freebsd-dev/sys/ufs/ffs/ffs_subr.c
Kirk McKusick 52011f5f92 Format cleanups.
No functional change intended.

Differential Revision: https://reviews.freebsd.org/D33424
2022-12-20 18:30:36 -08:00

1089 lines
33 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_subr.c 8.5 (Berkeley) 3/21/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/limits.h>
#ifndef _KERNEL
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <sys/errno.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ffs/fs.h>
uint32_t calculate_crc32c(uint32_t, const void *, size_t);
uint32_t ffs_calc_sbhash(struct fs *);
struct malloc_type;
#define UFS_MALLOC(size, type, flags) malloc(size)
#define UFS_FREE(ptr, type) free(ptr)
#define maxphys MAXPHYS
#else /* _KERNEL */
#include <sys/systm.h>
#include <sys/gsb_crc32.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/ucred.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ffs/fs.h>
#define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
#define UFS_FREE(ptr, type) free(ptr, type)
#endif /* _KERNEL */
/*
* Verify an inode check-hash.
*/
int
ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
{
uint32_t ckhash, save_ckhash;
/*
* Return success if unallocated or we are not doing inode check-hash.
*/
if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
return (0);
/*
* Exclude di_ckhash from the crc32 calculation, e.g., always use
* a check-hash value of zero when calculating the check-hash.
*/
save_ckhash = dip->di_ckhash;
dip->di_ckhash = 0;
ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
dip->di_ckhash = save_ckhash;
if (save_ckhash == ckhash)
return (0);
return (EINVAL);
}
/*
* Update an inode check-hash.
*/
void
ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
{
if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
return;
/*
* Exclude old di_ckhash from the crc32 calculation, e.g., always use
* a check-hash value of zero when calculating the new check-hash.
*/
dip->di_ckhash = 0;
dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
}
/*
* These are the low-level functions that actually read and write
* the superblock and its associated data.
*/
static off_t sblock_try[] = SBLOCKSEARCH;
static int readsuper(void *, struct fs **, off_t, int,
int (*)(void *, off_t, void **, int));
static int validate_sblock(struct fs *, int);
/*
* Read a superblock from the devfd device.
*
* If an alternate superblock is specified, it is read. Otherwise the
* set of locations given in the SBLOCKSEARCH list is searched for a
* superblock. Memory is allocated for the superblock by the readfunc and
* is returned. If filltype is non-NULL, additional memory is allocated
* of type filltype and filled in with the superblock summary information.
* All memory is freed when any error is returned.
*
* If a superblock is found, zero is returned. Otherwise one of the
* following error values is returned:
* EIO: non-existent or truncated superblock.
* EIO: error reading summary information.
* ENOENT: no usable known superblock found.
* EILSEQ: filesystem with wrong byte order found.
* ENOMEM: failed to allocate space for the superblock.
* EINVAL: The previous newfs operation on this volume did not complete.
* The administrator must complete newfs before using this volume.
*/
int
ffs_sbget(void *devfd, struct fs **fsp, off_t sblock, int flags,
struct malloc_type *filltype,
int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
struct fs *fs;
struct fs_summary_info *fs_si;
int i, error;
uint64_t size, blks;
uint8_t *space;
int32_t *lp;
char *buf;
fs = NULL;
*fsp = NULL;
if (sblock != UFS_STDSB) {
if ((error = readsuper(devfd, &fs, sblock,
flags | UFS_ALTSBLK, readfunc)) != 0) {
if (fs != NULL)
UFS_FREE(fs, filltype);
return (error);
}
} else {
for (i = 0; sblock_try[i] != -1; i++) {
if ((error = readsuper(devfd, &fs, sblock_try[i],
flags, readfunc)) == 0) {
if ((flags & UFS_NOCSUM) != 0) {
*fsp = fs;
return (0);
}
break;
}
if (fs != NULL) {
UFS_FREE(fs, filltype);
fs = NULL;
}
if (error == ENOENT)
continue;
return (error);
}
if (sblock_try[i] == -1)
return (ENOENT);
}
/*
* Read in the superblock summary information.
*/
size = fs->fs_cssize;
blks = howmany(size, fs->fs_fsize);
if (fs->fs_contigsumsize > 0)
size += fs->fs_ncg * sizeof(int32_t);
size += fs->fs_ncg * sizeof(u_int8_t);
if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) {
UFS_FREE(fs, filltype);
return (ENOMEM);
}
bzero(fs_si, sizeof(*fs_si));
fs->fs_si = fs_si;
if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) {
UFS_FREE(fs->fs_si, filltype);
UFS_FREE(fs, filltype);
return (ENOMEM);
}
fs->fs_csp = (struct csum *)space;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
buf = NULL;
error = (*readfunc)(devfd,
dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
if (error) {
if (buf != NULL)
UFS_FREE(buf, filltype);
UFS_FREE(fs->fs_csp, filltype);
UFS_FREE(fs->fs_si, filltype);
UFS_FREE(fs, filltype);
return (error);
}
memcpy(space, buf, size);
UFS_FREE(buf, filltype);
space += size;
}
if (fs->fs_contigsumsize > 0) {
fs->fs_maxcluster = lp = (int32_t *)space;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
space = (uint8_t *)lp;
}
size = fs->fs_ncg * sizeof(u_int8_t);
fs->fs_contigdirs = (u_int8_t *)space;
bzero(fs->fs_contigdirs, size);
*fsp = fs;
return (0);
}
/*
* Try to read a superblock from the location specified by sblockloc.
* Return zero on success or an errno on failure.
*/
static int
readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int flags,
int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
struct fs *fs;
int error, res;
uint32_t ckhash;
error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
if (error != 0)
return (error);
fs = *fsp;
if (fs->fs_magic == FS_BAD_MAGIC)
return (EINVAL);
/*
* For UFS1 with a 65536 block size, the first backup superblock
* is at the same location as the UFS2 superblock. Since SBLOCK_UFS2
* is the first location checked, the first backup is the superblock
* that will be accessed. Here we fail the lookup so that we can
* retry with the correct location for the UFS1 superblock.
*/
if (fs->fs_magic == FS_UFS1_MAGIC && (flags & UFS_ALTSBLK) == 0 &&
fs->fs_bsize == SBLOCK_UFS2 && sblockloc == SBLOCK_UFS2)
return (ENOENT);
if ((error = validate_sblock(fs, flags)) > 0)
return (error);
/*
* If the filesystem has been run on a kernel without
* metadata check hashes, disable them.
*/
if ((fs->fs_flags & FS_METACKHASH) == 0)
fs->fs_metackhash = 0;
/*
* Clear any check-hashes that are not maintained
* by this kernel. Also clear any unsupported flags.
*/
fs->fs_metackhash &= CK_SUPPORTED;
fs->fs_flags &= FS_SUPPORTED;
if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) {
if ((flags & (UFS_NOMSG | UFS_NOHASHFAIL)) ==
(UFS_NOMSG | UFS_NOHASHFAIL))
return (0);
if ((flags & UFS_NOMSG) != 0)
return (EINTEGRITY);
#ifdef _KERNEL
res = uprintf("Superblock check-hash failed: recorded "
"check-hash 0x%x != computed check-hash 0x%x%s\n",
fs->fs_ckhash, ckhash,
(flags & UFS_NOHASHFAIL) != 0 ? " (Ignored)" : "");
#else
res = 0;
#endif
/*
* Print check-hash failure if no controlling terminal
* in kernel or always if in user-mode (libufs).
*/
if (res == 0)
printf("Superblock check-hash failed: recorded "
"check-hash 0x%x != computed check-hash "
"0x%x%s\n", fs->fs_ckhash, ckhash,
(flags & UFS_NOHASHFAIL) ? " (Ignored)" : "");
if ((flags & UFS_NOHASHFAIL) != 0)
return (0);
return (EINTEGRITY);
}
/* Have to set for old filesystems that predate this field */
fs->fs_sblockactualloc = sblockloc;
/* Not yet any summary information */
fs->fs_si = NULL;
return (0);
}
/*
* Verify the filesystem values.
*/
#define ILOG2(num) (fls(num) - 1)
#ifdef STANDALONE_SMALL
#define MPRINT(...) do { } while (0)
#else
#define MPRINT(...) if (prtmsg) printf(__VA_ARGS__)
#endif
#define FCHK(lhs, op, rhs, fmt) \
if (lhs op rhs) { \
MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
#fmt ")\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, \
#lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs); \
if (error < 0) \
return (ENOENT); \
if (error == 0) \
error = ENOENT; \
}
#define WCHK(lhs, op, rhs, fmt) \
if (lhs op rhs) { \
MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
#fmt ")%s\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,\
#lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs, wmsg);\
if (error == 0) \
error = warnerr; \
}
#define FCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt) \
if (lhs1 op1 rhs1 && lhs2 op2 rhs2) { \
MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
#fmt ") && %s (" #fmt ") %s %s (" #fmt ")\n", \
fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1, \
(intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2, \
(intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2); \
if (error < 0) \
return (ENOENT); \
if (error == 0) \
error = ENOENT; \
}
#define WCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt) \
if (lhs1 op1 rhs1 && lhs2 op2 rhs2) { \
MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
#fmt ") && %s (" #fmt ") %s %s (" #fmt ")%s\n", \
fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1, \
(intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2, \
(intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2, wmsg); \
if (error == 0) \
error = warnerr; \
}
static int
validate_sblock(struct fs *fs, int flags)
{
u_long i, sectorsize;
u_int64_t maxfilesize, sizepb;
int error, prtmsg, warnerr;
char *wmsg;
error = 0;
sectorsize = dbtob(1);
prtmsg = ((flags & UFS_NOMSG) == 0);
warnerr = (flags & UFS_NOWARNFAIL) == UFS_NOWARNFAIL ? 0 : ENOENT;
wmsg = warnerr ? "" : " (Ignored)";
/*
* Check for endian mismatch between machine and filesystem.
*/
if (((fs->fs_magic != FS_UFS2_MAGIC) &&
(bswap32(fs->fs_magic) == FS_UFS2_MAGIC)) ||
((fs->fs_magic != FS_UFS1_MAGIC) &&
(bswap32(fs->fs_magic) == FS_UFS1_MAGIC))) {
MPRINT("UFS superblock failed due to endian mismatch "
"between machine and filesystem\n");
return(EILSEQ);
}
/*
* If just validating for recovery, then do just the minimal
* checks needed for the superblock fields needed to find
* alternate superblocks.
*/
if ((flags & UFS_FSRONLY) == UFS_FSRONLY &&
(fs->fs_magic == FS_UFS1_MAGIC || fs->fs_magic == FS_UFS2_MAGIC)) {
error = -1; /* fail on first error */
if (fs->fs_magic == FS_UFS2_MAGIC) {
FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
} else if (fs->fs_magic == FS_UFS1_MAGIC) {
FCHK(fs->fs_sblockloc, <, 0, %jd);
FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
}
FCHK(fs->fs_frag, <, 1, %jd);
FCHK(fs->fs_frag, >, MAXFRAG, %jd);
FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE),
%jd);
FCHK(fs->fs_fsize, <, sectorsize, %jd);
FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
FCHK(fs->fs_ncg, <, 1, %jd);
FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
FCHK(fs->fs_old_cgoffset, <, 0, %jd);
FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg,
%jd);
FCHK(fs->fs_sblkno, !=, roundup(
howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
fs->fs_frag), %jd);
return (error);
}
if (fs->fs_magic == FS_UFS2_MAGIC) {
if ((flags & UFS_ALTSBLK) == 0)
FCHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS2,
fs->fs_sblockactualloc, !=, 0, %jd);
FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
sizeof(ufs2_daddr_t)), %jd);
FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs2_daddr_t),
%jd);
FCHK(fs->fs_inopb, !=,
fs->fs_bsize / sizeof(struct ufs2_dinode), %jd);
} else if (fs->fs_magic == FS_UFS1_MAGIC) {
if ((flags & UFS_ALTSBLK) == 0)
FCHK(fs->fs_sblockactualloc, >, SBLOCK_UFS1, %jd);
FCHK(fs->fs_sblockloc, <, 0, %jd);
FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs1_daddr_t),
%jd);
FCHK(fs->fs_inopb, !=,
fs->fs_bsize / sizeof(struct ufs1_dinode), %jd);
FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
sizeof(ufs1_daddr_t)), %jd);
WCHK(fs->fs_old_inodefmt, !=, FS_44INODEFMT, %jd);
WCHK(fs->fs_old_rotdelay, !=, 0, %jd);
WCHK(fs->fs_old_rps, !=, 60, %jd);
WCHK(fs->fs_old_nspf, !=, fs->fs_fsize / sectorsize, %jd);
FCHK(fs->fs_old_cpg, !=, 1, %jd);
WCHK(fs->fs_old_interleave, !=, 1, %jd);
WCHK(fs->fs_old_trackskew, !=, 0, %jd);
WCHK(fs->fs_old_cpc, !=, 0, %jd);
WCHK(fs->fs_old_postblformat, !=, 1, %jd);
FCHK(fs->fs_old_nrpos, !=, 1, %jd);
WCHK(fs->fs_old_spc, !=, fs->fs_fpg * fs->fs_old_nspf, %jd);
WCHK(fs->fs_old_nsect, !=, fs->fs_old_spc, %jd);
WCHK(fs->fs_old_npsect, !=, fs->fs_old_spc, %jd);
FCHK(fs->fs_old_ncyl, !=, fs->fs_ncg, %jd);
} else {
/* Bad magic number, so assume not a superblock */
return (ENOENT);
}
FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE), %jd);
FCHK(powerof2(fs->fs_bsize), ==, 0, %jd);
FCHK(fs->fs_frag, <, 1, %jd);
FCHK(fs->fs_frag, >, MAXFRAG, %jd);
FCHK(fs->fs_frag, !=, numfrags(fs, fs->fs_bsize), %jd);
FCHK(fs->fs_fsize, <, sectorsize, %jd);
FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
FCHK(fs->fs_ncg, <, 1, %jd);
FCHK(fs->fs_ipg, <, fs->fs_inopb, %jd);
FCHK((u_int64_t)fs->fs_ipg * fs->fs_ncg, >,
(((int64_t)(1)) << 32) - INOPB(fs), %jd);
FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
FCHK(fs->fs_cstotal.cs_nifree, >, (u_int64_t)fs->fs_ipg * fs->fs_ncg,
%jd);
FCHK(fs->fs_cstotal.cs_ndir, <, 0, %jd);
FCHK(fs->fs_cstotal.cs_ndir, >,
((u_int64_t)fs->fs_ipg * fs->fs_ncg) - fs->fs_cstotal.cs_nifree,
%jd);
FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
FCHK(fs->fs_maxbsize, <, fs->fs_bsize, %jd);
FCHK(powerof2(fs->fs_maxbsize), ==, 0, %jd);
FCHK(fs->fs_maxbsize, >, FS_MAXCONTIG * fs->fs_bsize, %jd);
FCHK(fs->fs_bmask, !=, ~(fs->fs_bsize - 1), %#jx);
FCHK(fs->fs_fmask, !=, ~(fs->fs_fsize - 1), %#jx);
FCHK(fs->fs_qbmask, !=, ~fs->fs_bmask, %#jx);
FCHK(fs->fs_qfmask, !=, ~fs->fs_fmask, %#jx);
FCHK(fs->fs_bshift, !=, ILOG2(fs->fs_bsize), %jd);
FCHK(fs->fs_fshift, !=, ILOG2(fs->fs_fsize), %jd);
FCHK(fs->fs_fragshift, !=, ILOG2(fs->fs_frag), %jd);
FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
FCHK(fs->fs_old_cgoffset, <, 0, %jd);
FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg, %jd);
/*
* If anything has failed up to this point, it is usafe to proceed
* as checks below may divide by zero or make other fatal calculations.
* So if we have any errors at this point, give up.
*/
if (error)
return (error);
FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
FCHK(fs->fs_ipg % fs->fs_inopb, !=, 0, %jd);
FCHK(fs->fs_sblkno, !=, roundup(
howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
fs->fs_frag), %jd);
FCHK(fs->fs_cblkno, !=, fs->fs_sblkno +
roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag), %jd);
FCHK(fs->fs_iblkno, !=, fs->fs_cblkno + fs->fs_frag, %jd);
FCHK(fs->fs_dblkno, !=, fs->fs_iblkno + fs->fs_ipg / INOPF(fs), %jd);
FCHK(fs->fs_cgsize, >, fs->fs_bsize, %jd);
FCHK(fs->fs_cgsize, <, fs->fs_fsize, %jd);
FCHK(fs->fs_cgsize % fs->fs_fsize, !=, 0, %jd);
/*
* This test is valid, however older versions of growfs failed
* to correctly update fs_dsize so will fail this test. Thus we
* exclude it from the requirements.
*/
#ifdef notdef
WCHK(fs->fs_dsize, !=, fs->fs_size - fs->fs_sblkno -
fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) -
howmany(fs->fs_cssize, fs->fs_fsize), %jd);
#endif
WCHK(fs->fs_metaspace, <, 0, %jd);
WCHK(fs->fs_metaspace, >, fs->fs_fpg / 2, %jd);
WCHK(fs->fs_minfree, >, 99, %jd%%);
maxfilesize = fs->fs_bsize * UFS_NDADDR - 1;
for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) {
sizepb *= NINDIR(fs);
maxfilesize += sizepb;
}
WCHK(fs->fs_maxfilesize, !=, maxfilesize, %jd);
/*
* These values have a tight interaction with each other that
* makes it hard to tightly bound them. So we can only check
* that they are within a broader possible range.
*
* The size cannot always be accurately determined, but ensure
* that it is consistent with the number of cylinder groups (fs_ncg)
* and the number of fragments per cylinder group (fs_fpg). Ensure
* that the summary information size is correct and that it starts
* and ends in the data area of the same cylinder group.
*/
FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg, %jd);
FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
/*
* If we are not requested to read in the csum data stop here
* as the correctness of the remaining values is only important
* to bound the space needed to be allocated to hold the csum data.
*/
if ((flags & UFS_NOCSUM) != 0)
return (error);
FCHK(fs->fs_csaddr, <, 0, %jd);
FCHK(fs->fs_cssize, !=,
fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
FCHK(dtog(fs, fs->fs_csaddr), >, fs->fs_ncg, %jd);
FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)), %jd);
FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize)), >,
dtog(fs, fs->fs_csaddr), %jd);
/*
* With file system clustering it is possible to allocate
* many contiguous blocks. The kernel variable maxphys defines
* the maximum transfer size permitted by the controller and/or
* buffering. The fs_maxcontig parameter controls the maximum
* number of blocks that the filesystem will read or write
* in a single transfer. It is calculated when the filesystem
* is created as maxphys / fs_bsize. The loader uses a maxphys
* of 128K even when running on a system that supports larger
* values. If the filesystem was built on a system that supports
* a larger maxphys (1M is typical) it will have configured
* fs_maxcontig for that larger system. So we bound the upper
* allowable limit for fs_maxconfig to be able to at least
* work with a 1M maxphys on the smallest block size filesystem:
* 1M / 4096 == 256. There is no harm in allowing the mounting of
* filesystems that make larger than maxphys I/O requests because
* those (mostly 32-bit machines) can (very slowly) handle I/O
* requests that exceed maxphys.
*/
WCHK(fs->fs_maxcontig, <, 0, %jd);
WCHK(fs->fs_maxcontig, >, MAX(256, maxphys / fs->fs_bsize), %jd);
FCHK2(fs->fs_maxcontig, ==, 0, fs->fs_contigsumsize, !=, 0, %jd);
FCHK2(fs->fs_maxcontig, >, 1, fs->fs_contigsumsize, !=,
MIN(fs->fs_maxcontig, FS_MAXCONTIG), %jd);
return (error);
}
/*
* Make an extensive search to find a superblock. If the superblock
* in the standard place cannot be used, try looking for one of the
* backup superblocks.
*
* Flags are made up of the following or'ed together options:
*
* UFS_NOMSG indicates that superblock inconsistency error messages
* should not be printed.
*
* UFS_NOCSUM causes only the superblock itself to be returned, but does
* not read in any auxillary data structures like the cylinder group
* summary information.
*/
int
ffs_sbsearch(void *devfd, struct fs **fsp, int reqflags,
struct malloc_type *filltype,
int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
struct fsrecovery *fsr;
struct fs *protofs;
void *fsrbuf;
char *cp;
long nocsum, flags, msg, cg;
off_t sblk, secsize;
int error;
msg = (reqflags & UFS_NOMSG) == 0;
nocsum = reqflags & UFS_NOCSUM;
/*
* Try normal superblock read and return it if it works.
*
* Suppress messages if it fails until we find out if
* failure can be avoided.
*/
flags = UFS_NOMSG | nocsum;
error = ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc);
/*
* If successful or endian error, no need to try further.
*/
if (error == 0 || error == EILSEQ) {
if (msg && error == EILSEQ)
printf("UFS superblock failed due to endian mismatch "
"between machine and filesystem\n");
return (error);
}
/*
* First try: ignoring hash failures.
*/
flags |= UFS_NOHASHFAIL;
if (msg)
flags &= ~UFS_NOMSG;
if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) == 0)
return (0);
/*
* Next up is to check if fields of the superblock that are
* needed to find backup superblocks are usable.
*/
if (msg)
printf("Attempted recovery for standard superblock: failed\n");
flags = UFS_FSRONLY | UFS_NOHASHFAIL | UFS_NOMSG;
if (ffs_sbget(devfd, &protofs, UFS_STDSB, flags, filltype,
readfunc) == 0) {
if (msg)
printf("Attempt extraction of recovery data from "
"standard superblock.\n");
} else {
/*
* Final desperation is to see if alternate superblock
* parameters have been saved in the boot area.
*/
if (msg)
printf("Attempted extraction of recovery data from "
"standard superblock: failed\nAttempt to find "
"boot zone recovery data.\n");
/*
* Look to see if recovery information has been saved.
* If so we can generate a prototype superblock based
* on that information.
*
* We need fragments-per-group, number of cylinder groups,
* location of the superblock within the cylinder group, and
* the conversion from filesystem fragments to disk blocks.
*
* When building a UFS2 filesystem, newfs(8) stores these
* details at the end of the boot block area at the start
* of the filesystem partition. If they have been overwritten
* by a boot block, we fail. But usually they are there
* and we can use them.
*
* We could ask the underlying device for its sector size,
* but some devices lie. So we just try a plausible range.
*/
error = ENOENT;
fsrbuf = NULL;
for (secsize = dbtob(1); secsize <= SBLOCKSIZE; secsize *= 2)
if ((error = (*readfunc)(devfd, (SBLOCK_UFS2 - secsize),
&fsrbuf, secsize)) == 0)
break;
if (error != 0)
goto trynowarn;
cp = fsrbuf; /* type change to keep compiler happy */
fsr = (struct fsrecovery *)&cp[secsize - sizeof *fsr];
if (fsr->fsr_magic != FS_UFS2_MAGIC ||
(protofs = UFS_MALLOC(SBLOCKSIZE, filltype, M_NOWAIT))
== NULL) {
UFS_FREE(fsrbuf, filltype);
goto trynowarn;
}
memset(protofs, 0, sizeof(struct fs));
protofs->fs_fpg = fsr->fsr_fpg;
protofs->fs_fsbtodb = fsr->fsr_fsbtodb;
protofs->fs_sblkno = fsr->fsr_sblkno;
protofs->fs_magic = fsr->fsr_magic;
protofs->fs_ncg = fsr->fsr_ncg;
UFS_FREE(fsrbuf, filltype);
}
/*
* Scan looking for alternative superblocks.
*/
flags = nocsum;
if (!msg)
flags |= UFS_NOMSG;
for (cg = 0; cg < protofs->fs_ncg; cg++) {
sblk = fsbtodb(protofs, cgsblock(protofs, cg));
if (msg)
printf("Try cg %ld at sblock loc %jd\n", cg,
(intmax_t)sblk);
if (ffs_sbget(devfd, fsp, dbtob(sblk), flags, filltype,
readfunc) == 0) {
if (msg)
printf("Succeeded with alternate superblock "
"at %jd\n", (intmax_t)sblk);
UFS_FREE(protofs, filltype);
return (0);
}
}
UFS_FREE(protofs, filltype);
/*
* Our alternate superblock strategies failed. Our last ditch effort
* is to see if the standard superblock has only non-critical errors.
*/
trynowarn:
flags = UFS_NOWARNFAIL | UFS_NOMSG | nocsum;
if (msg) {
printf("Finding an alternate superblock failed.\nCheck for "
"only non-critical errors in standard superblock\n");
flags &= ~UFS_NOMSG;
}
if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) != 0) {
if (msg)
printf("Failed, superblock has critical errors\n");
return (ENOENT);
}
if (msg)
printf("Success, using standard superblock with "
"non-critical errors.\n");
return (0);
}
/*
* Write a superblock to the devfd device from the memory pointed to by fs.
* Write out the superblock summary information if it is present.
*
* If the write is successful, zero is returned. Otherwise one of the
* following error values is returned:
* EIO: failed to write superblock.
* EIO: failed to write superblock summary information.
*/
int
ffs_sbput(void *devfd, struct fs *fs, off_t loc,
int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
{
int i, error, blks, size;
uint8_t *space;
/*
* If there is summary information, write it first, so if there
* is an error, the superblock will not be marked as clean.
*/
if (fs->fs_si != NULL && fs->fs_csp != NULL) {
blks = howmany(fs->fs_cssize, fs->fs_fsize);
space = (uint8_t *)fs->fs_csp;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
if ((error = (*writefunc)(devfd,
dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
space, size)) != 0)
return (error);
space += size;
}
}
fs->fs_fmod = 0;
#ifndef _KERNEL
{
struct fs_summary_info *fs_si;
fs->fs_time = time(NULL);
/* Clear the pointers for the duration of writing. */
fs_si = fs->fs_si;
fs->fs_si = NULL;
fs->fs_ckhash = ffs_calc_sbhash(fs);
error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
fs->fs_si = fs_si;
}
#else /* _KERNEL */
fs->fs_time = time_second;
fs->fs_ckhash = ffs_calc_sbhash(fs);
error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
#endif /* _KERNEL */
return (error);
}
/*
* Calculate the check-hash for a superblock.
*/
uint32_t
ffs_calc_sbhash(struct fs *fs)
{
uint32_t ckhash, save_ckhash;
/*
* A filesystem that was using a superblock ckhash may be moved
* to an older kernel that does not support ckhashes. The
* older kernel will clear the FS_METACKHASH flag indicating
* that it does not update hashes. When the disk is moved back
* to a kernel capable of ckhashes it disables them on mount:
*
* if ((fs->fs_flags & FS_METACKHASH) == 0)
* fs->fs_metackhash = 0;
*
* This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an
* old stale value in the fs->fs_ckhash field. Thus the need to
* just accept what is there.
*/
if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0)
return (fs->fs_ckhash);
save_ckhash = fs->fs_ckhash;
fs->fs_ckhash = 0;
/*
* If newly read from disk, the caller is responsible for
* verifying that fs->fs_sbsize <= SBLOCKSIZE.
*/
ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize);
fs->fs_ckhash = save_ckhash;
return (ckhash);
}
/*
* Update the frsum fields to reflect addition or deletion
* of some frags.
*/
void
ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
{
int inblk;
int field, subfield;
int siz, pos;
inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
fragmap <<= 1;
for (siz = 1; siz < fs->fs_frag; siz++) {
if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
continue;
field = around[siz];
subfield = inside[siz];
for (pos = siz; pos <= fs->fs_frag; pos++) {
if ((fragmap & field) == subfield) {
fraglist[siz] += cnt;
pos += siz;
field <<= siz;
subfield <<= siz;
}
field <<= 1;
subfield <<= 1;
}
}
}
/*
* block operations
*
* check if a block is available
*/
int
ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
{
unsigned char mask;
switch ((int)fs->fs_frag) {
case 8:
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
#ifdef _KERNEL
panic("ffs_isblock");
#endif
break;
}
return (0);
}
/*
* check if a block is free
*/
int
ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
{
switch ((int)fs->fs_frag) {
case 8:
return (cp[h] == 0);
case 4:
return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
case 2:
return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
case 1:
return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
default:
#ifdef _KERNEL
panic("ffs_isfreeblock");
#endif
break;
}
return (0);
}
/*
* take a block out of the map
*/
void
ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
{
switch ((int)fs->fs_frag) {
case 8:
cp[h] = 0;
return;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
#ifdef _KERNEL
panic("ffs_clrblock");
#endif
break;
}
}
/*
* put a block into the map
*/
void
ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
{
switch ((int)fs->fs_frag) {
case 8:
cp[h] = 0xff;
return;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
#ifdef _KERNEL
panic("ffs_setblock");
#endif
break;
}
}
/*
* Update the cluster map because of an allocation or free.
*
* Cnt == 1 means free; cnt == -1 means allocating.
*/
void
ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
{
int32_t *sump;
int32_t *lp;
u_char *freemapp, *mapp;
int i, start, end, forw, back, map;
u_int bit;
if (fs->fs_contigsumsize <= 0)
return;
freemapp = cg_clustersfree(cgp);
sump = cg_clustersum(cgp);
/*
* Allocate or clear the actual block.
*/
if (cnt > 0)
setbit(freemapp, blkno);
else
clrbit(freemapp, blkno);
/*
* Find the size of the cluster going forward.
*/
start = blkno + 1;
end = start + fs->fs_contigsumsize;
if (end >= cgp->cg_nclusterblks)
end = cgp->cg_nclusterblks;
mapp = &freemapp[start / NBBY];
map = *mapp++;
bit = 1U << (start % NBBY);
for (i = start; i < end; i++) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
forw = i - start;
/*
* Find the size of the cluster going backward.
*/
start = blkno - 1;
end = start - fs->fs_contigsumsize;
if (end < 0)
end = -1;
mapp = &freemapp[start / NBBY];
map = *mapp--;
bit = 1U << (start % NBBY);
for (i = start; i > end; i--) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != 0) {
bit >>= 1;
} else {
map = *mapp--;
bit = 1U << (NBBY - 1);
}
}
back = start - i;
/*
* Account for old cluster and the possibly new forward and
* back clusters.
*/
i = back + forw + 1;
if (i > fs->fs_contigsumsize)
i = fs->fs_contigsumsize;
sump[i] += cnt;
if (back > 0)
sump[back] -= cnt;
if (forw > 0)
sump[forw] -= cnt;
/*
* Update cluster summary information.
*/
lp = &sump[fs->fs_contigsumsize];
for (i = fs->fs_contigsumsize; i > 0; i--)
if (*lp-- > 0)
break;
fs->fs_maxcluster[cgp->cg_cgx] = i;
}