->m_next = m->m_next;
|
|
if (sb->sb_mtlstail == m)
|
|
sb->sb_mtlstail = n;
|
|
|
|
/* Detach the record from the TLS chain. */
|
|
m->m_next = NULL;
|
|
|
|
out:
|
|
MPASS(m_length(top, NULL) == len);
|
|
for (m = top; m != NULL; m = m->m_next)
|
|
sbfree_ktls_rx(sb, m);
|
|
sb->sb_tlsdcc = len;
|
|
sb->sb_ccc += len;
|
|
SBCHECK(sb);
|
|
return (top);
|
|
}
|
|
|
|
/*
|
|
* Determine the length of the trailing zero padding and find the real
|
|
* record type in the byte before the padding.
|
|
*
|
|
* Walking the mbuf chain backwards is clumsy, so another option would
|
|
* be to scan forwards remembering the last non-zero byte before the
|
|
* trailer. However, it would be expensive to scan the entire record.
|
|
* Instead, find the last non-zero byte of each mbuf in the chain
|
|
* keeping track of the relative offset of that nonzero byte.
|
|
*
|
|
* trail_len is the size of the MAC/tag on input and is set to the
|
|
* size of the full trailer including padding and the record type on
|
|
* return.
|
|
*/
|
|
static int
|
|
tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
|
|
int *trailer_len, uint8_t *record_typep)
|
|
{
|
|
char *cp;
|
|
u_int digest_start, last_offset, m_len, offset;
|
|
uint8_t record_type;
|
|
|
|
digest_start = tls_len - *trailer_len;
|
|
last_offset = 0;
|
|
offset = 0;
|
|
for (; m != NULL && offset < digest_start;
|
|
offset += m->m_len, m = m->m_next) {
|
|
/* Don't look for padding in the tag. */
|
|
m_len = min(digest_start - offset, m->m_len);
|
|
cp = mtod(m, char *);
|
|
|
|
/* Find last non-zero byte in this mbuf. */
|
|
while (m_len > 0 && cp[m_len - 1] == 0)
|
|
m_len--;
|
|
if (m_len > 0) {
|
|
record_type = cp[m_len - 1];
|
|
last_offset = offset + m_len;
|
|
}
|
|
}
|
|
if (last_offset < tls->params.tls_hlen)
|
|
return (EBADMSG);
|
|
|
|
*record_typep = record_type;
|
|
*trailer_len = tls_len - last_offset + 1;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check if a mbuf chain is fully decrypted at the given offset and
|
|
* length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is
|
|
* decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted
|
|
* and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data
|
|
* is encrypted.
|
|
*/
|
|
ktls_mbuf_crypto_st_t
|
|
ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len)
|
|
{
|
|
int m_flags_ored = 0;
|
|
int m_flags_anded = -1;
|
|
|
|
for (; mb != NULL; mb = mb->m_next) {
|
|
if (offset < mb->m_len)
|
|
break;
|
|
offset -= mb->m_len;
|
|
}
|
|
offset += len;
|
|
|
|
for (; mb != NULL; mb = mb->m_next) {
|
|
m_flags_ored |= mb->m_flags;
|
|
m_flags_anded &= mb->m_flags;
|
|
|
|
if (offset <= mb->m_len)
|
|
break;
|
|
offset -= mb->m_len;
|
|
}
|
|
MPASS(mb != NULL || offset == 0);
|
|
|
|
if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED)
|
|
return (KTLS_MBUF_CRYPTO_ST_MIXED);
|
|
else
|
|
return ((m_flags_ored & M_DECRYPTED) ?
|
|
KTLS_MBUF_CRYPTO_ST_DECRYPTED :
|
|
KTLS_MBUF_CRYPTO_ST_ENCRYPTED);
|
|
}
|
|
|
|
/*
|
|
* ktls_resync_ifnet - get HW TLS RX back on track after packet loss
|
|
*/
|
|
static int
|
|
ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num)
|
|
{
|
|
union if_snd_tag_modify_params params;
|
|
struct m_snd_tag *mst;
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
|
|
mst = so->so_rcv.sb_tls_info->snd_tag;
|
|
if (__predict_false(mst == NULL))
|
|
return (EINVAL);
|
|
|
|
inp = sotoinpcb(so);
|
|
if (__predict_false(inp == NULL))
|
|
return (EINVAL);
|
|
|
|
INP_RLOCK(inp);
|
|
if (inp->inp_flags & INP_DROPPED) {
|
|
INP_RUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
|
|
tp = intotcpcb(inp);
|
|
MPASS(tp != NULL);
|
|
|
|
/* Get the TCP sequence number of the next valid TLS header. */
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
params.tls_rx.tls_hdr_tcp_sn =
|
|
tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len;
|
|
params.tls_rx.tls_rec_length = tls_len;
|
|
params.tls_rx.tls_seq_number = tls_rcd_num;
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
|
|
INP_RUNLOCK(inp);
|
|
|
|
MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX);
|
|
return (mst->sw->snd_tag_modify(mst, ¶ms));
|
|
}
|
|
|
|
static void
|
|
ktls_drop(struct socket *so, int error)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct inpcb *inp = sotoinpcb(so);
|
|
struct tcpcb *tp;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
INP_WLOCK(inp);
|
|
if (!(inp->inp_flags & INP_DROPPED)) {
|
|
tp = intotcpcb(inp);
|
|
CURVNET_SET(inp->inp_vnet);
|
|
tp = tcp_drop(tp, error);
|
|
CURVNET_RESTORE();
|
|
if (tp != NULL)
|
|
INP_WUNLOCK(inp);
|
|
} else {
|
|
so->so_error = error;
|
|
SOCK_RECVBUF_LOCK(so);
|
|
sorwakeup_locked(so);
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
static void
|
|
ktls_decrypt(struct socket *so)
|
|
{
|
|
char tls_header[MBUF_PEXT_HDR_LEN];
|
|
struct ktls_session *tls;
|
|
struct sockbuf *sb;
|
|
struct tls_record_layer *hdr;
|
|
struct tls_get_record tgr;
|
|
struct mbuf *control, *data, *m;
|
|
ktls_mbuf_crypto_st_t state;
|
|
uint64_t seqno;
|
|
int error, remain, tls_len, trail_len;
|
|
bool tls13;
|
|
uint8_t vminor, record_type;
|
|
|
|
hdr = (struct tls_record_layer *)tls_header;
|
|
sb = &so->so_rcv;
|
|
SOCKBUF_LOCK(sb);
|
|
KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
|
|
("%s: socket %p not running", __func__, so));
|
|
|
|
tls = sb->sb_tls_info;
|
|
MPASS(tls != NULL);
|
|
|
|
tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
|
|
if (tls13)
|
|
vminor = TLS_MINOR_VER_TWO;
|
|
else
|
|
vminor = tls->params.tls_vminor;
|
|
for (;;) {
|
|
/* Is there enough queued for a TLS header? */
|
|
if (sb->sb_tlscc < tls->params.tls_hlen)
|
|
break;
|
|
|
|
m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
|
|
tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
|
|
|
|
if (hdr->tls_vmajor != tls->params.tls_vmajor ||
|
|
hdr->tls_vminor != vminor)
|
|
error = EINVAL;
|
|
else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
|
|
error = EINVAL;
|
|
else if (tls_len < tls->params.tls_hlen || tls_len >
|
|
tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
|
|
tls->params.tls_tlen)
|
|
error = EMSGSIZE;
|
|
else
|
|
error = 0;
|
|
if (__predict_false(error != 0)) {
|
|
/*
|
|
* We have a corrupted record and are likely
|
|
* out of sync. The connection isn't
|
|
* recoverable at this point, so abort it.
|
|
*/
|
|
SOCKBUF_UNLOCK(sb);
|
|
counter_u64_add(ktls_offload_corrupted_records, 1);
|
|
|
|
ktls_drop(so, error);
|
|
goto deref;
|
|
}
|
|
|
|
/* Is the entire record queued? */
|
|
if (sb->sb_tlscc < tls_len)
|
|
break;
|
|
|
|
/*
|
|
* Split out the portion of the mbuf chain containing
|
|
* this TLS record.
|
|
*/
|
|
data = ktls_detach_record(sb, tls_len);
|
|
if (data == NULL)
|
|
continue;
|
|
MPASS(sb->sb_tlsdcc == tls_len);
|
|
|
|
seqno = sb->sb_tls_seqno;
|
|
sb->sb_tls_seqno++;
|
|
SBCHECK(sb);
|
|
SOCKBUF_UNLOCK(sb);
|
|
|
|
/* get crypto state for this TLS record */
|
|
state = ktls_mbuf_crypto_state(data, 0, tls_len);
|
|
|
|
switch (state) {
|
|
case KTLS_MBUF_CRYPTO_ST_MIXED:
|
|
error = ktls_ocf_recrypt(tls, hdr, data, seqno);
|
|
if (error)
|
|
break;
|
|
/* FALLTHROUGH */
|
|
case KTLS_MBUF_CRYPTO_ST_ENCRYPTED:
|
|
error = ktls_ocf_decrypt(tls, hdr, data, seqno,
|
|
&trail_len);
|
|
if (__predict_true(error == 0)) {
|
|
if (tls13) {
|
|
error = tls13_find_record_type(tls, data,
|
|
tls_len, &trail_len, &record_type);
|
|
} else {
|
|
record_type = hdr->tls_type;
|
|
}
|
|
}
|
|
break;
|
|
case KTLS_MBUF_CRYPTO_ST_DECRYPTED:
|
|
/*
|
|
* NIC TLS is only supported for AEAD
|
|
* ciphersuites which used a fixed sized
|
|
* trailer.
|
|
*/
|
|
if (tls13) {
|
|
trail_len = tls->params.tls_tlen - 1;
|
|
error = tls13_find_record_type(tls, data,
|
|
tls_len, &trail_len, &record_type);
|
|
} else {
|
|
trail_len = tls->params.tls_tlen;
|
|
error = 0;
|
|
record_type = hdr->tls_type;
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (error) {
|
|
counter_u64_add(ktls_offload_failed_crypto, 1);
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
if (sb->sb_tlsdcc == 0) {
|
|
/*
|
|
* sbcut/drop/flush discarded these
|
|
* mbufs.
|
|
*/
|
|
m_freem(data);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Drop this TLS record's data, but keep
|
|
* decrypting subsequent records.
|
|
*/
|
|
sb->sb_ccc -= tls_len;
|
|
sb->sb_tlsdcc = 0;
|
|
|
|
if (error != EMSGSIZE)
|
|
error = EBADMSG;
|
|
CURVNET_SET(so->so_vnet);
|
|
so->so_error = error;
|
|
sorwakeup_locked(so);
|
|
CURVNET_RESTORE();
|
|
|
|
m_freem(data);
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
continue;
|
|
}
|
|
|
|
/* Allocate the control mbuf. */
|
|
memset(&tgr, 0, sizeof(tgr));
|
|
tgr.tls_type = record_type;
|
|
tgr.tls_vmajor = hdr->tls_vmajor;
|
|
tgr.tls_vminor = hdr->tls_vminor;
|
|
tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
|
|
trail_len);
|
|
control = sbcreatecontrol(&tgr, sizeof(tgr),
|
|
TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
if (sb->sb_tlsdcc == 0) {
|
|
/* sbcut/drop/flush discarded these mbufs. */
|
|
MPASS(sb->sb_tlscc == 0);
|
|
m_freem(data);
|
|
m_freem(control);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Clear the 'dcc' accounting in preparation for
|
|
* adding the decrypted record.
|
|
*/
|
|
sb->sb_ccc -= tls_len;
|
|
sb->sb_tlsdcc = 0;
|
|
SBCHECK(sb);
|
|
|
|
/* If there is no payload, drop all of the data. */
|
|
if (tgr.tls_length == htobe16(0)) {
|
|
m_freem(data);
|
|
data = NULL;
|
|
} else {
|
|
/* Trim header. */
|
|
remain = tls->params.tls_hlen;
|
|
while (remain > 0) {
|
|
if (data->m_len > remain) {
|
|
data->m_data += remain;
|
|
data->m_len -= remain;
|
|
break;
|
|
}
|
|
remain -= data->m_len;
|
|
data = m_free(data);
|
|
}
|
|
|
|
/* Trim trailer and clear M_NOTREADY. */
|
|
remain = be16toh(tgr.tls_length);
|
|
m = data;
|
|
for (m = data; remain > m->m_len; m = m->m_next) {
|
|
m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
|
|
remain -= m->m_len;
|
|
}
|
|
m->m_len = remain;
|
|
m_freem(m->m_next);
|
|
m->m_next = NULL;
|
|
m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
|
|
|
|
/* Set EOR on the final mbuf. */
|
|
m->m_flags |= M_EOR;
|
|
}
|
|
|
|
sbappendcontrol_locked(sb, data, control, 0);
|
|
|
|
if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) {
|
|
sb->sb_flags |= SB_TLS_RX_RESYNC;
|
|
SOCKBUF_UNLOCK(sb);
|
|
ktls_resync_ifnet(so, tls_len, seqno);
|
|
SOCKBUF_LOCK(sb);
|
|
} else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) {
|
|
sb->sb_flags &= ~SB_TLS_RX_RESYNC;
|
|
SOCKBUF_UNLOCK(sb);
|
|
ktls_resync_ifnet(so, 0, seqno);
|
|
SOCKBUF_LOCK(sb);
|
|
}
|
|
}
|
|
|
|
sb->sb_flags &= ~SB_TLS_RX_RUNNING;
|
|
|
|
if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
|
|
so->so_error = EMSGSIZE;
|
|
|
|
sorwakeup_locked(so);
|
|
|
|
deref:
|
|
SOCKBUF_UNLOCK_ASSERT(sb);
|
|
|
|
CURVNET_SET(so->so_vnet);
|
|
sorele(so);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
void
|
|
ktls_enqueue_to_free(struct mbuf *m)
|
|
{
|
|
struct ktls_wq *wq;
|
|
bool running;
|
|
|
|
/* Mark it for freeing. */
|
|
m->m_epg_flags |= EPG_FLAG_2FREE;
|
|
wq = &ktls_wq[m->m_epg_tls->wq_index];
|
|
mtx_lock(&wq->mtx);
|
|
STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
|
|
running = wq->running;
|
|
mtx_unlock(&wq->mtx);
|
|
if (!running)
|
|
wakeup(wq);
|
|
}
|
|
|
|
static void *
|
|
ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
|
|
{
|
|
void *buf;
|
|
int domain, running;
|
|
|
|
if (m->m_epg_npgs <= 2)
|
|
return (NULL);
|
|
if (ktls_buffer_zone == NULL)
|
|
return (NULL);
|
|
if ((u_int)(ticks - wq->lastallocfail) < hz) {
|
|
/*
|
|
* Rate-limit allocation attempts after a failure.
|
|
* ktls_buffer_import() will acquire a per-domain mutex to check
|
|
* the free page queues and may fail consistently if memory is
|
|
* fragmented.
|
|
*/
|
|
return (NULL);
|
|
}
|
|
buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
|
|
if (buf == NULL) {
|
|
domain = PCPU_GET(domain);
|
|
wq->lastallocfail = ticks;
|
|
|
|
/*
|
|
* Note that this check is "racy", but the races are
|
|
* harmless, and are either a spurious wakeup if
|
|
* multiple threads fail allocations before the alloc
|
|
* thread wakes, or waiting an extra second in case we
|
|
* see an old value of running == true.
|
|
*/
|
|
if (!VM_DOMAIN_EMPTY(domain)) {
|
|
running = atomic_load_int(&ktls_domains[domain].reclaim_td.running);
|
|
if (!running)
|
|
wakeup(&ktls_domains[domain].reclaim_td);
|
|
}
|
|
}
|
|
return (buf);
|
|
}
|
|
|
|
static int
|
|
ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
|
|
struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
|
|
{
|
|
vm_page_t pg;
|
|
int error, i, len, off;
|
|
|
|
KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
|
|
("%p not unready & nomap mbuf\n", m));
|
|
KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
|
|
("page count %d larger than maximum frame length %d", m->m_epg_npgs,
|
|
ktls_maxlen));
|
|
|
|
/* Anonymous mbufs are encrypted in place. */
|
|
if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
|
|
return (ktls_ocf_encrypt(state, tls, m, NULL, 0));
|
|
|
|
/*
|
|
* For file-backed mbufs (from sendfile), anonymous wired
|
|
* pages are allocated and used as the encryption destination.
|
|
*/
|
|
if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
|
|
len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
|
|
m->m_epg_1st_off;
|
|
state->dst_iov[0].iov_base = (char *)state->cbuf +
|
|
m->m_epg_1st_off;
|
|
state->dst_iov[0].iov_len = len;
|
|
state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
|
|
i = 1;
|
|
} else {
|
|
off = m->m_epg_1st_off;
|
|
for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
|
|
pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
|
|
VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
|
|
len = m_epg_pagelen(m, i, off);
|
|
state->parray[i] = VM_PAGE_TO_PHYS(pg);
|
|
state->dst_iov[i].iov_base =
|
|
(char *)PHYS_TO_DMAP(state->parray[i]) + off;
|
|
state->dst_iov[i].iov_len = len;
|
|
}
|
|
}
|
|
KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
|
|
state->dst_iov[i].iov_base = m->m_epg_trail;
|
|
state->dst_iov[i].iov_len = m->m_epg_trllen;
|
|
|
|
error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1);
|
|
|
|
if (__predict_false(error != 0)) {
|
|
/* Free the anonymous pages. */
|
|
if (state->cbuf != NULL)
|
|
uma_zfree(ktls_buffer_zone, state->cbuf);
|
|
else {
|
|
for (i = 0; i < m->m_epg_npgs; i++) {
|
|
pg = PHYS_TO_VM_PAGE(state->parray[i]);
|
|
(void)vm_page_unwire_noq(pg);
|
|
vm_page_free(pg);
|
|
}
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/* Number of TLS records in a batch passed to ktls_enqueue(). */
|
|
static u_int
|
|
ktls_batched_records(struct mbuf *m)
|
|
{
|
|
int page_count, records;
|
|
|
|
records = 0;
|
|
page_count = m->m_epg_enc_cnt;
|
|
while (page_count > 0) {
|
|
records++;
|
|
page_count -= m->m_epg_nrdy;
|
|
m = m->m_next;
|
|
}
|
|
KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
|
|
return (records);
|
|
}
|
|
|
|
void
|
|
ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
|
|
{
|
|
struct ktls_session *tls;
|
|
struct ktls_wq *wq;
|
|
int queued;
|
|
bool running;
|
|
|
|
KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
|
|
(M_EXTPG | M_NOTREADY)),
|
|
("ktls_enqueue: %p not unready & nomap mbuf\n", m));
|
|
KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
|
|
|
|
KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
|
|
|
|
m->m_epg_enc_cnt = page_count;
|
|
|
|
/*
|
|
* Save a pointer to the socket. The caller is responsible
|
|
* for taking an additional reference via soref().
|
|
*/
|
|
m->m_epg_so = so;
|
|
|
|
queued = 1;
|
|
tls = m->m_epg_tls;
|
|
wq = &ktls_wq[tls->wq_index];
|
|
mtx_lock(&wq->mtx);
|
|
if (__predict_false(tls->sequential_records)) {
|
|
/*
|
|
* For TLS 1.0, records must be encrypted
|
|
* sequentially. For a given connection, all records
|
|
* queued to the associated work queue are processed
|
|
* sequentially. However, sendfile(2) might complete
|
|
* I/O requests spanning multiple TLS records out of
|
|
* order. Here we ensure TLS records are enqueued to
|
|
* the work queue in FIFO order.
|
|
*
|
|
* tls->next_seqno holds the sequence number of the
|
|
* next TLS record that should be enqueued to the work
|
|
* queue. If this next record is not tls->next_seqno,
|
|
* it must be a future record, so insert it, sorted by
|
|
* TLS sequence number, into tls->pending_records and
|
|
* return.
|
|
*
|
|
* If this TLS record matches tls->next_seqno, place
|
|
* it in the work queue and then check
|
|
* tls->pending_records to see if any
|
|
* previously-queued records are now ready for
|
|
* encryption.
|
|
*/
|
|
if (m->m_epg_seqno != tls->next_seqno) {
|
|
struct mbuf *n, *p;
|
|
|
|
p = NULL;
|
|
STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
|
|
if (n->m_epg_seqno > m->m_epg_seqno)
|
|
break;
|
|
p = n;
|
|
}
|
|
if (n == NULL)
|
|
STAILQ_INSERT_TAIL(&tls->pending_records, m,
|
|
m_epg_stailq);
|
|
else if (p == NULL)
|
|
STAILQ_INSERT_HEAD(&tls->pending_records, m,
|
|
m_epg_stailq);
|
|
else
|
|
STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
|
|
m_epg_stailq);
|
|
mtx_unlock(&wq->mtx);
|
|
counter_u64_add(ktls_cnt_tx_pending, 1);
|
|
return;
|
|
}
|
|
|
|
tls->next_seqno += ktls_batched_records(m);
|
|
STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
|
|
|
|
while (!STAILQ_EMPTY(&tls->pending_records)) {
|
|
struct mbuf *n;
|
|
|
|
n = STAILQ_FIRST(&tls->pending_records);
|
|
if (n->m_epg_seqno != tls->next_seqno)
|
|
break;
|
|
|
|
queued++;
|
|
STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
|
|
tls->next_seqno += ktls_batched_records(n);
|
|
STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
|
|
}
|
|
counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
|
|
} else
|
|
STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
|
|
|
|
running = wq->running;
|
|
mtx_unlock(&wq->mtx);
|
|
if (!running)
|
|
wakeup(wq);
|
|
counter_u64_add(ktls_cnt_tx_queued, queued);
|
|
}
|
|
|
|
/*
|
|
* Once a file-backed mbuf (from sendfile) has been encrypted, free
|
|
* the pages from the file and replace them with the anonymous pages
|
|
* allocated in ktls_encrypt_record().
|
|
*/
|
|
static void
|
|
ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
|
|
{
|
|
int i;
|
|
|
|
MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
|
|
|
|
/* Free the old pages. */
|
|
m->m_ext.ext_free(m);
|
|
|
|
/* Replace them with the new pages. */
|
|
if (state->cbuf != NULL) {
|
|
for (i = 0; i < m->m_epg_npgs; i++)
|
|
m->m_epg_pa[i] = state->parray[0] + ptoa(i);
|
|
|
|
/* Contig pages should go back to the cache. */
|
|
m->m_ext.ext_free = ktls_free_mext_contig;
|
|
} else {
|
|
for (i = 0; i < m->m_epg_npgs; i++)
|
|
m->m_epg_pa[i] = state->parray[i];
|
|
|
|
/* Use the basic free routine. */
|
|
m->m_ext.ext_free = mb_free_mext_pgs;
|
|
}
|
|
|
|
/* Pages are now writable. */
|
|
m->m_epg_flags |= EPG_FLAG_ANON;
|
|
}
|
|
|
|
static __noinline void
|
|
ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
|
|
{
|
|
struct ktls_ocf_encrypt_state state;
|
|
struct ktls_session *tls;
|
|
struct socket *so;
|
|
struct mbuf *m;
|
|
int error, npages, total_pages;
|
|
|
|
so = top->m_epg_so;
|
|
tls = top->m_epg_tls;
|
|
KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
|
|
KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
|
|
#ifdef INVARIANTS
|
|
top->m_epg_so = NULL;
|
|
#endif
|
|
total_pages = top->m_epg_enc_cnt;
|
|
npages = 0;
|
|
|
|
/*
|
|
* Encrypt the TLS records in the chain of mbufs starting with
|
|
* 'top'. 'total_pages' gives us a total count of pages and is
|
|
* used to know when we have finished encrypting the TLS
|
|
* records originally queued with 'top'.
|
|
*
|
|
* NB: These mbufs are queued in the socket buffer and
|
|
* 'm_next' is traversing the mbufs in the socket buffer. The
|
|
* socket buffer lock is not held while traversing this chain.
|
|
* Since the mbufs are all marked M_NOTREADY their 'm_next'
|
|
* pointers should be stable. However, the 'm_next' of the
|
|
* last mbuf encrypted is not necessarily NULL. It can point
|
|
* to other mbufs appended while 'top' was on the TLS work
|
|
* queue.
|
|
*
|
|
* Each mbuf holds an entire TLS record.
|
|
*/
|
|
error = 0;
|
|
for (m = top; npages != total_pages; m = m->m_next) {
|
|
KASSERT(m->m_epg_tls == tls,
|
|
("different TLS sessions in a single mbuf chain: %p vs %p",
|
|
tls, m->m_epg_tls));
|
|
KASSERT(npages + m->m_epg_npgs <= total_pages,
|
|
("page count mismatch: top %p, total_pages %d, m %p", top,
|
|
total_pages, m));
|
|
|
|
error = ktls_encrypt_record(wq, m, tls, &state);
|
|
if (error) {
|
|
counter_u64_add(ktls_offload_failed_crypto, 1);
|
|
break;
|
|
}
|
|
|
|
if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
|
|
ktls_finish_nonanon(m, &state);
|
|
|
|
npages += m->m_epg_nrdy;
|
|
|
|
/*
|
|
* Drop a reference to the session now that it is no
|
|
* longer needed. Existing code depends on encrypted
|
|
* records having no associated session vs
|
|
* yet-to-be-encrypted records having an associated
|
|
* session.
|
|
*/
|
|
m->m_epg_tls = NULL;
|
|
ktls_free(tls);
|
|
}
|
|
|
|
CURVNET_SET(so->so_vnet);
|
|
if (error == 0) {
|
|
(void)so->so_proto->pr_ready(so, top, npages);
|
|
} else {
|
|
ktls_drop(so, EIO);
|
|
mb_free_notready(top, total_pages);
|
|
}
|
|
|
|
sorele(so);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
void
|
|
ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
|
|
{
|
|
struct ktls_session *tls;
|
|
struct socket *so;
|
|
struct mbuf *m;
|
|
int npages;
|
|
|
|
m = state->m;
|
|
|
|
if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
|
|
ktls_finish_nonanon(m, state);
|
|
|
|
so = state->so;
|
|
free(state, M_KTLS);
|
|
|
|
/*
|
|
* Drop a reference to the session now that it is no longer
|
|
* needed. Existing code depends on encrypted records having
|
|
* no associated session vs yet-to-be-encrypted records having
|
|
* an associated session.
|
|
*/
|
|
tls = m->m_epg_tls;
|
|
m->m_epg_tls = NULL;
|
|
ktls_free(tls);
|
|
|
|
if (error != 0)
|
|
counter_u64_add(ktls_offload_failed_crypto, 1);
|
|
|
|
CURVNET_SET(so->so_vnet);
|
|
npages = m->m_epg_nrdy;
|
|
|
|
if (error == 0) {
|
|
(void)so->so_proto->pr_ready(so, m, npages);
|
|
} else {
|
|
ktls_drop(so, EIO);
|
|
mb_free_notready(m, npages);
|
|
}
|
|
|
|
sorele(so);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Similar to ktls_encrypt, but used with asynchronous OCF backends
|
|
* (coprocessors) where encryption does not use host CPU resources and
|
|
* it can be beneficial to queue more requests than CPUs.
|
|
*/
|
|
static __noinline void
|
|
ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
|
|
{
|
|
struct ktls_ocf_encrypt_state *state;
|
|
struct ktls_session *tls;
|
|
struct socket *so;
|
|
struct mbuf *m, *n;
|
|
int error, mpages, npages, total_pages;
|
|
|
|
so = top->m_epg_so;
|
|
tls = top->m_epg_tls;
|
|
KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
|
|
KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
|
|
#ifdef INVARIANTS
|
|
top->m_epg_so = NULL;
|
|
#endif
|
|
total_pages = top->m_epg_enc_cnt;
|
|
npages = 0;
|
|
|
|
error = 0;
|
|
for (m = top; npages != total_pages; m = n) {
|
|
KASSERT(m->m_epg_tls == tls,
|
|
("different TLS sessions in a single mbuf chain: %p vs %p",
|
|
tls, m->m_epg_tls));
|
|
KASSERT(npages + m->m_epg_npgs <= total_pages,
|
|
("page count mismatch: top %p, total_pages %d, m %p", top,
|
|
total_pages, m));
|
|
|
|
state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
|
|
soref(so);
|
|
state->so = so;
|
|
state->m = m;
|
|
|
|
mpages = m->m_epg_nrdy;
|
|
n = m->m_next;
|
|
|
|
error = ktls_encrypt_record(wq, m, tls, state);
|
|
if (error) {
|
|
counter_u64_add(ktls_offload_failed_crypto, 1);
|
|
free(state, M_KTLS);
|
|
CURVNET_SET(so->so_vnet);
|
|
sorele(so);
|
|
CURVNET_RESTORE();
|
|
break;
|
|
}
|
|
|
|
npages += mpages;
|
|
}
|
|
|
|
CURVNET_SET(so->so_vnet);
|
|
if (error != 0) {
|
|
ktls_drop(so, EIO);
|
|
mb_free_notready(m, total_pages - npages);
|
|
}
|
|
|
|
sorele(so);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
static int
|
|
ktls_bind_domain(int domain)
|
|
{
|
|
int error;
|
|
|
|
error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
|
|
if (error != 0)
|
|
return (error);
|
|
curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ktls_reclaim_thread(void *ctx)
|
|
{
|
|
struct ktls_domain_info *ktls_domain = ctx;
|
|
struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td;
|
|
struct sysctl_oid *oid;
|
|
char name[80];
|
|
int error, domain;
|
|
|
|
domain = ktls_domain - ktls_domains;
|
|
if (bootverbose)
|
|
printf("Starting KTLS reclaim thread for domain %d\n", domain);
|
|
error = ktls_bind_domain(domain);
|
|
if (error)
|
|
printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n",
|
|
domain, error);
|
|
snprintf(name, sizeof(name), "domain%d", domain);
|
|
oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
|
|
name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
|
|
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims",
|
|
CTLFLAG_RD, &sc->reclaims, 0, "buffers reclaimed");
|
|
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
|
|
CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups");
|
|
SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
|
|
CTLFLAG_RD, &sc->running, 0, "thread running");
|
|
|
|
for (;;) {
|
|
atomic_store_int(&sc->running, 0);
|
|
tsleep(sc, PZERO | PNOLOCK, "-", 0);
|
|
atomic_store_int(&sc->running, 1);
|
|
sc->wakeups++;
|
|
/*
|
|
* Below we attempt to reclaim ktls_max_reclaim
|
|
* buffers using vm_page_reclaim_contig_domain_ext().
|
|
* We do this here, as this function can take several
|
|
* seconds to scan all of memory and it does not
|
|
* matter if this thread pauses for a while. If we
|
|
* block a ktls worker thread, we risk developing
|
|
* backlogs of buffers to be encrypted, leading to
|
|
* surges of traffic and potential NIC output drops.
|
|
*/
|
|
if (!vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL,
|
|
atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, ktls_max_reclaim)) {
|
|
vm_wait_domain(domain);
|
|
} else {
|
|
sc->reclaims += ktls_max_reclaim;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ktls_work_thread(void *ctx)
|
|
{
|
|
struct ktls_wq *wq = ctx;
|
|
struct mbuf *m, *n;
|
|
struct socket *so, *son;
|
|
STAILQ_HEAD(, mbuf) local_m_head;
|
|
STAILQ_HEAD(, socket) local_so_head;
|
|
int cpu;
|
|
|
|
cpu = wq - ktls_wq;
|
|
if (bootverbose)
|
|
printf("Starting KTLS worker thread for CPU %d\n", cpu);
|
|
|
|
/*
|
|
* Bind to a core. If ktls_bind_threads is > 1, then
|
|
* we bind to the NUMA domain instead.
|
|
*/
|
|
if (ktls_bind_threads) {
|
|
int error;
|
|
|
|
if (ktls_bind_threads > 1) {
|
|
struct pcpu *pc = pcpu_find(cpu);
|
|
|
|
error = ktls_bind_domain(pc->pc_domain);
|
|
} else {
|
|
cpuset_t mask;
|
|
|
|
CPU_SETOF(cpu, &mask);
|
|
error = cpuset_setthread(curthread->td_tid, &mask);
|
|
}
|
|
if (error)
|
|
printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
|
|
cpu, error);
|
|
}
|
|
#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
|
|
fpu_kern_thread(0);
|
|
#endif
|
|
for (;;) {
|
|
mtx_lock(&wq->mtx);
|
|
while (STAILQ_EMPTY(&wq->m_head) &&
|
|
STAILQ_EMPTY(&wq->so_head)) {
|
|
wq->running = false;
|
|
mtx_sleep(wq, &wq->mtx, 0, "-", 0);
|
|
wq->running = true;
|
|
}
|
|
|
|
STAILQ_INIT(&local_m_head);
|
|
STAILQ_CONCAT(&local_m_head, &wq->m_head);
|
|
STAILQ_INIT(&local_so_head);
|
|
STAILQ_CONCAT(&local_so_head, &wq->so_head);
|
|
mtx_unlock(&wq->mtx);
|
|
|
|
STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
|
|
if (m->m_epg_flags & EPG_FLAG_2FREE) {
|
|
ktls_free(m->m_epg_tls);
|
|
m_free_raw(m);
|
|
} else {
|
|
if (m->m_epg_tls->sync_dispatch)
|
|
ktls_encrypt(wq, m);
|
|
else
|
|
ktls_encrypt_async(wq, m);
|
|
counter_u64_add(ktls_cnt_tx_queued, -1);
|
|
}
|
|
}
|
|
|
|
STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
|
|
ktls_decrypt(so);
|
|
counter_u64_add(ktls_cnt_rx_queued, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ktls_disable_ifnet_help(void *context, int pending __unused)
|
|
{
|
|
struct ktls_session *tls;
|
|
struct inpcb *inp;
|
|
struct tcpcb *tp;
|
|
struct socket *so;
|
|
int err;
|
|
|
|
tls = context;
|
|
inp = tls->inp;
|
|
if (inp == NULL)
|
|
return;
|
|
INP_WLOCK(inp);
|
|
so = inp->inp_socket;
|
|
MPASS(so != NULL);
|
|
if (inp->inp_flags & INP_DROPPED) {
|
|
goto out;
|
|
}
|
|
|
|
if (so->so_snd.sb_tls_info != NULL)
|
|
err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
|
|
else
|
|
err = ENXIO;
|
|
if (err == 0) {
|
|
counter_u64_add(ktls_ifnet_disable_ok, 1);
|
|
/* ktls_set_tx_mode() drops inp wlock, so recheck flags */
|
|
if ((inp->inp_flags & INP_DROPPED) == 0 &&
|
|
(tp = intotcpcb(inp)) != NULL &&
|
|
tp->t_fb->tfb_hwtls_change != NULL)
|
|
(*tp->t_fb->tfb_hwtls_change)(tp, 0);
|
|
} else {
|
|
counter_u64_add(ktls_ifnet_disable_fail, 1);
|
|
}
|
|
|
|
out:
|
|
CURVNET_SET(so->so_vnet);
|
|
sorele(so);
|
|
CURVNET_RESTORE();
|
|
INP_WUNLOCK(inp);
|
|
ktls_free(tls);
|
|
}
|
|
|
|
/*
|
|
* Called when re-transmits are becoming a substantial portion of the
|
|
* sends on this connection. When this happens, we transition the
|
|
* connection to software TLS. This is needed because most inline TLS
|
|
* NICs keep crypto state only for in-order transmits. This means
|
|
* that to handle a TCP rexmit (which is out-of-order), the NIC must
|
|
* re-DMA the entire TLS record up to and including the current
|
|
* segment. This means that when re-transmitting the last ~1448 byte
|
|
* segment of a 16KB TLS record, we could wind up re-DMA'ing an order
|
|
* of magnitude more data than we are sending. This can cause the
|
|
* PCIe link to saturate well before the network, which can cause
|
|
* output drops, and a general loss of capacity.
|
|
*/
|
|
void
|
|
ktls_disable_ifnet(void *arg)
|
|
{
|
|
struct tcpcb *tp;
|
|
struct inpcb *inp;
|
|
struct socket *so;
|
|
struct ktls_session *tls;
|
|
|
|
tp = arg;
|
|
inp = tptoinpcb(tp);
|
|
INP_WLOCK_ASSERT(inp);
|
|
so = inp->inp_socket;
|
|
SOCK_LOCK(so);
|
|
tls = so->so_snd.sb_tls_info;
|
|
if (tp->t_nic_ktls_xmit_dis == 1) {
|
|
SOCK_UNLOCK(so);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* note that t_nic_ktls_xmit_dis is never cleared; disabling
|
|
* ifnet can only be done once per connection, so we never want
|
|
* to do it again
|
|
*/
|
|
|
|
(void)ktls_hold(tls);
|
|
soref(so);
|
|
tp->t_nic_ktls_xmit_dis = 1;
|
|
SOCK_UNLOCK(so);
|
|
TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
|
|
(void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
|
|
}
|