freebsd-dev/source/compiler/aslopcodes.c
2015-07-20 22:31:50 +00:00

1537 lines
42 KiB
C

/******************************************************************************
*
* Module Name: aslopcode - AML opcode generation
*
*****************************************************************************/
/*
* Copyright (C) 2000 - 2015, Intel Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#include "aslcompiler.h"
#include "aslcompiler.y.h"
#include "amlcode.h"
#define _COMPONENT ACPI_COMPILER
ACPI_MODULE_NAME ("aslopcodes")
/* Local prototypes */
static void
OpcDoAccessAs (
ACPI_PARSE_OBJECT *Op);
static void
OpcDoConnection (
ACPI_PARSE_OBJECT *Op);
static void
OpcDoUnicode (
ACPI_PARSE_OBJECT *Op);
static void
OpcDoEisaId (
ACPI_PARSE_OBJECT *Op);
static void
OpcDoPld (
ACPI_PARSE_OBJECT *Op);
static void
OpcDoUuId (
ACPI_PARSE_OBJECT *Op);
static UINT8 *
OpcEncodePldBuffer (
ACPI_PLD_INFO *PldInfo);
/* ToPld strings */
static char *AslPldPanelList[] =
{
"TOP",
"BOTTOM",
"LEFT",
"RIGHT",
"FRONT",
"BACK",
"UNKNOWN",
NULL
};
static char *AslPldVerticalPositionList[] =
{
"UPPER",
"CENTER",
"LOWER",
NULL
};
static char *AslPldHorizontalPositionList[] =
{
"LEFT",
"CENTER",
"RIGHT",
NULL
};
static char *AslPldShapeList[] =
{
"ROUND",
"OVAL",
"SQUARE",
"VERTICALRECTANGLE",
"HORIZONTALRECTANGLE",
"VERTICALTRAPEZOID",
"HORIZONTALTRAPEZOID",
"UNKNOWN",
"CHAMFERED",
NULL
};
/*******************************************************************************
*
* FUNCTION: OpcAmlOpcodeUpdateWalk
*
* PARAMETERS: ASL_WALK_CALLBACK
*
* RETURN: Status
*
* DESCRIPTION: Opcode update walk, ascending callback
*
******************************************************************************/
ACPI_STATUS
OpcAmlOpcodeUpdateWalk (
ACPI_PARSE_OBJECT *Op,
UINT32 Level,
void *Context)
{
/*
* Handle the Package() case where the actual opcode cannot be determined
* until the PackageLength operand has been folded and minimized.
* (PackageOp versus VarPackageOp)
*
* This is (as of ACPI 3.0) the only case where the AML opcode can change
* based upon the value of a parameter.
*
* The parser always inserts a VarPackage opcode, which can possibly be
* optimized to a Package opcode.
*/
if (Op->Asl.ParseOpcode == PARSEOP_VAR_PACKAGE)
{
OpnDoPackage (Op);
}
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: OpcAmlOpcodeWalk
*
* PARAMETERS: ASL_WALK_CALLBACK
*
* RETURN: Status
*
* DESCRIPTION: Parse tree walk to generate both the AML opcodes and the AML
* operands.
*
******************************************************************************/
ACPI_STATUS
OpcAmlOpcodeWalk (
ACPI_PARSE_OBJECT *Op,
UINT32 Level,
void *Context)
{
TotalParseNodes++;
OpcGenerateAmlOpcode (Op);
OpnGenerateAmlOperands (Op);
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: OpcGetIntegerWidth
*
* PARAMETERS: Op - DEFINITION BLOCK op
*
* RETURN: none
*
* DESCRIPTION: Extract integer width from the table revision
*
******************************************************************************/
void
OpcGetIntegerWidth (
ACPI_PARSE_OBJECT *Op)
{
ACPI_PARSE_OBJECT *Child;
if (!Op)
{
return;
}
if (Gbl_RevisionOverride)
{
AcpiUtSetIntegerWidth (Gbl_RevisionOverride);
}
else
{
Child = Op->Asl.Child;
Child = Child->Asl.Next;
Child = Child->Asl.Next;
/* Use the revision to set the integer width */
AcpiUtSetIntegerWidth ((UINT8) Child->Asl.Value.Integer);
}
}
/*******************************************************************************
*
* FUNCTION: OpcSetOptimalIntegerSize
*
* PARAMETERS: Op - A parse tree node
*
* RETURN: Integer width, in bytes. Also sets the node AML opcode to the
* optimal integer AML prefix opcode.
*
* DESCRIPTION: Determine the optimal AML encoding of an integer. All leading
* zeros can be truncated to squeeze the integer into the
* minimal number of AML bytes.
*
******************************************************************************/
UINT32
OpcSetOptimalIntegerSize (
ACPI_PARSE_OBJECT *Op)
{
#if 0
/*
* TBD: - we don't want to optimize integers in the block header, but the
* code below does not work correctly.
*/
if (Op->Asl.Parent &&
Op->Asl.Parent->Asl.Parent &&
(Op->Asl.Parent->Asl.Parent->Asl.ParseOpcode == PARSEOP_DEFINITIONBLOCK))
{
return (0);
}
#endif
/*
* Check for the special AML integers first - Zero, One, Ones.
* These are single-byte opcodes that are the smallest possible
* representation of an integer.
*
* This optimization is optional.
*/
if (Gbl_IntegerOptimizationFlag)
{
switch (Op->Asl.Value.Integer)
{
case 0:
Op->Asl.AmlOpcode = AML_ZERO_OP;
AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION,
Op, "Zero");
return (1);
case 1:
Op->Asl.AmlOpcode = AML_ONE_OP;
AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION,
Op, "One");
return (1);
case ACPI_UINT32_MAX:
/* Check for table integer width (32 or 64) */
if (AcpiGbl_IntegerByteWidth == 4)
{
Op->Asl.AmlOpcode = AML_ONES_OP;
AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION,
Op, "Ones");
return (1);
}
break;
case ACPI_UINT64_MAX:
/* Check for table integer width (32 or 64) */
if (AcpiGbl_IntegerByteWidth == 8)
{
Op->Asl.AmlOpcode = AML_ONES_OP;
AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION,
Op, "Ones");
return (1);
}
break;
default:
break;
}
}
/* Find the best fit using the various AML integer prefixes */
if (Op->Asl.Value.Integer <= ACPI_UINT8_MAX)
{
Op->Asl.AmlOpcode = AML_BYTE_OP;
return (1);
}
if (Op->Asl.Value.Integer <= ACPI_UINT16_MAX)
{
Op->Asl.AmlOpcode = AML_WORD_OP;
return (2);
}
if (Op->Asl.Value.Integer <= ACPI_UINT32_MAX)
{
Op->Asl.AmlOpcode = AML_DWORD_OP;
return (4);
}
else
{
if (AcpiGbl_IntegerByteWidth == 4)
{
AslError (ASL_WARNING, ASL_MSG_INTEGER_LENGTH,
Op, NULL);
if (!Gbl_IgnoreErrors)
{
/* Truncate the integer to 32-bit */
Op->Asl.AmlOpcode = AML_DWORD_OP;
return (4);
}
}
Op->Asl.AmlOpcode = AML_QWORD_OP;
return (8);
}
}
/*******************************************************************************
*
* FUNCTION: OpcDoAccessAs
*
* PARAMETERS: Op - Parse node
*
* RETURN: None
*
* DESCRIPTION: Implement the ACCESS_AS ASL keyword.
*
******************************************************************************/
static void
OpcDoAccessAs (
ACPI_PARSE_OBJECT *Op)
{
ACPI_PARSE_OBJECT *TypeOp;
ACPI_PARSE_OBJECT *AttribOp;
ACPI_PARSE_OBJECT *LengthOp;
UINT8 Attribute;
Op->Asl.AmlOpcodeLength = 1;
TypeOp = Op->Asl.Child;
/* First child is the access type */
TypeOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
TypeOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
/* Second child is the optional access attribute */
AttribOp = TypeOp->Asl.Next;
if (AttribOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
{
AttribOp->Asl.Value.Integer = 0;
}
AttribOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
AttribOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
/* Only a few AccessAttributes support AccessLength */
Attribute = (UINT8) AttribOp->Asl.Value.Integer;
if ((Attribute != AML_FIELD_ATTRIB_MULTIBYTE) &&
(Attribute != AML_FIELD_ATTRIB_RAW_BYTES) &&
(Attribute != AML_FIELD_ATTRIB_RAW_PROCESS))
{
return;
}
Op->Asl.AmlOpcode = AML_FIELD_EXT_ACCESS_OP;
/*
* Child of Attributes is the AccessLength (required for Multibyte,
* RawBytes, RawProcess.)
*/
LengthOp = AttribOp->Asl.Child;
if (!LengthOp)
{
return;
}
/* TBD: probably can remove */
if (LengthOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG)
{
LengthOp->Asl.Value.Integer = 16;
}
LengthOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE;
LengthOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
}
/*******************************************************************************
*
* FUNCTION: OpcDoConnection
*
* PARAMETERS: Op - Parse node
*
* RETURN: None
*
* DESCRIPTION: Implement the Connection ASL keyword.
*
******************************************************************************/
static void
OpcDoConnection (
ACPI_PARSE_OBJECT *Op)
{
ASL_RESOURCE_NODE *Rnode;
ACPI_PARSE_OBJECT *BufferOp;
ACPI_PARSE_OBJECT *BufferLengthOp;
ACPI_PARSE_OBJECT *BufferDataOp;
ASL_RESOURCE_INFO Info;
UINT8 State;
Op->Asl.AmlOpcodeLength = 1;
if (Op->Asl.Child->Asl.AmlOpcode == AML_INT_NAMEPATH_OP)
{
return;
}
BufferOp = Op->Asl.Child;
BufferLengthOp = BufferOp->Asl.Child;
BufferDataOp = BufferLengthOp->Asl.Next;
Info.DescriptorTypeOp = BufferDataOp->Asl.Next;
Info.CurrentByteOffset = 0;
State = ACPI_RSTATE_NORMAL;
Rnode = RsDoOneResourceDescriptor (&Info, &State);
if (!Rnode)
{
return; /* error */
}
/*
* Transform the nodes into the following
*
* Op -> AML_BUFFER_OP
* First Child -> BufferLength
* Second Child -> Descriptor Buffer (raw byte data)
*/
BufferOp->Asl.ParseOpcode = PARSEOP_BUFFER;
BufferOp->Asl.AmlOpcode = AML_BUFFER_OP;
BufferOp->Asl.CompileFlags = NODE_AML_PACKAGE | NODE_IS_RESOURCE_DESC;
UtSetParseOpName (BufferOp);
BufferLengthOp->Asl.ParseOpcode = PARSEOP_INTEGER;
BufferLengthOp->Asl.Value.Integer = Rnode->BufferLength;
(void) OpcSetOptimalIntegerSize (BufferLengthOp);
UtSetParseOpName (BufferLengthOp);
BufferDataOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
BufferDataOp->Asl.AmlOpcode = AML_RAW_DATA_CHAIN;
BufferDataOp->Asl.AmlOpcodeLength = 0;
BufferDataOp->Asl.AmlLength = Rnode->BufferLength;
BufferDataOp->Asl.Value.Buffer = (UINT8 *) Rnode;
UtSetParseOpName (BufferDataOp);
}
/*******************************************************************************
*
* FUNCTION: OpcDoUnicode
*
* PARAMETERS: Op - Parse node
*
* RETURN: None
*
* DESCRIPTION: Implement the UNICODE ASL "macro". Convert the input string
* to a unicode buffer. There is no Unicode AML opcode.
*
* Note: The Unicode string is 16 bits per character, no leading signature,
* with a 16-bit terminating NULL.
*
******************************************************************************/
static void
OpcDoUnicode (
ACPI_PARSE_OBJECT *Op)
{
ACPI_PARSE_OBJECT *InitializerOp;
UINT32 Length;
UINT32 Count;
UINT32 i;
UINT8 *AsciiString;
UINT16 *UnicodeString;
ACPI_PARSE_OBJECT *BufferLengthOp;
/* Change op into a buffer object */
Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST;
Op->Asl.ParseOpcode = PARSEOP_BUFFER;
UtSetParseOpName (Op);
/* Buffer Length is first, followed by the string */
BufferLengthOp = Op->Asl.Child;
InitializerOp = BufferLengthOp->Asl.Next;
AsciiString = (UINT8 *) InitializerOp->Asl.Value.String;
/* Create a new buffer for the Unicode string */
Count = strlen (InitializerOp->Asl.Value.String) + 1;
Length = Count * sizeof (UINT16);
UnicodeString = UtLocalCalloc (Length);
/* Convert to Unicode string (including null terminator) */
for (i = 0; i < Count; i++)
{
UnicodeString[i] = (UINT16) AsciiString[i];
}
/*
* Just set the buffer size node to be the buffer length, regardless
* of whether it was previously an integer or a default_arg placeholder
*/
BufferLengthOp->Asl.ParseOpcode = PARSEOP_INTEGER;
BufferLengthOp->Asl.AmlOpcode = AML_DWORD_OP;
BufferLengthOp->Asl.Value.Integer = Length;
UtSetParseOpName (BufferLengthOp);
(void) OpcSetOptimalIntegerSize (BufferLengthOp);
/* The Unicode string is a raw data buffer */
InitializerOp->Asl.Value.Buffer = (UINT8 *) UnicodeString;
InitializerOp->Asl.AmlOpcode = AML_RAW_DATA_BUFFER;
InitializerOp->Asl.AmlLength = Length;
InitializerOp->Asl.ParseOpcode = PARSEOP_RAW_DATA;
InitializerOp->Asl.Child = NULL;
UtSetParseOpName (InitializerOp);
}
/*******************************************************************************
*
* FUNCTION: OpcDoEisaId
*
* PARAMETERS: Op - Parse node
*
* RETURN: None
*
* DESCRIPTION: Convert a string EISA ID to numeric representation. See the
* Pnp BIOS Specification for details. Here is an excerpt:
*
* A seven character ASCII representation of the product
* identifier compressed into a 32-bit identifier. The seven
* character ID consists of a three character manufacturer code,
* a three character hexadecimal product identifier, and a one
* character hexadecimal revision number. The manufacturer code
* is a 3 uppercase character code that is compressed into 3 5-bit
* values as follows:
* 1) Find hex ASCII value for each letter
* 2) Subtract 40h from each ASCII value
* 3) Retain 5 least significant bits for each letter by
* discarding upper 3 bits because they are always 0.
* 4) Compressed code = concatenate 0 and the 3 5-bit values
*
* The format of the compressed product identifier is as follows:
* Byte 0: Bit 7 - Reserved (0)
* Bits 6-2: - 1st character of compressed mfg code
* Bits 1-0 - Upper 2 bits of 2nd character of mfg code
* Byte 1: Bits 7-5 - Lower 3 bits of 2nd character of mfg code
* Bits 4-0 - 3rd character of mfg code
* Byte 2: Bits 7-4 - 1st hex digit of product number
* Bits 3-0 - 2nd hex digit of product number
* Byte 3: Bits 7-4 - 3st hex digit of product number
* Bits 3-0 - Hex digit of the revision number
*
******************************************************************************/
static void
OpcDoEisaId (
ACPI_PARSE_OBJECT *Op)
{
UINT32 EisaId = 0;
UINT32 BigEndianId;
char *InString;
ACPI_STATUS Status = AE_OK;
UINT32 i;
InString = (char *) Op->Asl.Value.String;
/*
* The EISAID string must be exactly 7 characters and of the form
* "UUUXXXX" -- 3 uppercase letters and 4 hex digits (e.g., "PNP0001")
*/
if (strlen (InString) != 7)
{
Status = AE_BAD_PARAMETER;
}
else
{
/* Check all 7 characters for correct format */
for (i = 0; i < 7; i++)
{
/* First 3 characters must be uppercase letters */
if (i < 3)
{
if (!isupper ((int) InString[i]))
{
Status = AE_BAD_PARAMETER;
}
}
/* Last 4 characters must be hex digits */
else if (!isxdigit ((int) InString[i]))
{
Status = AE_BAD_PARAMETER;
}
}
}
if (ACPI_FAILURE (Status))
{
AslError (ASL_ERROR, ASL_MSG_INVALID_EISAID, Op, Op->Asl.Value.String);
}
else
{
/* Create ID big-endian first (bits are contiguous) */
BigEndianId =
(UINT32) ((UINT8) (InString[0] - 0x40)) << 26 |
(UINT32) ((UINT8) (InString[1] - 0x40)) << 21 |
(UINT32) ((UINT8) (InString[2] - 0x40)) << 16 |
(AcpiUtAsciiCharToHex (InString[3])) << 12 |
(AcpiUtAsciiCharToHex (InString[4])) << 8 |
(AcpiUtAsciiCharToHex (InString[5])) << 4 |
AcpiUtAsciiCharToHex (InString[6]);
/* Swap to little-endian to get final ID (see function header) */
EisaId = AcpiUtDwordByteSwap (BigEndianId);
}
/*
* Morph the Op into an integer, regardless of whether there
* was an error in the EISAID string
*/
Op->Asl.Value.Integer = EisaId;
Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST;
Op->Asl.ParseOpcode = PARSEOP_INTEGER;
(void) OpcSetOptimalIntegerSize (Op);
/* Op is now an integer */
UtSetParseOpName (Op);
}
/*******************************************************************************
*
* FUNCTION: OpcEncodePldBuffer
*
* PARAMETERS: PldInfo - _PLD buffer struct (Using local struct)
*
* RETURN: Encode _PLD buffer suitable for return value from _PLD
*
* DESCRIPTION: Bit-packs a _PLD buffer struct.
*
******************************************************************************/
static UINT8 *
OpcEncodePldBuffer (
ACPI_PLD_INFO *PldInfo)
{
UINT32 *Buffer;
UINT32 Dword;
Buffer = ACPI_ALLOCATE_ZEROED (ACPI_PLD_BUFFER_SIZE);
if (!Buffer)
{
return (NULL);
}
/* First 32 bits */
Dword = 0;
ACPI_PLD_SET_REVISION (&Dword, PldInfo->Revision);
ACPI_PLD_SET_IGNORE_COLOR (&Dword, PldInfo->IgnoreColor);
ACPI_PLD_SET_RED (&Dword, PldInfo->Red);
ACPI_PLD_SET_GREEN (&Dword, PldInfo->Green);
ACPI_PLD_SET_BLUE (&Dword, PldInfo->Blue);
ACPI_MOVE_32_TO_32 (&Buffer[0], &Dword);
/* Second 32 bits */
Dword = 0;
ACPI_PLD_SET_WIDTH (&Dword, PldInfo->Width);
ACPI_PLD_SET_HEIGHT (&Dword, PldInfo->Height);
ACPI_MOVE_32_TO_32 (&Buffer[1], &Dword);
/* Third 32 bits */
Dword = 0;
ACPI_PLD_SET_USER_VISIBLE (&Dword, PldInfo->UserVisible);
ACPI_PLD_SET_DOCK (&Dword, PldInfo->Dock);
ACPI_PLD_SET_LID (&Dword, PldInfo->Lid);
ACPI_PLD_SET_PANEL (&Dword, PldInfo->Panel);
ACPI_PLD_SET_VERTICAL (&Dword, PldInfo->VerticalPosition);
ACPI_PLD_SET_HORIZONTAL (&Dword, PldInfo->HorizontalPosition);
ACPI_PLD_SET_SHAPE (&Dword, PldInfo->Shape);
ACPI_PLD_SET_ORIENTATION (&Dword, PldInfo->GroupOrientation);
ACPI_PLD_SET_TOKEN (&Dword, PldInfo->GroupToken);
ACPI_PLD_SET_POSITION (&Dword, PldInfo->GroupPosition);
ACPI_PLD_SET_BAY (&Dword, PldInfo->Bay);
ACPI_MOVE_32_TO_32 (&Buffer[2], &Dword);
/* Fourth 32 bits */
Dword = 0;
ACPI_PLD_SET_EJECTABLE (&Dword, PldInfo->Ejectable);
ACPI_PLD_SET_OSPM_EJECT (&Dword, PldInfo->OspmEjectRequired);
ACPI_PLD_SET_CABINET (&Dword, PldInfo->CabinetNumber);
ACPI_PLD_SET_CARD_CAGE (&Dword, PldInfo->CardCageNumber);
ACPI_PLD_SET_REFERENCE (&Dword, PldInfo->Reference);
ACPI_PLD_SET_ROTATION (&Dword, PldInfo->Rotation);
ACPI_PLD_SET_ORDER (&Dword, PldInfo->Order);
ACPI_MOVE_32_TO_32 (&Buffer[3], &Dword);
if (PldInfo->Revision >= 2)
{
/* Fifth 32 bits */
Dword = 0;
ACPI_PLD_SET_VERT_OFFSET (&Dword, PldInfo->VerticalOffset);
ACPI_PLD_SET_HORIZ_OFFSET (&Dword, PldInfo->HorizontalOffset);
ACPI_MOVE_32_TO_32 (&Buffer[4], &Dword);
}
return (ACPI_CAST_PTR (UINT8, Buffer));
}
/*******************************************************************************
*
* FUNCTION: OpcFindName
*
* PARAMETERS: List - Array of char strings to be searched
* Name - Char string to string for
* Index - Index value to set if found
*
* RETURN: TRUE if any names matched, FALSE otherwise
*
* DESCRIPTION: Match PLD name to value in lookup table. Sets Value to
* equivalent parameter value.
*
******************************************************************************/
static BOOLEAN
OpcFindName (
char **List,
char *Name,
UINT64 *Index)
{
char *Str;
UINT32 i;
AcpiUtStrupr (Name);
for (i = 0, Str = List[0]; Str; i++, Str = List[i])
{
if (!(strncmp (Str, Name, strlen (Name))))
{
*Index = i;
return (TRUE);
}
}
return (FALSE);
}
/*******************************************************************************
*
* FUNCTION: OpcDoPld
*
* PARAMETERS: Op - Parse node
*
* RETURN: None
*
* DESCRIPTION: Convert ToPLD macro to 20-byte buffer
*
******************************************************************************/
static void
OpcDoPld (
ACPI_PARSE_OBJECT *Op)
{
UINT8 *Buffer;
ACPI_PARSE_OBJECT *Node;
ACPI_PLD_INFO PldInfo;
ACPI_PARSE_OBJECT *NewOp;
if (!Op)
{
AslError(ASL_ERROR, ASL_MSG_NOT_EXIST, Op, NULL);
return;
}
if (Op->Asl.ParseOpcode != PARSEOP_TOPLD)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Op, NULL);
return;
}
memset (&PldInfo, 0, sizeof (ACPI_PLD_INFO));
Node = Op->Asl.Child;
while (Node)
{
switch (Node->Asl.ParseOpcode)
{
case PARSEOP_PLD_REVISION:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 127)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
PldInfo.Revision = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_IGNORECOLOR:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 1)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
PldInfo.IgnoreColor = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_RED:
case PARSEOP_PLD_GREEN:
case PARSEOP_PLD_BLUE:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 255)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
if (Node->Asl.ParseOpcode == PARSEOP_PLD_RED)
{
PldInfo.Red = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
else if (Node->Asl.ParseOpcode == PARSEOP_PLD_GREEN)
{
PldInfo.Green = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
else /* PARSEOP_PLD_BLUE */
{
PldInfo.Blue = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
break;
case PARSEOP_PLD_WIDTH:
case PARSEOP_PLD_HEIGHT:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 65535)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
if (Node->Asl.ParseOpcode == PARSEOP_PLD_WIDTH)
{
PldInfo.Width = (UINT16) Node->Asl.Child->Asl.Value.Integer;
}
else /* PARSEOP_PLD_HEIGHT */
{
PldInfo.Height = (UINT16) Node->Asl.Child->Asl.Value.Integer;
}
break;
case PARSEOP_PLD_USERVISIBLE:
case PARSEOP_PLD_DOCK:
case PARSEOP_PLD_LID:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 1)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
if (Node->Asl.ParseOpcode == PARSEOP_PLD_USERVISIBLE)
{
PldInfo.UserVisible = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
else if (Node->Asl.ParseOpcode == PARSEOP_PLD_DOCK)
{
PldInfo.Dock = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
else
{
PldInfo.Lid = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
break;
case PARSEOP_PLD_PANEL:
if (Node->Asl.Child->Asl.ParseOpcode == PARSEOP_INTEGER)
{
if (Node->Asl.Child->Asl.Value.Integer > 6)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
}
else /* PARSEOP_STRING */
{
if (!OpcFindName(AslPldPanelList,
Node->Asl.Child->Asl.Value.String,
&Node->Asl.Child->Asl.Value.Integer))
{
AslError(ASL_ERROR, ASL_MSG_INVALID_OPERAND, Node, NULL);
break;
}
}
PldInfo.Panel = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_VERTICALPOSITION:
if (Node->Asl.Child->Asl.ParseOpcode == PARSEOP_INTEGER)
{
if (Node->Asl.Child->Asl.Value.Integer > 2)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
}
else /* PARSEOP_STRING */
{
if (!OpcFindName(AslPldVerticalPositionList,
Node->Asl.Child->Asl.Value.String,
&Node->Asl.Child->Asl.Value.Integer))
{
AslError(ASL_ERROR, ASL_MSG_INVALID_OPERAND, Node, NULL);
break;
}
}
PldInfo.VerticalPosition = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_HORIZONTALPOSITION:
if (Node->Asl.Child->Asl.ParseOpcode == PARSEOP_INTEGER)
{
if (Node->Asl.Child->Asl.Value.Integer > 2)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
}
else /* PARSEOP_STRING */
{
if (!OpcFindName(AslPldHorizontalPositionList,
Node->Asl.Child->Asl.Value.String,
&Node->Asl.Child->Asl.Value.Integer))
{
AslError(ASL_ERROR, ASL_MSG_INVALID_OPERAND, Node, NULL);
break;
}
}
PldInfo.HorizontalPosition = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_SHAPE:
if (Node->Asl.Child->Asl.ParseOpcode == PARSEOP_INTEGER)
{
if (Node->Asl.Child->Asl.Value.Integer > 8)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
}
else /* PARSEOP_STRING */
{
if (!OpcFindName(AslPldShapeList,
Node->Asl.Child->Asl.Value.String,
&Node->Asl.Child->Asl.Value.Integer))
{
AslError(ASL_ERROR, ASL_MSG_INVALID_OPERAND, Node, NULL);
break;
}
}
PldInfo.Shape = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_GROUPORIENTATION:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 1)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
PldInfo.GroupOrientation = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_GROUPTOKEN:
case PARSEOP_PLD_GROUPPOSITION:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 255)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
if (Node->Asl.ParseOpcode == PARSEOP_PLD_GROUPTOKEN)
{
PldInfo.GroupToken = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
else /* PARSEOP_PLD_GROUPPOSITION */
{
PldInfo.GroupPosition = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
break;
case PARSEOP_PLD_BAY:
case PARSEOP_PLD_EJECTABLE:
case PARSEOP_PLD_EJECTREQUIRED:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 1)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
if (Node->Asl.ParseOpcode == PARSEOP_PLD_BAY)
{
PldInfo.Bay = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
else if (Node->Asl.ParseOpcode == PARSEOP_PLD_EJECTABLE)
{
PldInfo.Ejectable = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
else /* PARSEOP_PLD_EJECTREQUIRED */
{
PldInfo.OspmEjectRequired = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
break;
case PARSEOP_PLD_CABINETNUMBER:
case PARSEOP_PLD_CARDCAGENUMBER:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 255)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
if (Node->Asl.ParseOpcode == PARSEOP_PLD_CABINETNUMBER)
{
PldInfo.CabinetNumber = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
else /* PARSEOP_PLD_CARDCAGENUMBER */
{
PldInfo.CardCageNumber = (UINT8) Node->Asl.Child->Asl.Value.Integer;
}
break;
case PARSEOP_PLD_REFERENCE:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 1)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
PldInfo.Reference = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_ROTATION:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 7)
{
switch (Node->Asl.Child->Asl.Value.Integer)
{
case 45:
Node->Asl.Child->Asl.Value.Integer = 1;
break;
case 90:
Node->Asl.Child->Asl.Value.Integer = 2;
break;
case 135:
Node->Asl.Child->Asl.Value.Integer = 3;
break;
case 180:
Node->Asl.Child->Asl.Value.Integer = 4;
break;
case 225:
Node->Asl.Child->Asl.Value.Integer = 5;
break;
case 270:
Node->Asl.Child->Asl.Value.Integer = 6;
break;
case 315:
Node->Asl.Child->Asl.Value.Integer = 7;
break;
default:
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
}
PldInfo.Rotation = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_ORDER:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 31)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
PldInfo.Order = (UINT8) Node->Asl.Child->Asl.Value.Integer;
break;
case PARSEOP_PLD_VERTICALOFFSET:
case PARSEOP_PLD_HORIZONTALOFFSET:
if (Node->Asl.Child->Asl.ParseOpcode != PARSEOP_INTEGER)
{
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
if (Node->Asl.Child->Asl.Value.Integer > 65535)
{
AslError(ASL_ERROR, ASL_MSG_RANGE, Node, NULL);
break;
}
if (Node->Asl.ParseOpcode == PARSEOP_PLD_VERTICALOFFSET)
{
PldInfo.VerticalOffset = (UINT16) Node->Asl.Child->Asl.Value.Integer;
}
else /* PARSEOP_PLD_HORIZONTALOFFSET */
{
PldInfo.HorizontalOffset = (UINT16) Node->Asl.Child->Asl.Value.Integer;
}
break;
default:
AslError(ASL_ERROR, ASL_MSG_INVALID_TYPE, Node, NULL);
break;
}
Node = Node->Asl.Next;
}
Buffer = OpcEncodePldBuffer(&PldInfo);
/* Change Op to a Buffer */
Op->Asl.ParseOpcode = PARSEOP_BUFFER;
Op->Common.AmlOpcode = AML_BUFFER_OP;
/* Disable further optimization */
Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST;
UtSetParseOpName (Op);
/* Child node is the buffer length */
NewOp = TrAllocateNode (PARSEOP_INTEGER);
NewOp->Asl.AmlOpcode = AML_BYTE_OP;
NewOp->Asl.Value.Integer = 20;
NewOp->Asl.Parent = Op;
Op->Asl.Child = NewOp;
Op = NewOp;
/* Peer to the child is the raw buffer data */
NewOp = TrAllocateNode (PARSEOP_RAW_DATA);
NewOp->Asl.AmlOpcode = AML_RAW_DATA_BUFFER;
NewOp->Asl.AmlLength = 20;
NewOp->Asl.Value.String = ACPI_CAST_PTR (char, Buffer);
NewOp->Asl.Parent = Op->Asl.Parent;
Op->Asl.Next = NewOp;
}
/*******************************************************************************
*
* FUNCTION: OpcDoUuId
*
* PARAMETERS: Op - Parse node
*
* RETURN: None
*
* DESCRIPTION: Convert UUID string to 16-byte buffer
*
******************************************************************************/
static void
OpcDoUuId (
ACPI_PARSE_OBJECT *Op)
{
char *InString;
UINT8 *Buffer;
ACPI_STATUS Status = AE_OK;
ACPI_PARSE_OBJECT *NewOp;
InString = ACPI_CAST_PTR (char, Op->Asl.Value.String);
Buffer = UtLocalCalloc (16);
Status = AuValidateUuid (InString);
if (ACPI_FAILURE (Status))
{
AslError (ASL_ERROR, ASL_MSG_INVALID_UUID, Op, Op->Asl.Value.String);
}
else
{
AcpiUtConvertStringToUuid (InString, Buffer);
}
/* Change Op to a Buffer */
Op->Asl.ParseOpcode = PARSEOP_BUFFER;
Op->Common.AmlOpcode = AML_BUFFER_OP;
/* Disable further optimization */
Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST;
UtSetParseOpName (Op);
/* Child node is the buffer length */
NewOp = TrAllocateNode (PARSEOP_INTEGER);
NewOp->Asl.AmlOpcode = AML_BYTE_OP;
NewOp->Asl.Value.Integer = 16;
NewOp->Asl.Parent = Op;
Op->Asl.Child = NewOp;
Op = NewOp;
/* Peer to the child is the raw buffer data */
NewOp = TrAllocateNode (PARSEOP_RAW_DATA);
NewOp->Asl.AmlOpcode = AML_RAW_DATA_BUFFER;
NewOp->Asl.AmlLength = 16;
NewOp->Asl.Value.String = ACPI_CAST_PTR (char, Buffer);
NewOp->Asl.Parent = Op->Asl.Parent;
Op->Asl.Next = NewOp;
}
/*******************************************************************************
*
* FUNCTION: OpcGenerateAmlOpcode
*
* PARAMETERS: Op - Parse node
*
* RETURN: None
*
* DESCRIPTION: Generate the AML opcode associated with the node and its
* parse (lex/flex) keyword opcode. Essentially implements
* a mapping between the parse opcodes and the actual AML opcodes.
*
******************************************************************************/
void
OpcGenerateAmlOpcode (
ACPI_PARSE_OBJECT *Op)
{
UINT16 Index;
Index = (UINT16) (Op->Asl.ParseOpcode - ASL_PARSE_OPCODE_BASE);
Op->Asl.AmlOpcode = AslKeywordMapping[Index].AmlOpcode;
Op->Asl.AcpiBtype = AslKeywordMapping[Index].AcpiBtype;
Op->Asl.CompileFlags |= AslKeywordMapping[Index].Flags;
if (!Op->Asl.Value.Integer)
{
Op->Asl.Value.Integer = AslKeywordMapping[Index].Value;
}
/* Special handling for some opcodes */
switch (Op->Asl.ParseOpcode)
{
case PARSEOP_INTEGER:
/*
* Set the opcode based on the size of the integer
*/
(void) OpcSetOptimalIntegerSize (Op);
break;
case PARSEOP_OFFSET:
Op->Asl.AmlOpcodeLength = 1;
break;
case PARSEOP_ACCESSAS:
OpcDoAccessAs (Op);
break;
case PARSEOP_CONNECTION:
OpcDoConnection (Op);
break;
case PARSEOP_EISAID:
OpcDoEisaId (Op);
break;
case PARSEOP_PRINTF:
OpcDoPrintf (Op);
break;
case PARSEOP_FPRINTF:
OpcDoFprintf (Op);
break;
case PARSEOP_TOPLD:
OpcDoPld (Op);
break;
case PARSEOP_TOUUID:
OpcDoUuId (Op);
break;
case PARSEOP_UNICODE:
OpcDoUnicode (Op);
break;
case PARSEOP_INCLUDE:
Op->Asl.Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
Gbl_HasIncludeFiles = TRUE;
break;
case PARSEOP_EXTERNAL:
Op->Asl.Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
Op->Asl.Child->Asl.Next->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG;
break;
case PARSEOP_TIMER:
if (AcpiGbl_IntegerBitWidth == 32)
{
AslError (ASL_REMARK, ASL_MSG_TRUNCATION, Op, NULL);
}
break;
default:
/* Nothing to do for other opcodes */
break;
}
return;
}