2d4e511ca2
Update ntp-4.2.8p13 --> 4.2.8p14. The advisory can be found at: http://support.ntp.org/bin/view/Main/SecurityNotice#\ March_2020_ntp_4_2_8p14_NTP_Rele No CVEs have been documented yet. MFC after: now Security: http://support.ntp.org/bin/view/Main/NtpBug3610 http://support.ntp.org/bin/view/Main/NtpBug3596 http://support.ntp.org/bin/view/Main/NtpBug3592
2236 lines
58 KiB
C
2236 lines
58 KiB
C
/*
|
|
* ntp_calendar.c - calendar and helper functions
|
|
*
|
|
* Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
|
|
* The contents of 'html/copyright.html' apply.
|
|
*
|
|
* --------------------------------------------------------------------
|
|
* Some notes on the implementation:
|
|
*
|
|
* Calendar algorithms thrive on the division operation, which is one of
|
|
* the slowest numerical operations in any CPU. What saves us here from
|
|
* abysmal performance is the fact that all divisions are divisions by
|
|
* constant numbers, and most compilers can do this by a multiplication
|
|
* operation. But this might not work when using the div/ldiv/lldiv
|
|
* function family, because many compilers are not able to do inline
|
|
* expansion of the code with following optimisation for the
|
|
* constant-divider case.
|
|
*
|
|
* Also div/ldiv/lldiv are defined in terms of int/long/longlong, which
|
|
* are inherently target dependent. Nothing that could not be cured with
|
|
* autoconf, but still a mess...
|
|
*
|
|
* Furthermore, we need floor division in many places. C either leaves
|
|
* the division behaviour undefined (< C99) or demands truncation to
|
|
* zero (>= C99), so additional steps are required to make sure the
|
|
* algorithms work. The {l,ll}div function family is requested to
|
|
* truncate towards zero, which is also the wrong direction for our
|
|
* purpose.
|
|
*
|
|
* For all this, all divisions by constant are coded manually, even when
|
|
* there is a joined div/mod operation: The optimiser should sort that
|
|
* out, if possible. Most of the calculations are done with unsigned
|
|
* types, explicitely using two's complement arithmetics where
|
|
* necessary. This minimises the dependecies to compiler and target,
|
|
* while still giving reasonable to good performance.
|
|
*
|
|
* The implementation uses a few tricks that exploit properties of the
|
|
* two's complement: Floor division on negative dividents can be
|
|
* executed by using the one's complement of the divident. One's
|
|
* complement can be easily created using XOR and a mask.
|
|
*
|
|
* Finally, check for overflow conditions is minimal. There are only two
|
|
* calculation steps in the whole calendar that potentially suffer from
|
|
* an internal overflow, and these are coded in a way that avoids
|
|
* it. All other functions do not suffer from internal overflow and
|
|
* simply return the result truncated to 32 bits.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <sys/types.h>
|
|
|
|
#include "ntp_types.h"
|
|
#include "ntp_calendar.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_fp.h"
|
|
#include "ntp_unixtime.h"
|
|
|
|
#include "ntpd.h"
|
|
#include "lib_strbuf.h"
|
|
|
|
/* For now, let's take the conservative approach: if the target property
|
|
* macros are not defined, check a few well-known compiler/architecture
|
|
* settings. Default is to assume that the representation of signed
|
|
* integers is unknown and shift-arithmetic-right is not available.
|
|
*/
|
|
#ifndef TARGET_HAS_2CPL
|
|
# if defined(__GNUC__)
|
|
# if defined(__i386__) || defined(__x86_64__) || defined(__arm__)
|
|
# define TARGET_HAS_2CPL 1
|
|
# else
|
|
# define TARGET_HAS_2CPL 0
|
|
# endif
|
|
# elif defined(_MSC_VER)
|
|
# if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM)
|
|
# define TARGET_HAS_2CPL 1
|
|
# else
|
|
# define TARGET_HAS_2CPL 0
|
|
# endif
|
|
# else
|
|
# define TARGET_HAS_2CPL 0
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef TARGET_HAS_SAR
|
|
# define TARGET_HAS_SAR 0
|
|
#endif
|
|
|
|
#if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX)
|
|
# define HAVE_64BITREGS
|
|
#endif
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* replacing the 'time()' function
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
|
|
static systime_func_ptr systime_func = &time;
|
|
static inline time_t now(void);
|
|
|
|
|
|
systime_func_ptr
|
|
ntpcal_set_timefunc(
|
|
systime_func_ptr nfunc
|
|
)
|
|
{
|
|
systime_func_ptr res;
|
|
|
|
res = systime_func;
|
|
if (NULL == nfunc)
|
|
nfunc = &time;
|
|
systime_func = nfunc;
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
static inline time_t
|
|
now(void)
|
|
{
|
|
return (*systime_func)(NULL);
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Get sign extension mask and unsigned 2cpl rep for a signed integer
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
|
|
static inline uint32_t
|
|
int32_sflag(
|
|
const int32_t v)
|
|
{
|
|
# if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4
|
|
|
|
/* Let's assume that shift is the fastest way to get the sign
|
|
* extension of of a signed integer. This might not always be
|
|
* true, though -- On 8bit CPUs or machines without barrel
|
|
* shifter this will kill the performance. So we make sure
|
|
* we do this only if 'int' has at least 4 bytes.
|
|
*/
|
|
return (uint32_t)(v >> 31);
|
|
|
|
# else
|
|
|
|
/* This should be a rather generic approach for getting a sign
|
|
* extension mask...
|
|
*/
|
|
return UINT32_C(0) - (uint32_t)(v < 0);
|
|
|
|
# endif
|
|
}
|
|
|
|
static inline int32_t
|
|
uint32_2cpl_to_int32(
|
|
const uint32_t vu)
|
|
{
|
|
int32_t v;
|
|
|
|
# if TARGET_HAS_2CPL
|
|
|
|
/* Just copy through the 32 bits from the unsigned value if
|
|
* we're on a two's complement target.
|
|
*/
|
|
v = (int32_t)vu;
|
|
|
|
# else
|
|
|
|
/* Convert to signed integer, making sure signed integer
|
|
* overflow cannot happen. Again, the optimiser might or might
|
|
* not find out that this is just a copy of 32 bits on a target
|
|
* with two's complement representation for signed integers.
|
|
*/
|
|
if (vu > INT32_MAX)
|
|
v = -(int32_t)(~vu) - 1;
|
|
else
|
|
v = (int32_t)vu;
|
|
|
|
# endif
|
|
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert between 'time_t' and 'vint64'
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
vint64
|
|
time_to_vint64(
|
|
const time_t * ptt
|
|
)
|
|
{
|
|
vint64 res;
|
|
time_t tt;
|
|
|
|
tt = *ptt;
|
|
|
|
# if SIZEOF_TIME_T <= 4
|
|
|
|
res.D_s.hi = 0;
|
|
if (tt < 0) {
|
|
res.D_s.lo = (uint32_t)-tt;
|
|
M_NEG(res.D_s.hi, res.D_s.lo);
|
|
} else {
|
|
res.D_s.lo = (uint32_t)tt;
|
|
}
|
|
|
|
# elif defined(HAVE_INT64)
|
|
|
|
res.q_s = tt;
|
|
|
|
# else
|
|
/*
|
|
* shifting negative signed quantities is compiler-dependent, so
|
|
* we better avoid it and do it all manually. And shifting more
|
|
* than the width of a quantity is undefined. Also a don't do!
|
|
*/
|
|
if (tt < 0) {
|
|
tt = -tt;
|
|
res.D_s.lo = (uint32_t)tt;
|
|
res.D_s.hi = (uint32_t)(tt >> 32);
|
|
M_NEG(res.D_s.hi, res.D_s.lo);
|
|
} else {
|
|
res.D_s.lo = (uint32_t)tt;
|
|
res.D_s.hi = (uint32_t)(tt >> 32);
|
|
}
|
|
|
|
# endif
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
time_t
|
|
vint64_to_time(
|
|
const vint64 *tv
|
|
)
|
|
{
|
|
time_t res;
|
|
|
|
# if SIZEOF_TIME_T <= 4
|
|
|
|
res = (time_t)tv->D_s.lo;
|
|
|
|
# elif defined(HAVE_INT64)
|
|
|
|
res = (time_t)tv->q_s;
|
|
|
|
# else
|
|
|
|
res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo;
|
|
|
|
# endif
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Get the build date & time
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int
|
|
ntpcal_get_build_date(
|
|
struct calendar * jd
|
|
)
|
|
{
|
|
/* The C standard tells us the format of '__DATE__':
|
|
*
|
|
* __DATE__ The date of translation of the preprocessing
|
|
* translation unit: a character string literal of the form "Mmm
|
|
* dd yyyy", where the names of the months are the same as those
|
|
* generated by the asctime function, and the first character of
|
|
* dd is a space character if the value is less than 10. If the
|
|
* date of translation is not available, an
|
|
* implementation-defined valid date shall be supplied.
|
|
*
|
|
* __TIME__ The time of translation of the preprocessing
|
|
* translation unit: a character string literal of the form
|
|
* "hh:mm:ss" as in the time generated by the asctime
|
|
* function. If the time of translation is not available, an
|
|
* implementation-defined valid time shall be supplied.
|
|
*
|
|
* Note that MSVC declares DATE and TIME to be in the local time
|
|
* zone, while neither the C standard nor the GCC docs make any
|
|
* statement about this. As a result, we may be +/-12hrs off
|
|
* UTC. But for practical purposes, this should not be a
|
|
* problem.
|
|
*
|
|
*/
|
|
# ifdef MKREPRO_DATE
|
|
static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE;
|
|
# else
|
|
static const char build[] = __TIME__ "/" __DATE__;
|
|
# endif
|
|
static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
|
|
|
|
char monstr[4];
|
|
const char * cp;
|
|
unsigned short hour, minute, second, day, year;
|
|
/* Note: The above quantities are used for sscanf 'hu' format,
|
|
* so using 'uint16_t' is contra-indicated!
|
|
*/
|
|
|
|
# ifdef DEBUG
|
|
static int ignore = 0;
|
|
# endif
|
|
|
|
ZERO(*jd);
|
|
jd->year = 1970;
|
|
jd->month = 1;
|
|
jd->monthday = 1;
|
|
|
|
# ifdef DEBUG
|
|
/* check environment if build date should be ignored */
|
|
if (0 == ignore) {
|
|
const char * envstr;
|
|
envstr = getenv("NTPD_IGNORE_BUILD_DATE");
|
|
ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes")));
|
|
}
|
|
if (ignore > 1)
|
|
return FALSE;
|
|
# endif
|
|
|
|
if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu",
|
|
&hour, &minute, &second, monstr, &day, &year)) {
|
|
cp = strstr(mlist, monstr);
|
|
if (NULL != cp) {
|
|
jd->year = year;
|
|
jd->month = (uint8_t)((cp - mlist) / 3 + 1);
|
|
jd->monthday = (uint8_t)day;
|
|
jd->hour = (uint8_t)hour;
|
|
jd->minute = (uint8_t)minute;
|
|
jd->second = (uint8_t)second;
|
|
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* basic calendar stuff
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* Some notes on the terminology:
|
|
*
|
|
* We use the proleptic Gregorian calendar, which is the Gregorian
|
|
* calendar extended in both directions ad infinitum. This totally
|
|
* disregards the fact that this calendar was invented in 1582, and
|
|
* was adopted at various dates over the world; sometimes even after
|
|
* the start of the NTP epoch.
|
|
*
|
|
* Normally date parts are given as current cycles, while time parts
|
|
* are given as elapsed cycles:
|
|
*
|
|
* 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month,
|
|
* ON the first day, with 3hrs, 4minutes and 5 seconds elapsed.
|
|
*
|
|
* The basic calculations for this calendar implementation deal with
|
|
* ELAPSED date units, which is the number of full years, full months
|
|
* and full days before a date: 1970-01-01 would be (1969, 0, 0) in
|
|
* that notation.
|
|
*
|
|
* To ease the numeric computations, month and day values outside the
|
|
* normal range are acceptable: 2001-03-00 will be treated as the day
|
|
* before 2001-03-01, 2000-13-32 will give the same result as
|
|
* 2001-02-01 and so on.
|
|
*
|
|
* 'rd' or 'RD' is used as an abbreviation for the latin 'rata die'
|
|
* (day number). This is the number of days elapsed since 0000-12-31
|
|
* in the proleptic Gregorian calendar. The begin of the Christian Era
|
|
* (0001-01-01) is RD(1).
|
|
*/
|
|
|
|
/*
|
|
* ====================================================================
|
|
*
|
|
* General algorithmic stuff
|
|
*
|
|
* ====================================================================
|
|
*/
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* fast modulo 7 operations (floor/mathematical convention)
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int
|
|
u32mod7(
|
|
uint32_t x
|
|
)
|
|
{
|
|
/* This is a combination of tricks from "Hacker's Delight" with
|
|
* some modifications, like a multiplication that rounds up to
|
|
* drop the final adjustment stage.
|
|
*
|
|
* Do a partial reduction by digit sum to keep the value in the
|
|
* range permitted for the mul/shift stage. There are several
|
|
* possible and absolutely equivalent shift/mask combinations;
|
|
* this one is ARM-friendly because of a mask that fits into 16
|
|
* bit.
|
|
*/
|
|
x = (x >> 15) + (x & UINT32_C(0x7FFF));
|
|
/* Take reminder as (mod 8) by mul/shift. Since the multiplier
|
|
* was calculated using ceil() instead of floor(), it skips the
|
|
* value '7' properly.
|
|
* M <- ceil(ldexp(8/7, 29))
|
|
*/
|
|
return (int)((x * UINT32_C(0x24924925)) >> 29);
|
|
}
|
|
|
|
int
|
|
i32mod7(
|
|
int32_t x
|
|
)
|
|
{
|
|
/* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative
|
|
* numbers to map them into the postive range. Only the term '-4'
|
|
* survives, obviously.
|
|
*/
|
|
uint32_t ux = (uint32_t)x;
|
|
return u32mod7((x < 0) ? (ux - 4u) : ux);
|
|
}
|
|
|
|
uint32_t
|
|
i32fmod(
|
|
int32_t x,
|
|
uint32_t d
|
|
)
|
|
{
|
|
uint32_t ux = (uint32_t)x;
|
|
uint32_t sf = UINT32_C(0) - (x < 0);
|
|
ux = (sf ^ ux ) % d;
|
|
return (d & sf) + (sf ^ ux);
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Do a periodic extension of 'value' around 'pivot' with a period of
|
|
* 'cycle'.
|
|
*
|
|
* The result 'res' is a number that holds to the following properties:
|
|
*
|
|
* 1) res MOD cycle == value MOD cycle
|
|
* 2) pivot <= res < pivot + cycle
|
|
* (replace </<= with >/>= for negative cycles)
|
|
*
|
|
* where 'MOD' denotes the modulo operator for FLOOR DIVISION, which
|
|
* is not the same as the '%' operator in C: C requires division to be
|
|
* a truncated division, where remainder and dividend have the same
|
|
* sign if the remainder is not zero, whereas floor division requires
|
|
* divider and modulus to have the same sign for a non-zero modulus.
|
|
*
|
|
* This function has some useful applications:
|
|
*
|
|
* + let Y be a calendar year and V a truncated 2-digit year: then
|
|
* periodic_extend(Y-50, V, 100)
|
|
* is the closest expansion of the truncated year with respect to
|
|
* the full year, that is a 4-digit year with a difference of less
|
|
* than 50 years to the year Y. ("century unfolding")
|
|
*
|
|
* + let T be a UN*X time stamp and V be seconds-of-day: then
|
|
* perodic_extend(T-43200, V, 86400)
|
|
* is a time stamp that has the same seconds-of-day as the input
|
|
* value, with an absolute difference to T of <= 12hrs. ("day
|
|
* unfolding")
|
|
*
|
|
* + Wherever you have a truncated periodic value and a non-truncated
|
|
* base value and you want to match them somehow...
|
|
*
|
|
* Basically, the function delivers 'pivot + (value - pivot) % cycle',
|
|
* but the implementation takes some pains to avoid internal signed
|
|
* integer overflows in the '(value - pivot) % cycle' part and adheres
|
|
* to the floor division convention.
|
|
*
|
|
* If 64bit scalars where available on all intended platforms, writing a
|
|
* version that uses 64 bit ops would be easy; writing a general
|
|
* division routine for 64bit ops on a platform that can only do
|
|
* 32/16bit divisions and is still performant is a bit more
|
|
* difficult. Since most usecases can be coded in a way that does only
|
|
* require the 32bit version a 64bit version is NOT provided here.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_periodic_extend(
|
|
int32_t pivot,
|
|
int32_t value,
|
|
int32_t cycle
|
|
)
|
|
{
|
|
/* Implement a 4-quadrant modulus calculation by 2 2-quadrant
|
|
* branches, one for positive and one for negative dividers.
|
|
* Everything else can be handled by bit level logic and
|
|
* conditional one's complement arithmetic. By convention, we
|
|
* assume
|
|
*
|
|
* x % b == 0 if |b| < 2
|
|
*
|
|
* that is, we don't actually divide for cycles of -1,0,1 and
|
|
* return the pivot value in that case.
|
|
*/
|
|
uint32_t uv = (uint32_t)value;
|
|
uint32_t up = (uint32_t)pivot;
|
|
uint32_t uc, sf;
|
|
|
|
if (cycle > 1)
|
|
{
|
|
uc = (uint32_t)cycle;
|
|
sf = UINT32_C(0) - (value < pivot);
|
|
|
|
uv = sf ^ (uv - up);
|
|
uv %= uc;
|
|
pivot += (uc & sf) + (sf ^ uv);
|
|
}
|
|
else if (cycle < -1)
|
|
{
|
|
uc = ~(uint32_t)cycle + 1;
|
|
sf = UINT32_C(0) - (value > pivot);
|
|
|
|
uv = sf ^ (up - uv);
|
|
uv %= uc;
|
|
pivot -= (uc & sf) + (sf ^ uv);
|
|
}
|
|
return pivot;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------
|
|
* Note to the casual reader
|
|
*
|
|
* In the next two functions you will find (or would have found...)
|
|
* the expression
|
|
*
|
|
* res.Q_s -= 0x80000000;
|
|
*
|
|
* There was some ruckus about a possible programming error due to
|
|
* integer overflow and sign propagation.
|
|
*
|
|
* This assumption is based on a lack of understanding of the C
|
|
* standard. (Though this is admittedly not one of the most 'natural'
|
|
* aspects of the 'C' language and easily to get wrong.)
|
|
*
|
|
* see
|
|
* http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
|
|
* "ISO/IEC 9899:201x Committee Draft — April 12, 2011"
|
|
* 6.4.4.1 Integer constants, clause 5
|
|
*
|
|
* why there is no sign extension/overflow problem here.
|
|
*
|
|
* But to ease the minds of the doubtful, I added back the 'u' qualifiers
|
|
* that somehow got lost over the last years.
|
|
*/
|
|
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X
|
|
* scale with proper epoch unfolding around a given pivot or the current
|
|
* system time. This function happily accepts negative pivot values as
|
|
* timestamps before 1970-01-01, so be aware of possible trouble on
|
|
* platforms with 32bit 'time_t'!
|
|
*
|
|
* This is also a periodic extension, but since the cycle is 2^32 and
|
|
* the shift is 2^31, we can do some *very* fast math without explicit
|
|
* divisions.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
vint64
|
|
ntpcal_ntp_to_time(
|
|
uint32_t ntp,
|
|
const time_t * pivot
|
|
)
|
|
{
|
|
vint64 res;
|
|
|
|
# if defined(HAVE_INT64)
|
|
|
|
res.q_s = (pivot != NULL)
|
|
? *pivot
|
|
: now();
|
|
res.Q_s -= 0x80000000u; /* unshift of half range */
|
|
ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */
|
|
ntp -= res.D_s.lo; /* cycle difference */
|
|
res.Q_s += (uint64_t)ntp; /* get expanded time */
|
|
|
|
# else /* no 64bit scalars */
|
|
|
|
time_t tmp;
|
|
|
|
tmp = (pivot != NULL)
|
|
? *pivot
|
|
: now();
|
|
res = time_to_vint64(&tmp);
|
|
M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
|
|
ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */
|
|
ntp -= res.D_s.lo; /* cycle difference */
|
|
M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
|
|
|
|
# endif /* no 64bit scalars */
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert a timestamp in NTP scale to a 64bit seconds value in the NTP
|
|
* scale with proper epoch unfolding around a given pivot or the current
|
|
* system time.
|
|
*
|
|
* Note: The pivot must be given in the UN*X time domain!
|
|
*
|
|
* This is also a periodic extension, but since the cycle is 2^32 and
|
|
* the shift is 2^31, we can do some *very* fast math without explicit
|
|
* divisions.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
vint64
|
|
ntpcal_ntp_to_ntp(
|
|
uint32_t ntp,
|
|
const time_t *pivot
|
|
)
|
|
{
|
|
vint64 res;
|
|
|
|
# if defined(HAVE_INT64)
|
|
|
|
res.q_s = (pivot)
|
|
? *pivot
|
|
: now();
|
|
res.Q_s -= 0x80000000u; /* unshift of half range */
|
|
res.Q_s += (uint32_t)JAN_1970; /* warp into NTP domain */
|
|
ntp -= res.D_s.lo; /* cycle difference */
|
|
res.Q_s += (uint64_t)ntp; /* get expanded time */
|
|
|
|
# else /* no 64bit scalars */
|
|
|
|
time_t tmp;
|
|
|
|
tmp = (pivot)
|
|
? *pivot
|
|
: now();
|
|
res = time_to_vint64(&tmp);
|
|
M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
|
|
M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */
|
|
ntp -= res.D_s.lo; /* cycle difference */
|
|
M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
|
|
|
|
# endif /* no 64bit scalars */
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================================================================
|
|
*
|
|
* Splitting values to composite entities
|
|
*
|
|
* ====================================================================
|
|
*/
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Split a 64bit seconds value into elapsed days in 'res.hi' and
|
|
* elapsed seconds since midnight in 'res.lo' using explicit floor
|
|
* division. This function happily accepts negative time values as
|
|
* timestamps before the respective epoch start.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
ntpcal_split
|
|
ntpcal_daysplit(
|
|
const vint64 *ts
|
|
)
|
|
{
|
|
ntpcal_split res;
|
|
uint32_t Q, R;
|
|
|
|
# if defined(HAVE_64BITREGS)
|
|
|
|
/* Assume we have 64bit registers an can do a divison by
|
|
* constant reasonably fast using the one's complement trick..
|
|
*/
|
|
uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
|
|
Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY));
|
|
R = (uint32_t)(ts->Q_s - Q * SECSPERDAY);
|
|
|
|
# elif defined(UINT64_MAX) && !defined(__arm__)
|
|
|
|
/* We rely on the compiler to do efficient 64bit divisions as
|
|
* good as possible. Which might or might not be true. At least
|
|
* for ARM CPUs, the sum-by-digit code in the next section is
|
|
* faster for many compilers. (This might change over time, but
|
|
* the 64bit-by-32bit division will never outperform the exact
|
|
* division by a substantial factor....)
|
|
*/
|
|
if (ts->q_s < 0)
|
|
Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY);
|
|
else
|
|
Q = (uint32_t)( ts->Q_s / SECSPERDAY);
|
|
R = ts->D_s.lo - Q * SECSPERDAY;
|
|
|
|
# else
|
|
|
|
/* We don't have 64bit regs. That hurts a bit.
|
|
*
|
|
* Here we use a mean trick to get away with just one explicit
|
|
* modulo operation and pure 32bit ops.
|
|
*
|
|
* Remember: 86400 <--> 128 * 675
|
|
*
|
|
* So we discard the lowest 7 bit and do an exact division by
|
|
* 675, modulo 2**32.
|
|
*
|
|
* First we shift out the lower 7 bits.
|
|
*
|
|
* Then we use a digit-wise pseudo-reduction, where a 'digit' is
|
|
* actually a 16-bit group. This is followed by a full reduction
|
|
* with a 'true' division step. This yields the modulus of the
|
|
* full 64bit value. The sign bit gets some extra treatment.
|
|
*
|
|
* Then we decrement the lower limb by that modulus, so it is
|
|
* exactly divisible by 675. [*]
|
|
*
|
|
* Then we multiply with the modular inverse of 675 (mod 2**32)
|
|
* and voila, we have the result.
|
|
*
|
|
* Special Thanks to Henry S. Warren and his "Hacker's delight"
|
|
* for giving that idea.
|
|
*
|
|
* (Note[*]: that's not the full truth. We would have to
|
|
* subtract the modulus from the full 64 bit number to get a
|
|
* number that is divisible by 675. But since we use the
|
|
* multiplicative inverse (mod 2**32) there's no reason to carry
|
|
* the subtraction into the upper bits!)
|
|
*/
|
|
uint32_t al = ts->D_s.lo;
|
|
uint32_t ah = ts->D_s.hi;
|
|
|
|
/* shift out the lower 7 bits, smash sign bit */
|
|
al = (al >> 7) | (ah << 25);
|
|
ah = (ah >> 7) & 0x00FFFFFFu;
|
|
|
|
R = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */
|
|
R += (al & 0xFFFF);
|
|
R += (al >> 16 ) * 61u; /* 2**16 % 675 */
|
|
R += (ah & 0xFFFF) * 346u; /* 2**32 % 675 */
|
|
R += (ah >> 16 ) * 181u; /* 2**48 % 675 */
|
|
R %= 675u; /* final reduction */
|
|
Q = (al - R) * 0x2D21C10Bu; /* modinv(675, 2**32) */
|
|
R = (R << 7) | (ts->d_s.lo & 0x07F);
|
|
|
|
# endif
|
|
|
|
res.hi = uint32_2cpl_to_int32(Q);
|
|
res.lo = R;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Split a 64bit seconds value into elapsed weeks in 'res.hi' and
|
|
* elapsed seconds since week start in 'res.lo' using explicit floor
|
|
* division. This function happily accepts negative time values as
|
|
* timestamps before the respective epoch start.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
ntpcal_split
|
|
ntpcal_weeksplit(
|
|
const vint64 *ts
|
|
)
|
|
{
|
|
ntpcal_split res;
|
|
uint32_t Q, R;
|
|
|
|
/* This is a very close relative to the day split function; for
|
|
* details, see there!
|
|
*/
|
|
|
|
# if defined(HAVE_64BITREGS)
|
|
|
|
uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
|
|
Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK));
|
|
R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK);
|
|
|
|
# elif defined(UINT64_MAX) && !defined(__arm__)
|
|
|
|
if (ts->q_s < 0)
|
|
Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK);
|
|
else
|
|
Q = (uint32_t)( ts->Q_s / SECSPERWEEK);
|
|
R = ts->D_s.lo - Q * SECSPERWEEK;
|
|
|
|
# else
|
|
|
|
/* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */
|
|
uint32_t al = ts->D_s.lo;
|
|
uint32_t ah = ts->D_s.hi;
|
|
|
|
al = (al >> 7) | (ah << 25);
|
|
ah = (ah >> 7) & 0x00FFFFFF;
|
|
|
|
R = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */
|
|
R += (al & 0xFFFF);
|
|
R += (al >> 16 ) * 4111u; /* 2**16 % 4725 */
|
|
R += (ah & 0xFFFF) * 3721u; /* 2**32 % 4725 */
|
|
R += (ah >> 16 ) * 2206u; /* 2**48 % 4725 */
|
|
R %= 4725u; /* final reduction */
|
|
Q = (al - R) * 0x98BBADDDu; /* modinv(4725, 2**32) */
|
|
R = (R << 7) | (ts->d_s.lo & 0x07F);
|
|
|
|
# endif
|
|
|
|
res.hi = uint32_2cpl_to_int32(Q);
|
|
res.lo = R;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Split a 32bit seconds value into h/m/s and excessive days. This
|
|
* function happily accepts negative time values as timestamps before
|
|
* midnight.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
static int32_t
|
|
priv_timesplit(
|
|
int32_t split[3],
|
|
int32_t ts
|
|
)
|
|
{
|
|
/* Do 3 chained floor divisions by positive constants, using the
|
|
* one's complement trick and factoring out the intermediate XOR
|
|
* ops to reduce the number of operations.
|
|
*/
|
|
uint32_t us, um, uh, ud, sf32;
|
|
|
|
sf32 = int32_sflag(ts);
|
|
|
|
us = (uint32_t)ts;
|
|
um = (sf32 ^ us) / SECSPERMIN;
|
|
uh = um / MINSPERHR;
|
|
ud = uh / HRSPERDAY;
|
|
|
|
um ^= sf32;
|
|
uh ^= sf32;
|
|
ud ^= sf32;
|
|
|
|
split[0] = (int32_t)(uh - ud * HRSPERDAY );
|
|
split[1] = (int32_t)(um - uh * MINSPERHR );
|
|
split[2] = (int32_t)(us - um * SECSPERMIN);
|
|
|
|
return uint32_2cpl_to_int32(ud);
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Given the number of elapsed days in the calendar era, split this
|
|
* number into the number of elapsed years in 'res.hi' and the number
|
|
* of elapsed days of that year in 'res.lo'.
|
|
*
|
|
* if 'isleapyear' is not NULL, it will receive an integer that is 0 for
|
|
* regular years and a non-zero value for leap years.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
ntpcal_split
|
|
ntpcal_split_eradays(
|
|
int32_t days,
|
|
int *isleapyear
|
|
)
|
|
{
|
|
/* Use the fast cycle split algorithm here, to calculate the
|
|
* centuries and years in a century with one division each. This
|
|
* reduces the number of division operations to two, but is
|
|
* susceptible to internal range overflow. We take some extra
|
|
* steps to avoid the gap.
|
|
*/
|
|
ntpcal_split res;
|
|
int32_t n100, n001; /* calendar year cycles */
|
|
uint32_t uday, Q;
|
|
|
|
/* split off centuries first
|
|
*
|
|
* We want to execute '(days * 4 + 3) /% 146097' under floor
|
|
* division rules in the first step. Well, actually we want to
|
|
* calculate 'floor((days + 0.75) / 36524.25)', but we want to
|
|
* do it in scaled integer calculation.
|
|
*/
|
|
# if defined(HAVE_64BITREGS)
|
|
|
|
/* not too complicated with an intermediate 64bit value */
|
|
uint64_t ud64, sf64;
|
|
ud64 = ((uint64_t)days << 2) | 3u;
|
|
sf64 = (uint64_t)-(days < 0);
|
|
Q = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS));
|
|
uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS);
|
|
n100 = uint32_2cpl_to_int32(Q);
|
|
|
|
# else
|
|
|
|
/* '4*days+3' suffers from range overflow when going to the
|
|
* limits. We solve this by doing an exact division (mod 2^32)
|
|
* after caclulating the remainder first.
|
|
*
|
|
* We start with a partial reduction by digit sums, extracting
|
|
* the upper bits from the original value before they get lost
|
|
* by scaling, and do one full division step to get the true
|
|
* remainder. Then a final multiplication with the
|
|
* multiplicative inverse of 146097 (mod 2^32) gives us the full
|
|
* quotient.
|
|
*
|
|
* (-2^33) % 146097 --> 130717 : the sign bit value
|
|
* ( 2^20) % 146097 --> 25897 : the upper digit value
|
|
* modinv(146097, 2^32) --> 660721233 : the inverse
|
|
*/
|
|
uint32_t ux = ((uint32_t)days << 2) | 3;
|
|
uday = (days < 0) ? 130717u : 0u; /* sign dgt */
|
|
uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */
|
|
uday += (ux & 0xFFFFFu); /* lo dgt */
|
|
uday %= GREGORIAN_CYCLE_DAYS; /* full reduction */
|
|
Q = (ux - uday) * 660721233u; /* exact div */
|
|
n100 = uint32_2cpl_to_int32(Q);
|
|
|
|
# endif
|
|
|
|
/* Split off years in century -- days >= 0 here, and we're far
|
|
* away from integer overflow trouble now. */
|
|
uday |= 3;
|
|
n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
|
|
uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
|
|
|
|
/* Assemble the year and day in year */
|
|
res.hi = n100 * 100 + n001;
|
|
res.lo = uday / 4u;
|
|
|
|
/* Possibly set the leap year flag */
|
|
if (isleapyear) {
|
|
uint32_t tc = (uint32_t)n100 + 1;
|
|
uint32_t ty = (uint32_t)n001 + 1;
|
|
*isleapyear = !(ty & 3)
|
|
&& ((ty != 100) || !(tc & 3));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Given a number of elapsed days in a year and a leap year indicator,
|
|
* split the number of elapsed days into the number of elapsed months in
|
|
* 'res.hi' and the number of elapsed days of that month in 'res.lo'.
|
|
*
|
|
* This function will fail and return {-1,-1} if the number of elapsed
|
|
* days is not in the valid range!
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
ntpcal_split
|
|
ntpcal_split_yeardays(
|
|
int32_t eyd,
|
|
int isleap
|
|
)
|
|
{
|
|
/* Use the unshifted-year, February-with-30-days approach here.
|
|
* Fractional interpolations are used in both directions, with
|
|
* the smallest power-of-two divider to avoid any true division.
|
|
*/
|
|
ntpcal_split res = {-1, -1};
|
|
|
|
/* convert 'isleap' to number of defective days */
|
|
isleap = 1 + !isleap;
|
|
/* adjust for February of 30 nominal days */
|
|
if (eyd >= 61 - isleap)
|
|
eyd += isleap;
|
|
/* if in range, convert to months and days in month */
|
|
if (eyd >= 0 && eyd < 367) {
|
|
res.hi = (eyd * 67 + 32) >> 11;
|
|
res.lo = eyd - ((489 * res.hi + 8) >> 4);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert a RD into the date part of a 'struct calendar'.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int
|
|
ntpcal_rd_to_date(
|
|
struct calendar *jd,
|
|
int32_t rd
|
|
)
|
|
{
|
|
ntpcal_split split;
|
|
int leapy;
|
|
u_int ymask;
|
|
|
|
/* Get day-of-week first. It's simply the RD (mod 7)... */
|
|
jd->weekday = i32mod7(rd);
|
|
|
|
split = ntpcal_split_eradays(rd - 1, &leapy);
|
|
/* Get year and day-of-year, with overflow check. If any of the
|
|
* upper 16 bits is set after shifting to unity-based years, we
|
|
* will have an overflow when converting to an unsigned 16bit
|
|
* year. Shifting to the right is OK here, since it does not
|
|
* matter if the shift is logic or arithmetic.
|
|
*/
|
|
split.hi += 1;
|
|
ymask = 0u - ((split.hi >> 16) == 0);
|
|
jd->year = (uint16_t)(split.hi & ymask);
|
|
jd->yearday = (uint16_t)split.lo + 1;
|
|
|
|
/* convert to month and mday */
|
|
split = ntpcal_split_yeardays(split.lo, leapy);
|
|
jd->month = (uint8_t)split.hi + 1;
|
|
jd->monthday = (uint8_t)split.lo + 1;
|
|
|
|
return ymask ? leapy : -1;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert a RD into the date part of a 'struct tm'.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int
|
|
ntpcal_rd_to_tm(
|
|
struct tm *utm,
|
|
int32_t rd
|
|
)
|
|
{
|
|
ntpcal_split split;
|
|
int leapy;
|
|
|
|
/* get day-of-week first */
|
|
utm->tm_wday = i32mod7(rd);
|
|
|
|
/* get year and day-of-year */
|
|
split = ntpcal_split_eradays(rd - 1, &leapy);
|
|
utm->tm_year = split.hi - 1899;
|
|
utm->tm_yday = split.lo; /* 0-based */
|
|
|
|
/* convert to month and mday */
|
|
split = ntpcal_split_yeardays(split.lo, leapy);
|
|
utm->tm_mon = split.hi; /* 0-based */
|
|
utm->tm_mday = split.lo + 1; /* 1-based */
|
|
|
|
return leapy;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Take a value of seconds since midnight and split it into hhmmss in a
|
|
* 'struct calendar'.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_daysec_to_date(
|
|
struct calendar *jd,
|
|
int32_t sec
|
|
)
|
|
{
|
|
int32_t days;
|
|
int ts[3];
|
|
|
|
days = priv_timesplit(ts, sec);
|
|
jd->hour = (uint8_t)ts[0];
|
|
jd->minute = (uint8_t)ts[1];
|
|
jd->second = (uint8_t)ts[2];
|
|
|
|
return days;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Take a value of seconds since midnight and split it into hhmmss in a
|
|
* 'struct tm'.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_daysec_to_tm(
|
|
struct tm *utm,
|
|
int32_t sec
|
|
)
|
|
{
|
|
int32_t days;
|
|
int32_t ts[3];
|
|
|
|
days = priv_timesplit(ts, sec);
|
|
utm->tm_hour = ts[0];
|
|
utm->tm_min = ts[1];
|
|
utm->tm_sec = ts[2];
|
|
|
|
return days;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* take a split representation for day/second-of-day and day offset
|
|
* and convert it to a 'struct calendar'. The seconds will be normalised
|
|
* into the range of a day, and the day will be adjusted accordingly.
|
|
*
|
|
* returns >0 if the result is in a leap year, 0 if in a regular
|
|
* year and <0 if the result did not fit into the calendar struct.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int
|
|
ntpcal_daysplit_to_date(
|
|
struct calendar *jd,
|
|
const ntpcal_split *ds,
|
|
int32_t dof
|
|
)
|
|
{
|
|
dof += ntpcal_daysec_to_date(jd, ds->lo);
|
|
return ntpcal_rd_to_date(jd, ds->hi + dof);
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* take a split representation for day/second-of-day and day offset
|
|
* and convert it to a 'struct tm'. The seconds will be normalised
|
|
* into the range of a day, and the day will be adjusted accordingly.
|
|
*
|
|
* returns 1 if the result is in a leap year and zero if in a regular
|
|
* year.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int
|
|
ntpcal_daysplit_to_tm(
|
|
struct tm *utm,
|
|
const ntpcal_split *ds ,
|
|
int32_t dof
|
|
)
|
|
{
|
|
dof += ntpcal_daysec_to_tm(utm, ds->lo);
|
|
|
|
return ntpcal_rd_to_tm(utm, ds->hi + dof);
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Take a UN*X time and convert to a calendar structure.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int
|
|
ntpcal_time_to_date(
|
|
struct calendar *jd,
|
|
const vint64 *ts
|
|
)
|
|
{
|
|
ntpcal_split ds;
|
|
|
|
ds = ntpcal_daysplit(ts);
|
|
ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
|
|
ds.hi += DAY_UNIX_STARTS;
|
|
|
|
return ntpcal_rd_to_date(jd, ds.hi);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================================================================
|
|
*
|
|
* merging composite entities
|
|
*
|
|
* ====================================================================
|
|
*/
|
|
|
|
#if !defined(HAVE_INT64)
|
|
/* multiplication helper. Seconds in days and weeks are multiples of 128,
|
|
* and without that factor fit well into 16 bit. So a multiplication
|
|
* of 32bit by 16bit and some shifting can be used on pure 32bit machines
|
|
* with compilers that do not support 64bit integers.
|
|
*
|
|
* Calculate ( hi * mul * 128 ) + lo
|
|
*/
|
|
static vint64
|
|
_dwjoin(
|
|
uint16_t mul,
|
|
int32_t hi,
|
|
int32_t lo
|
|
)
|
|
{
|
|
vint64 res;
|
|
uint32_t p1, p2, sf;
|
|
|
|
/* get sign flag and absolute value of 'hi' in p1 */
|
|
sf = (uint32_t)-(hi < 0);
|
|
p1 = ((uint32_t)hi + sf) ^ sf;
|
|
|
|
/* assemble major units: res <- |hi| * mul */
|
|
res.D_s.lo = (p1 & 0xFFFF) * mul;
|
|
res.D_s.hi = 0;
|
|
p1 = (p1 >> 16) * mul;
|
|
p2 = p1 >> 16;
|
|
p1 = p1 << 16;
|
|
M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
|
|
|
|
/* mul by 128, using shift: res <-- res << 7 */
|
|
res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25);
|
|
res.D_s.lo = (res.D_s.lo << 7);
|
|
|
|
/* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */
|
|
M_ADD(res.D_s.hi, res.D_s.lo, sf, sf);
|
|
res.D_s.lo ^= sf;
|
|
res.D_s.hi ^= sf;
|
|
|
|
/* properly add seconds: res <-- res + [sx(lo)|lo] */
|
|
p2 = (uint32_t)-(lo < 0);
|
|
p1 = (uint32_t)lo;
|
|
M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Merge a number of days and a number of seconds into seconds,
|
|
* expressed in 64 bits to avoid overflow.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
vint64
|
|
ntpcal_dayjoin(
|
|
int32_t days,
|
|
int32_t secs
|
|
)
|
|
{
|
|
vint64 res;
|
|
|
|
# if defined(HAVE_INT64)
|
|
|
|
res.q_s = days;
|
|
res.q_s *= SECSPERDAY;
|
|
res.q_s += secs;
|
|
|
|
# else
|
|
|
|
res = _dwjoin(675, days, secs);
|
|
|
|
# endif
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Merge a number of weeks and a number of seconds into seconds,
|
|
* expressed in 64 bits to avoid overflow.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
vint64
|
|
ntpcal_weekjoin(
|
|
int32_t week,
|
|
int32_t secs
|
|
)
|
|
{
|
|
vint64 res;
|
|
|
|
# if defined(HAVE_INT64)
|
|
|
|
res.q_s = week;
|
|
res.q_s *= SECSPERWEEK;
|
|
res.q_s += secs;
|
|
|
|
# else
|
|
|
|
res = _dwjoin(4725, week, secs);
|
|
|
|
# endif
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* get leap years since epoch in elapsed years
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_leapyears_in_years(
|
|
int32_t years
|
|
)
|
|
{
|
|
/* We use the in-out-in algorithm here, using the one's
|
|
* complement division trick for negative numbers. The chained
|
|
* division sequence by 4/25/4 gives the compiler the chance to
|
|
* get away with only one true division and doing shifts otherwise.
|
|
*/
|
|
|
|
uint32_t sf32, sum, uyear;
|
|
|
|
sf32 = int32_sflag(years);
|
|
uyear = (uint32_t)years;
|
|
uyear ^= sf32;
|
|
|
|
sum = (uyear /= 4u); /* 4yr rule --> IN */
|
|
sum -= (uyear /= 25u); /* 100yr rule --> OUT */
|
|
sum += (uyear /= 4u); /* 400yr rule --> IN */
|
|
|
|
/* Thanks to the alternation of IN/OUT/IN we can do the sum
|
|
* directly and have a single one's complement operation
|
|
* here. (Only if the years are negative, of course.) Otherwise
|
|
* the one's complement would have to be done when
|
|
* adding/subtracting the terms.
|
|
*/
|
|
return uint32_2cpl_to_int32(sf32 ^ sum);
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert elapsed years in Era into elapsed days in Era.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_days_in_years(
|
|
int32_t years
|
|
)
|
|
{
|
|
return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years);
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert a number of elapsed month in a year into elapsed days in year.
|
|
*
|
|
* The month will be normalized, and 'res.hi' will contain the
|
|
* excessive years that must be considered when converting the years,
|
|
* while 'res.lo' will contain the number of elapsed days since start
|
|
* of the year.
|
|
*
|
|
* This code uses the shifted-month-approach to convert month to days,
|
|
* because then there is no need to have explicit leap year
|
|
* information. The slight disadvantage is that for most month values
|
|
* the result is a negative value, and the year excess is one; the
|
|
* conversion is then simply based on the start of the following year.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
ntpcal_split
|
|
ntpcal_days_in_months(
|
|
int32_t m
|
|
)
|
|
{
|
|
ntpcal_split res;
|
|
|
|
/* Add ten months with proper year adjustment. */
|
|
if (m < 2) {
|
|
res.lo = m + 10;
|
|
res.hi = 0;
|
|
} else {
|
|
res.lo = m - 2;
|
|
res.hi = 1;
|
|
}
|
|
|
|
/* Possibly normalise by floor division. This does not hapen for
|
|
* input in normal range. */
|
|
if (res.lo < 0 || res.lo >= 12) {
|
|
uint32_t mu, Q, sf32;
|
|
sf32 = int32_sflag(res.lo);
|
|
mu = (uint32_t)res.lo;
|
|
Q = sf32 ^ ((sf32 ^ mu) / 12u);
|
|
|
|
res.hi += uint32_2cpl_to_int32(Q);
|
|
res.lo = mu - Q * 12u;
|
|
}
|
|
|
|
/* Get cummulated days in year with unshift. Use the fractional
|
|
* interpolation with smallest possible power of two in the
|
|
* divider.
|
|
*/
|
|
res.lo = ((res.lo * 979 + 16) >> 5) - 306;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert ELAPSED years/months/days of gregorian calendar to elapsed
|
|
* days in Gregorian epoch.
|
|
*
|
|
* If you want to convert years and days-of-year, just give a month of
|
|
* zero.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_edate_to_eradays(
|
|
int32_t years,
|
|
int32_t mons,
|
|
int32_t mdays
|
|
)
|
|
{
|
|
ntpcal_split tmp;
|
|
int32_t res;
|
|
|
|
if (mons) {
|
|
tmp = ntpcal_days_in_months(mons);
|
|
res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo;
|
|
} else
|
|
res = ntpcal_days_in_years(years);
|
|
res += mdays;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert ELAPSED years/months/days of gregorian calendar to elapsed
|
|
* days in year.
|
|
*
|
|
* Note: This will give the true difference to the start of the given
|
|
* year, even if months & days are off-scale.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_edate_to_yeardays(
|
|
int32_t years,
|
|
int32_t mons,
|
|
int32_t mdays
|
|
)
|
|
{
|
|
ntpcal_split tmp;
|
|
|
|
if (0 <= mons && mons < 12) {
|
|
if (mons >= 2)
|
|
mdays -= 2 - is_leapyear(years+1);
|
|
mdays += (489 * mons + 8) >> 4;
|
|
} else {
|
|
tmp = ntpcal_days_in_months(mons);
|
|
mdays += tmp.lo
|
|
+ ntpcal_days_in_years(years + tmp.hi)
|
|
- ntpcal_days_in_years(years);
|
|
}
|
|
|
|
return mdays;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert elapsed days and the hour/minute/second information into
|
|
* total seconds.
|
|
*
|
|
* If 'isvalid' is not NULL, do a range check on the time specification
|
|
* and tell if the time input is in the normal range, permitting for a
|
|
* single leapsecond.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_etime_to_seconds(
|
|
int32_t hours,
|
|
int32_t minutes,
|
|
int32_t seconds
|
|
)
|
|
{
|
|
int32_t res;
|
|
|
|
res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert the date part of a 'struct tm' (that is, year, month,
|
|
* day-of-month) into the RD of that day.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_tm_to_rd(
|
|
const struct tm *utm
|
|
)
|
|
{
|
|
return ntpcal_edate_to_eradays(utm->tm_year + 1899,
|
|
utm->tm_mon,
|
|
utm->tm_mday - 1) + 1;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* Convert the date part of a 'struct calendar' (that is, year, month,
|
|
* day-of-month) into the RD of that day.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_date_to_rd(
|
|
const struct calendar *jd
|
|
)
|
|
{
|
|
return ntpcal_edate_to_eradays((int32_t)jd->year - 1,
|
|
(int32_t)jd->month - 1,
|
|
(int32_t)jd->monthday - 1) + 1;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* convert a year number to rata die of year start
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_year_to_ystart(
|
|
int32_t year
|
|
)
|
|
{
|
|
return ntpcal_days_in_years(year - 1) + 1;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* For a given RD, get the RD of the associated year start,
|
|
* that is, the RD of the last January,1st on or before that day.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_rd_to_ystart(
|
|
int32_t rd
|
|
)
|
|
{
|
|
/*
|
|
* Rather simple exercise: split the day number into elapsed
|
|
* years and elapsed days, then remove the elapsed days from the
|
|
* input value. Nice'n sweet...
|
|
*/
|
|
return rd - ntpcal_split_eradays(rd - 1, NULL).lo;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* For a given RD, get the RD of the associated month start.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_rd_to_mstart(
|
|
int32_t rd
|
|
)
|
|
{
|
|
ntpcal_split split;
|
|
int leaps;
|
|
|
|
split = ntpcal_split_eradays(rd - 1, &leaps);
|
|
split = ntpcal_split_yeardays(split.lo, leaps);
|
|
|
|
return rd - split.lo;
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* take a 'struct calendar' and get the seconds-of-day from it.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_date_to_daysec(
|
|
const struct calendar *jd
|
|
)
|
|
{
|
|
return ntpcal_etime_to_seconds(jd->hour, jd->minute,
|
|
jd->second);
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* take a 'struct tm' and get the seconds-of-day from it.
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
int32_t
|
|
ntpcal_tm_to_daysec(
|
|
const struct tm *utm
|
|
)
|
|
{
|
|
return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min,
|
|
utm->tm_sec);
|
|
}
|
|
|
|
/*
|
|
*---------------------------------------------------------------------
|
|
* take a 'struct calendar' and convert it to a 'time_t'
|
|
*---------------------------------------------------------------------
|
|
*/
|
|
time_t
|
|
ntpcal_date_to_time(
|
|
const struct calendar *jd
|
|
)
|
|
{
|
|
vint64 join;
|
|
int32_t days, secs;
|
|
|
|
days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS;
|
|
secs = ntpcal_date_to_daysec(jd);
|
|
join = ntpcal_dayjoin(days, secs);
|
|
|
|
return vint64_to_time(&join);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================================================================
|
|
*
|
|
* extended and unchecked variants of caljulian/caltontp
|
|
*
|
|
* ====================================================================
|
|
*/
|
|
int
|
|
ntpcal_ntp64_to_date(
|
|
struct calendar *jd,
|
|
const vint64 *ntp
|
|
)
|
|
{
|
|
ntpcal_split ds;
|
|
|
|
ds = ntpcal_daysplit(ntp);
|
|
ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
|
|
|
|
return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS);
|
|
}
|
|
|
|
int
|
|
ntpcal_ntp_to_date(
|
|
struct calendar *jd,
|
|
uint32_t ntp,
|
|
const time_t *piv
|
|
)
|
|
{
|
|
vint64 ntp64;
|
|
|
|
/*
|
|
* Unfold ntp time around current time into NTP domain. Split
|
|
* into days and seconds, shift days into CE domain and
|
|
* process the parts.
|
|
*/
|
|
ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
|
|
return ntpcal_ntp64_to_date(jd, &ntp64);
|
|
}
|
|
|
|
|
|
vint64
|
|
ntpcal_date_to_ntp64(
|
|
const struct calendar *jd
|
|
)
|
|
{
|
|
/*
|
|
* Convert date to NTP. Ignore yearday, use d/m/y only.
|
|
*/
|
|
return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS,
|
|
ntpcal_date_to_daysec(jd));
|
|
}
|
|
|
|
|
|
uint32_t
|
|
ntpcal_date_to_ntp(
|
|
const struct calendar *jd
|
|
)
|
|
{
|
|
/*
|
|
* Get lower half of 64bit NTP timestamp from date/time.
|
|
*/
|
|
return ntpcal_date_to_ntp64(jd).d_s.lo;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* ====================================================================
|
|
*
|
|
* day-of-week calculations
|
|
*
|
|
* ====================================================================
|
|
*/
|
|
/*
|
|
* Given a RataDie and a day-of-week, calculate a RDN that is reater-than,
|
|
* greater-or equal, closest, less-or-equal or less-than the given RDN
|
|
* and denotes the given day-of-week
|
|
*/
|
|
int32_t
|
|
ntpcal_weekday_gt(
|
|
int32_t rdn,
|
|
int32_t dow
|
|
)
|
|
{
|
|
return ntpcal_periodic_extend(rdn+1, dow, 7);
|
|
}
|
|
|
|
int32_t
|
|
ntpcal_weekday_ge(
|
|
int32_t rdn,
|
|
int32_t dow
|
|
)
|
|
{
|
|
return ntpcal_periodic_extend(rdn, dow, 7);
|
|
}
|
|
|
|
int32_t
|
|
ntpcal_weekday_close(
|
|
int32_t rdn,
|
|
int32_t dow
|
|
)
|
|
{
|
|
return ntpcal_periodic_extend(rdn-3, dow, 7);
|
|
}
|
|
|
|
int32_t
|
|
ntpcal_weekday_le(
|
|
int32_t rdn,
|
|
int32_t dow
|
|
)
|
|
{
|
|
return ntpcal_periodic_extend(rdn, dow, -7);
|
|
}
|
|
|
|
int32_t
|
|
ntpcal_weekday_lt(
|
|
int32_t rdn,
|
|
int32_t dow
|
|
)
|
|
{
|
|
return ntpcal_periodic_extend(rdn-1, dow, -7);
|
|
}
|
|
|
|
/*
|
|
* ====================================================================
|
|
*
|
|
* ISO week-calendar conversions
|
|
*
|
|
* The ISO8601 calendar defines a calendar of years, weeks and weekdays.
|
|
* It is related to the Gregorian calendar, and a ISO year starts at the
|
|
* Monday closest to Jan,1st of the corresponding Gregorian year. A ISO
|
|
* calendar year has always 52 or 53 weeks, and like the Grogrian
|
|
* calendar the ISO8601 calendar repeats itself every 400 years, or
|
|
* 146097 days, or 20871 weeks.
|
|
*
|
|
* While it is possible to write ISO calendar functions based on the
|
|
* Gregorian calendar functions, the following implementation takes a
|
|
* different approach, based directly on years and weeks.
|
|
*
|
|
* Analysis of the tabulated data shows that it is not possible to
|
|
* interpolate from years to weeks over a full 400 year range; cyclic
|
|
* shifts over 400 years do not provide a solution here. But it *is*
|
|
* possible to interpolate over every single century of the 400-year
|
|
* cycle. (The centennial leap year rule seems to be the culprit here.)
|
|
*
|
|
* It can be shown that a conversion from years to weeks can be done
|
|
* using a linear transformation of the form
|
|
*
|
|
* w = floor( y * a + b )
|
|
*
|
|
* where the slope a must hold to
|
|
*
|
|
* 52.1780821918 <= a < 52.1791044776
|
|
*
|
|
* and b must be chosen according to the selected slope and the number
|
|
* of the century in a 400-year period.
|
|
*
|
|
* The inverse calculation can also be done in this way. Careful scaling
|
|
* provides an unlimited set of integer coefficients a,k,b that enable
|
|
* us to write the calulation in the form
|
|
*
|
|
* w = (y * a + b ) / k
|
|
* y = (w * a' + b') / k'
|
|
*
|
|
* In this implementation the values of k and k' are chosen to be the
|
|
* smallest possible powers of two, so the division can be implemented
|
|
* as shifts if the optimiser chooses to do so.
|
|
*
|
|
* ====================================================================
|
|
*/
|
|
|
|
/*
|
|
* Given a number of elapsed (ISO-)years since the begin of the
|
|
* christian era, return the number of elapsed weeks corresponding to
|
|
* the number of years.
|
|
*/
|
|
int32_t
|
|
isocal_weeks_in_years(
|
|
int32_t years
|
|
)
|
|
{
|
|
/*
|
|
* use: w = (y * 53431 + b[c]) / 1024 as interpolation
|
|
*/
|
|
static const uint16_t bctab[4] = { 157, 449, 597, 889 };
|
|
|
|
int32_t cs, cw;
|
|
uint32_t cc, ci, yu, sf32;
|
|
|
|
sf32 = int32_sflag(years);
|
|
yu = (uint32_t)years;
|
|
|
|
/* split off centuries, using floor division */
|
|
cc = sf32 ^ ((sf32 ^ yu) / 100u);
|
|
yu -= cc * 100u;
|
|
|
|
/* calculate century cycles shift and cycle index:
|
|
* Assuming a century is 5217 weeks, we have to add a cycle
|
|
* shift that is 3 for every 4 centuries, because 3 of the four
|
|
* centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual
|
|
* correction, and the second century is the defective one.
|
|
*
|
|
* Needs floor division by 4, which is done with masking and
|
|
* shifting.
|
|
*/
|
|
ci = cc * 3u + 1;
|
|
cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2));
|
|
ci = ci & 3u;
|
|
|
|
/* Get weeks in century. Can use plain division here as all ops
|
|
* are >= 0, and let the compiler sort out the possible
|
|
* optimisations.
|
|
*/
|
|
cw = (yu * 53431u + bctab[ci]) / 1024u;
|
|
|
|
return uint32_2cpl_to_int32(cc) * 5217 + cs + cw;
|
|
}
|
|
|
|
/*
|
|
* Given a number of elapsed weeks since the begin of the christian
|
|
* era, split this number into the number of elapsed years in res.hi
|
|
* and the excessive number of weeks in res.lo. (That is, res.lo is
|
|
* the number of elapsed weeks in the remaining partial year.)
|
|
*/
|
|
ntpcal_split
|
|
isocal_split_eraweeks(
|
|
int32_t weeks
|
|
)
|
|
{
|
|
/*
|
|
* use: y = (w * 157 + b[c]) / 8192 as interpolation
|
|
*/
|
|
|
|
static const uint16_t bctab[4] = { 85, 130, 17, 62 };
|
|
|
|
ntpcal_split res;
|
|
int32_t cc, ci;
|
|
uint32_t sw, cy, Q;
|
|
|
|
/* Use two fast cycle-split divisions again. Herew e want to
|
|
* execute '(weeks * 4 + 2) /% 20871' under floor division rules
|
|
* in the first step.
|
|
*
|
|
* This is of course (again) susceptible to internal overflow if
|
|
* coded directly in 32bit. And again we use 64bit division on
|
|
* a 64bit target and exact division after calculating the
|
|
* remainder first on a 32bit target. With the smaller divider,
|
|
* that's even a bit neater.
|
|
*/
|
|
# if defined(HAVE_64BITREGS)
|
|
|
|
/* Full floor division with 64bit values. */
|
|
uint64_t sf64, sw64;
|
|
sf64 = (uint64_t)-(weeks < 0);
|
|
sw64 = ((uint64_t)weeks << 2) | 2u;
|
|
Q = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS));
|
|
sw = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS);
|
|
|
|
# else
|
|
|
|
/* Exact division after calculating the remainder via partial
|
|
* reduction by digit sum.
|
|
* (-2^33) % 20871 --> 5491 : the sign bit value
|
|
* ( 2^20) % 20871 --> 5026 : the upper digit value
|
|
* modinv(20871, 2^32) --> 330081335 : the inverse
|
|
*/
|
|
uint32_t ux = ((uint32_t)weeks << 2) | 2;
|
|
sw = (weeks < 0) ? 5491u : 0u; /* sign dgt */
|
|
sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */
|
|
sw += (ux & 0xFFFFFu); /* lo dgt */
|
|
sw %= GREGORIAN_CYCLE_WEEKS; /* full reduction */
|
|
Q = (ux - sw) * 330081335u; /* exact div */
|
|
|
|
# endif
|
|
|
|
ci = Q & 3u;
|
|
cc = uint32_2cpl_to_int32(Q);
|
|
|
|
/* Split off years; sw >= 0 here! The scaled weeks in the years
|
|
* are scaled up by 157 afterwards.
|
|
*/
|
|
sw = (sw / 4u) * 157u + bctab[ci];
|
|
cy = sw / 8192u; /* sw >> 13 , let the compiler sort it out */
|
|
sw = sw % 8192u; /* sw & 8191, let the compiler sort it out */
|
|
|
|
/* assemble elapsed years and downscale the elapsed weeks in
|
|
* the year.
|
|
*/
|
|
res.hi = 100*cc + cy;
|
|
res.lo = sw / 157u;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Given a second in the NTP time scale and a pivot, expand the NTP
|
|
* time stamp around the pivot and convert into an ISO calendar time
|
|
* stamp.
|
|
*/
|
|
int
|
|
isocal_ntp64_to_date(
|
|
struct isodate *id,
|
|
const vint64 *ntp
|
|
)
|
|
{
|
|
ntpcal_split ds;
|
|
int32_t ts[3];
|
|
uint32_t uw, ud, sf32;
|
|
|
|
/*
|
|
* Split NTP time into days and seconds, shift days into CE
|
|
* domain and process the parts.
|
|
*/
|
|
ds = ntpcal_daysplit(ntp);
|
|
|
|
/* split time part */
|
|
ds.hi += priv_timesplit(ts, ds.lo);
|
|
id->hour = (uint8_t)ts[0];
|
|
id->minute = (uint8_t)ts[1];
|
|
id->second = (uint8_t)ts[2];
|
|
|
|
/* split days into days and weeks, using floor division in unsigned */
|
|
ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */
|
|
sf32 = int32_sflag(ds.hi);
|
|
ud = (uint32_t)ds.hi;
|
|
uw = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK);
|
|
ud -= uw * DAYSPERWEEK;
|
|
|
|
ds.hi = uint32_2cpl_to_int32(uw);
|
|
ds.lo = ud;
|
|
|
|
id->weekday = (uint8_t)ds.lo + 1; /* weekday result */
|
|
|
|
/* get year and week in year */
|
|
ds = isocal_split_eraweeks(ds.hi); /* elapsed years&week*/
|
|
id->year = (uint16_t)ds.hi + 1; /* shift to current */
|
|
id->week = (uint8_t )ds.lo + 1;
|
|
|
|
return (ds.hi >= 0 && ds.hi < 0x0000FFFF);
|
|
}
|
|
|
|
int
|
|
isocal_ntp_to_date(
|
|
struct isodate *id,
|
|
uint32_t ntp,
|
|
const time_t *piv
|
|
)
|
|
{
|
|
vint64 ntp64;
|
|
|
|
/*
|
|
* Unfold ntp time around current time into NTP domain, then
|
|
* convert the full time stamp.
|
|
*/
|
|
ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
|
|
return isocal_ntp64_to_date(id, &ntp64);
|
|
}
|
|
|
|
/*
|
|
* Convert a ISO date spec into a second in the NTP time scale,
|
|
* properly truncated to 32 bit.
|
|
*/
|
|
vint64
|
|
isocal_date_to_ntp64(
|
|
const struct isodate *id
|
|
)
|
|
{
|
|
int32_t weeks, days, secs;
|
|
|
|
weeks = isocal_weeks_in_years((int32_t)id->year - 1)
|
|
+ (int32_t)id->week - 1;
|
|
days = weeks * 7 + (int32_t)id->weekday;
|
|
/* days is RDN of ISO date now */
|
|
secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second);
|
|
|
|
return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs);
|
|
}
|
|
|
|
uint32_t
|
|
isocal_date_to_ntp(
|
|
const struct isodate *id
|
|
)
|
|
{
|
|
/*
|
|
* Get lower half of 64bit NTP timestamp from date/time.
|
|
*/
|
|
return isocal_date_to_ntp64(id).d_s.lo;
|
|
}
|
|
|
|
/*
|
|
* ====================================================================
|
|
* 'basedate' support functions
|
|
* ====================================================================
|
|
*/
|
|
|
|
static int32_t s_baseday = NTP_TO_UNIX_DAYS;
|
|
static int32_t s_gpsweek = 0;
|
|
|
|
int32_t
|
|
basedate_eval_buildstamp(void)
|
|
{
|
|
struct calendar jd;
|
|
int32_t ed;
|
|
|
|
if (!ntpcal_get_build_date(&jd))
|
|
return NTP_TO_UNIX_DAYS;
|
|
|
|
/* The time zone of the build stamp is unspecified; we remove
|
|
* one day to provide a certain slack. And in case somebody
|
|
* fiddled with the system clock, we make sure we do not go
|
|
* before the UNIX epoch (1970-01-01). It's probably not possible
|
|
* to do this to the clock on most systems, but there are other
|
|
* ways to tweak the build stamp.
|
|
*/
|
|
jd.monthday -= 1;
|
|
ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS;
|
|
return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed;
|
|
}
|
|
|
|
int32_t
|
|
basedate_eval_string(
|
|
const char * str
|
|
)
|
|
{
|
|
u_short y,m,d;
|
|
u_long ned;
|
|
int rc, nc;
|
|
size_t sl;
|
|
|
|
sl = strlen(str);
|
|
rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc);
|
|
if (rc == 3 && (size_t)nc == sl) {
|
|
if (m >= 1 && m <= 12 && d >= 1 && d <= 31)
|
|
return ntpcal_edate_to_eradays(y-1, m-1, d)
|
|
- DAY_NTP_STARTS;
|
|
goto buildstamp;
|
|
}
|
|
|
|
rc = sscanf(str, "%lu%n", &ned, &nc);
|
|
if (rc == 1 && (size_t)nc == sl) {
|
|
if (ned <= INT32_MAX)
|
|
return (int32_t)ned;
|
|
goto buildstamp;
|
|
}
|
|
|
|
buildstamp:
|
|
msyslog(LOG_WARNING,
|
|
"basedate string \"%s\" invalid, build date substituted!",
|
|
str);
|
|
return basedate_eval_buildstamp();
|
|
}
|
|
|
|
uint32_t
|
|
basedate_get_day(void)
|
|
{
|
|
return s_baseday;
|
|
}
|
|
|
|
int32_t
|
|
basedate_set_day(
|
|
int32_t day
|
|
)
|
|
{
|
|
struct calendar jd;
|
|
int32_t retv;
|
|
|
|
/* set NTP base date for NTP era unfolding */
|
|
if (day < NTP_TO_UNIX_DAYS) {
|
|
msyslog(LOG_WARNING,
|
|
"baseday_set_day: invalid day (%lu), UNIX epoch substituted",
|
|
(unsigned long)day);
|
|
day = NTP_TO_UNIX_DAYS;
|
|
}
|
|
retv = s_baseday;
|
|
s_baseday = day;
|
|
ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
|
|
msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu",
|
|
jd.year, (u_short)jd.month, (u_short)jd.monthday);
|
|
|
|
/* set GPS base week for GPS week unfolding */
|
|
day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY)
|
|
- DAY_NTP_STARTS;
|
|
if (day < NTP_TO_GPS_DAYS)
|
|
day = NTP_TO_GPS_DAYS;
|
|
s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK;
|
|
ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
|
|
msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)",
|
|
jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek);
|
|
|
|
return retv;
|
|
}
|
|
|
|
time_t
|
|
basedate_get_eracenter(void)
|
|
{
|
|
time_t retv;
|
|
retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
|
|
retv *= SECSPERDAY;
|
|
retv += (UINT32_C(1) << 31);
|
|
return retv;
|
|
}
|
|
|
|
time_t
|
|
basedate_get_erabase(void)
|
|
{
|
|
time_t retv;
|
|
retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
|
|
retv *= SECSPERDAY;
|
|
return retv;
|
|
}
|
|
|
|
uint32_t
|
|
basedate_get_gpsweek(void)
|
|
{
|
|
return s_gpsweek;
|
|
}
|
|
|
|
uint32_t
|
|
basedate_expand_gpsweek(
|
|
unsigned short weekno
|
|
)
|
|
{
|
|
/* We do a fast modulus expansion here. Since all quantities are
|
|
* unsigned and we cannot go before the start of the GPS epoch
|
|
* anyway, and since the truncated GPS week number is 10 bit, the
|
|
* expansion becomes a simple sub/and/add sequence.
|
|
*/
|
|
#if GPSWEEKS != 1024
|
|
# error GPSWEEKS defined wrong -- should be 1024!
|
|
#endif
|
|
|
|
uint32_t diff;
|
|
diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1);
|
|
return s_gpsweek + diff;
|
|
}
|
|
|
|
/*
|
|
* ====================================================================
|
|
* misc. helpers
|
|
* ====================================================================
|
|
*/
|
|
|
|
/* --------------------------------------------------------------------
|
|
* reconstruct the centrury from a truncated date and a day-of-week
|
|
*
|
|
* Given a date with truncated year (2-digit, 0..99) and a day-of-week
|
|
* from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD.
|
|
*/
|
|
int32_t
|
|
ntpcal_expand_century(
|
|
uint32_t y,
|
|
uint32_t m,
|
|
uint32_t d,
|
|
uint32_t wd)
|
|
{
|
|
/* This algorithm is short but tricky... It's related to
|
|
* Zeller's congruence, partially done backwards.
|
|
*
|
|
* A few facts to remember:
|
|
* 1) The Gregorian calendar has a cycle of 400 years.
|
|
* 2) The weekday of the 1st day of a century shifts by 5 days
|
|
* during a great cycle.
|
|
* 3) For calendar math, a century starts with the 1st year,
|
|
* which is year 1, !not! zero.
|
|
*
|
|
* So we start with taking the weekday difference (mod 7)
|
|
* between the truncated date (which is taken as an absolute
|
|
* date in the 1st century in the proleptic calendar) and the
|
|
* weekday given.
|
|
*
|
|
* When dividing this residual by 5, we obtain the number of
|
|
* centuries to add to the base. But since the residual is (mod
|
|
* 7), we have to make this an exact division by multiplication
|
|
* with the modular inverse of 5 (mod 7), which is 3:
|
|
* 3*5 === 1 (mod 7).
|
|
*
|
|
* If this yields a result of 4/5/6, the given date/day-of-week
|
|
* combination is impossible, and we return zero as resulting
|
|
* year to indicate failure.
|
|
*
|
|
* Then we remap the century to the range starting with year
|
|
* 1900.
|
|
*/
|
|
|
|
uint32_t c;
|
|
|
|
/* check basic constraints */
|
|
if ((y >= 100u) || (--m >= 12u) || (--d >= 31u))
|
|
return 0;
|
|
|
|
if ((m += 10u) >= 12u) /* shift base to prev. March,1st */
|
|
m -= 12u;
|
|
else if (--y >= 100u)
|
|
y += 100u;
|
|
d += y + (y >> 2) + 2u; /* year share */
|
|
d += (m * 83u + 16u) >> 5; /* month share */
|
|
|
|
/* get (wd - d), shifted to positive value, and multiply with
|
|
* 3(mod 7). (Exact division, see to comment)
|
|
* Note: 1) d <= 184 at this point.
|
|
* 2) 252 % 7 == 0, but 'wd' is off by one since we did
|
|
* '--d' above, so we add just 251 here!
|
|
*/
|
|
c = u32mod7(3 * (251u + wd - d));
|
|
if (c > 3u)
|
|
return 0;
|
|
|
|
if ((m > 9u) && (++y >= 100u)) {/* undo base shift */
|
|
y -= 100u;
|
|
c = (c + 1) & 3u;
|
|
}
|
|
y += (c * 100u); /* combine into 1st cycle */
|
|
y += (y < 300u) ? 2000 : 1600; /* map to destination era */
|
|
return (int)y;
|
|
}
|
|
|
|
char *
|
|
ntpcal_iso8601std(
|
|
char * buf,
|
|
size_t len,
|
|
TcCivilDate * cdp
|
|
)
|
|
{
|
|
if (!buf) {
|
|
LIB_GETBUF(buf);
|
|
len = LIB_BUFLENGTH;
|
|
}
|
|
if (len) {
|
|
len = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u",
|
|
cdp->year, cdp->month, cdp->monthday,
|
|
cdp->hour, cdp->minute, cdp->second);
|
|
if (len < 0)
|
|
*buf = '\0';
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/* -*-EOF-*- */
|