freebsd-dev/sys/pci/if_rl.c
Bruce Evans 3de9d6fbe4 Don't restrict our requests for contiguous memory to addresses >= 1MB.
This fixes, at least, panics in ncr_attach() on i386's with about 5MB
of memory.  The restriction was a hack to leave some low memory for ISA
DMA, but on i386's we now allocate pages from the top down, so all the
restriction did was cause our allocations to fail when there is no free
memory above 1MB.
1999-08-29 09:03:58 +00:00

1950 lines
46 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* RealTek 8129/8139 PCI NIC driver
*
* Supports several extremely cheap PCI 10/100 adapters based on
* the RealTek chipset. Datasheets can be obtained from
* www.realtek.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
* probably the worst PCI ethernet controller ever made, with the possible
* exception of the FEAST chip made by SMC. The 8139 supports bus-master
* DMA, but it has a terrible interface that nullifies any performance
* gains that bus-master DMA usually offers.
*
* For transmission, the chip offers a series of four TX descriptor
* registers. Each transmit frame must be in a contiguous buffer, aligned
* on a longword (32-bit) boundary. This means we almost always have to
* do mbuf copies in order to transmit a frame, except in the unlikely
* case where a) the packet fits into a single mbuf, and b) the packet
* is 32-bit aligned within the mbuf's data area. The presence of only
* four descriptor registers means that we can never have more than four
* packets queued for transmission at any one time.
*
* Reception is not much better. The driver has to allocate a single large
* buffer area (up to 64K in size) into which the chip will DMA received
* frames. Because we don't know where within this region received packets
* will begin or end, we have no choice but to copy data from the buffer
* area into mbufs in order to pass the packets up to the higher protocol
* levels.
*
* It's impossible given this rotten design to really achieve decent
* performance at 100Mbps, unless you happen to have a 400Mhz PII or
* some equally overmuscled CPU to drive it.
*
* On the bright side, the 8139 does have a built-in PHY, although
* rather than using an MDIO serial interface like most other NICs, the
* PHY registers are directly accessible through the 8139's register
* space. The 8139 supports autonegotiation, as well as a 64-bit multicast
* filter.
*
* The 8129 chip is an older version of the 8139 that uses an external PHY
* chip. The 8129 has a serial MDIO interface for accessing the MII where
* the 8139 lets you directly access the on-board PHY registers. We need
* to select which interface to use depending on the chip type.
*/
#include "bpf.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPF > 0
#include <net/bpf.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
/*
* Default to using PIO access for this driver. On SMP systems,
* there appear to be problems with memory mapped mode: it looks like
* doing too many memory mapped access back to back in rapid succession
* can hang the bus. I'm inclined to blame this on crummy design/construction
* on the part of RealTek. Memory mapped mode does appear to work on
* uniprocessor systems though.
*/
#define RL_USEIOSPACE
#include <pci/if_rlreg.h>
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct rl_type rl_devs[] = {
{ RT_VENDORID, RT_DEVICEID_8129,
"RealTek 8129 10/100BaseTX" },
{ RT_VENDORID, RT_DEVICEID_8139,
"RealTek 8139 10/100BaseTX" },
{ ACCTON_VENDORID, ACCTON_DEVICEID_5030,
"Accton MPX 5030/5038 10/100BaseTX" },
{ DELTA_VENDORID, DELTA_DEVICEID_8139,
"Delta Electronics 8139 10/100BaseTX" },
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139,
"Addtron Technolgy 8139 10/100BaseTX" },
{ 0, 0, NULL }
};
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
static struct rl_type rl_phys[] = {
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
{ 0, 0, "<MII-compliant physical interface>" }
};
static unsigned long rl_count = 0;
static const char *rl_probe __P((pcici_t, pcidi_t));
static void rl_attach __P((pcici_t, int));
static int rl_encap __P((struct rl_softc *, struct mbuf * ));
static void rl_rxeof __P((struct rl_softc *));
static void rl_txeof __P((struct rl_softc *));
static void rl_intr __P((void *));
static void rl_start __P((struct ifnet *));
static int rl_ioctl __P((struct ifnet *, u_long, caddr_t));
static void rl_init __P((void *));
static void rl_stop __P((struct rl_softc *));
static void rl_watchdog __P((struct ifnet *));
static void rl_shutdown __P((void *, int));
static int rl_ifmedia_upd __P((struct ifnet *));
static void rl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void rl_eeprom_putbyte __P((struct rl_softc *, int));
static void rl_eeprom_getword __P((struct rl_softc *, int, u_int16_t *));
static void rl_read_eeprom __P((struct rl_softc *, caddr_t,
int, int, int));
static void rl_mii_sync __P((struct rl_softc *));
static void rl_mii_send __P((struct rl_softc *, u_int32_t, int));
static int rl_mii_readreg __P((struct rl_softc *, struct rl_mii_frame *));
static int rl_mii_writereg __P((struct rl_softc *, struct rl_mii_frame *));
static u_int16_t rl_phy_readreg __P((struct rl_softc *, int));
static void rl_phy_writereg __P((struct rl_softc *, int, int));
static void rl_autoneg_xmit __P((struct rl_softc *));
static void rl_autoneg_mii __P((struct rl_softc *, int, int));
static void rl_setmode_mii __P((struct rl_softc *, int));
static void rl_getmode_mii __P((struct rl_softc *));
static u_int8_t rl_calchash __P((caddr_t));
static void rl_setmulti __P((struct rl_softc *));
static void rl_reset __P((struct rl_softc *));
static int rl_list_tx_init __P((struct rl_softc *));
#define EE_SET(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) | x)
#define EE_CLR(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) & ~x)
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void rl_eeprom_putbyte(sc, addr)
struct rl_softc *sc;
int addr;
{
register int d, i;
d = addr | RL_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
EE_SET(RL_EE_DATAIN);
} else {
EE_CLR(RL_EE_DATAIN);
}
DELAY(100);
EE_SET(RL_EE_CLK);
DELAY(150);
EE_CLR(RL_EE_CLK);
DELAY(100);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void rl_eeprom_getword(sc, addr, dest)
struct rl_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Enter EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Send address of word we want to read.
*/
rl_eeprom_putbyte(sc, addr);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
EE_SET(RL_EE_CLK);
DELAY(100);
if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
word |= i;
EE_CLR(RL_EE_CLK);
DELAY(100);
}
/* Turn off EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void rl_read_eeprom(sc, dest, off, cnt, swap)
struct rl_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
rl_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* MII access routines are provided for the 8129, which
* doesn't have a built-in PHY. For the 8139, we fake things
* up by diverting rl_phy_readreg()/rl_phy_writereg() to the
* direct access PHY registers.
*/
#define MII_SET(x) \
CSR_WRITE_1(sc, RL_MII, \
CSR_READ_1(sc, RL_MII) | x)
#define MII_CLR(x) \
CSR_WRITE_1(sc, RL_MII, \
CSR_READ_1(sc, RL_MII) & ~x)
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void rl_mii_sync(sc)
struct rl_softc *sc;
{
register int i;
MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
for (i = 0; i < 32; i++) {
MII_SET(RL_MII_CLK);
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void rl_mii_send(sc, bits, cnt)
struct rl_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
MII_CLR(RL_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
MII_SET(RL_MII_DATAOUT);
} else {
MII_CLR(RL_MII_DATAOUT);
}
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int rl_mii_readreg(sc, frame)
struct rl_softc *sc;
struct rl_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = RL_MII_STARTDELIM;
frame->mii_opcode = RL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_2(sc, RL_MII, 0);
/*
* Turn on data xmit.
*/
MII_SET(RL_MII_DIR);
rl_mii_sync(sc);
/*
* Send command/address info.
*/
rl_mii_send(sc, frame->mii_stdelim, 2);
rl_mii_send(sc, frame->mii_opcode, 2);
rl_mii_send(sc, frame->mii_phyaddr, 5);
rl_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
/* Turn off xmit. */
MII_CLR(RL_MII_DIR);
/* Check for ack */
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(RL_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
frame->mii_data |= i;
DELAY(1);
}
MII_SET(RL_MII_CLK);
DELAY(1);
}
fail:
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int rl_mii_writereg(sc, frame)
struct rl_softc *sc;
struct rl_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = RL_MII_STARTDELIM;
frame->mii_opcode = RL_MII_WRITEOP;
frame->mii_turnaround = RL_MII_TURNAROUND;
/*
* Turn on data output.
*/
MII_SET(RL_MII_DIR);
rl_mii_sync(sc);
rl_mii_send(sc, frame->mii_stdelim, 2);
rl_mii_send(sc, frame->mii_opcode, 2);
rl_mii_send(sc, frame->mii_phyaddr, 5);
rl_mii_send(sc, frame->mii_regaddr, 5);
rl_mii_send(sc, frame->mii_turnaround, 2);
rl_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(RL_MII_CLK);
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(RL_MII_DIR);
splx(s);
return(0);
}
static u_int16_t rl_phy_readreg(sc, reg)
struct rl_softc *sc;
int reg;
{
struct rl_mii_frame frame;
u_int16_t rval = 0;
u_int16_t rl8139_reg = 0;
if (sc->rl_type == RL_8139) {
switch(reg) {
case PHY_BMCR:
rl8139_reg = RL_BMCR;
break;
case PHY_BMSR:
rl8139_reg = RL_BMSR;
break;
case PHY_ANAR:
rl8139_reg = RL_ANAR;
break;
case PHY_LPAR:
rl8139_reg = RL_LPAR;
break;
default:
printf("rl%d: bad phy register\n", sc->rl_unit);
return(0);
}
rval = CSR_READ_2(sc, rl8139_reg);
return(rval);
}
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->rl_phy_addr;
frame.mii_regaddr = reg;
rl_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static void rl_phy_writereg(sc, reg, data)
struct rl_softc *sc;
int reg;
int data;
{
struct rl_mii_frame frame;
u_int16_t rl8139_reg = 0;
if (sc->rl_type == RL_8139) {
switch(reg) {
case PHY_BMCR:
rl8139_reg = RL_BMCR;
break;
case PHY_BMSR:
rl8139_reg = RL_BMSR;
break;
case PHY_ANAR:
rl8139_reg = RL_ANAR;
break;
case PHY_LPAR:
rl8139_reg = RL_LPAR;
break;
default:
printf("rl%d: bad phy register\n", sc->rl_unit);
return;
}
CSR_WRITE_2(sc, rl8139_reg, data);
return;
}
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->rl_phy_addr;
frame.mii_regaddr = reg;
frame.mii_data = data;
rl_mii_writereg(sc, &frame);
return;
}
/*
* Calculate CRC of a multicast group address, return the upper 6 bits.
*/
static u_int8_t rl_calchash(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return(crc >> 26);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void rl_setmulti(sc)
struct rl_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_4(sc, RL_RXCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= RL_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, RL_MAR0, 0);
CSR_WRITE_4(sc, RL_MAR4, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = rl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
if (mcnt)
rxfilt |= RL_RXCFG_RX_MULTI;
else
rxfilt &= ~RL_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
return;
}
/*
* Initiate an autonegotiation session.
*/
static void rl_autoneg_xmit(sc)
struct rl_softc *sc;
{
u_int16_t phy_sts;
rl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(rl_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
phy_sts = rl_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
rl_phy_writereg(sc, PHY_BMCR, phy_sts);
return;
}
/*
* Invoke autonegotiation on a PHY. Also used with the 8139 internal
* transceiver.
*/
static void rl_autoneg_mii(sc, flag, verbose)
struct rl_softc *sc;
int flag;
int verbose;
{
u_int16_t phy_sts = 0, media, advert, ability;
struct ifnet *ifp;
struct ifmedia *ifm;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
/*
* The 100baseT4 PHY sometimes has the 'autoneg supported'
* bit cleared in the status register, but has the 'autoneg enabled'
* bit set in the control register. This is a contradiction, and
* I'm not sure how to handle it. If you want to force an attempt
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
* and see what happens.
*/
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's
* no point in continuing.
*/
phy_sts = rl_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
printf("rl%d: autonegotiation not supported\n",
sc->rl_unit);
return;
}
#endif
switch (flag) {
case RL_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
rl_autoneg_xmit(sc);
DELAY(5000000);
break;
case RL_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting
* an autoneg session, otherwise rl_start() may clobber
* our timeout, and we don't want to allow transmission
* during an autoneg session since that can screw it up.
*/
if (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx) {
sc->rl_want_auto = 1;
return;
}
rl_autoneg_xmit(sc);
ifp->if_timer = 5;
sc->rl_autoneg = 1;
sc->rl_want_auto = 0;
return;
break;
case RL_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->rl_autoneg = 0;
break;
default:
printf("rl%d: invalid autoneg flag: %d\n", sc->rl_unit, flag);
return;
}
if (rl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
printf("rl%d: autoneg complete, ", sc->rl_unit);
phy_sts = rl_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
printf("rl%d: autoneg not complete, ", sc->rl_unit);
}
media = rl_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (rl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
printf("link status good ");
advert = rl_phy_readreg(sc, PHY_ANAR);
ability = rl_phy_readreg(sc, PHY_LPAR);
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
}
/* Set ASIC's duplex mode to match the PHY. */
rl_phy_writereg(sc, PHY_BMCR, media);
} else {
if (verbose)
printf("no carrier\n");
}
rl_init(sc);
if (sc->rl_tx_pend) {
sc->rl_autoneg = 0;
sc->rl_tx_pend = 0;
rl_start(ifp);
}
return;
}
static void rl_getmode_mii(sc)
struct rl_softc *sc;
{
u_int16_t bmsr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
bmsr = rl_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
printf("rl%d: PHY status word: %x\n", sc->rl_unit, bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
printf("rl%d: 10Mbps half-duplex mode supported\n",
sc->rl_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
printf("rl%d: 10Mbps full-duplex mode supported\n",
sc->rl_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
printf("rl%d: 100Mbps half-duplex mode supported\n",
sc->rl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
printf("rl%d: 100Mbps full-duplex mode supported\n",
sc->rl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
printf("rl%d: 100baseT4 mode supported\n", sc->rl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
printf("rl%d: forcing on autoneg support for BT4\n",
sc->rl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
#endif
}
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
printf("rl%d: autoneg supported\n", sc->rl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
}
return;
}
/*
* Set speed and duplex mode.
*/
static void rl_setmode_mii(sc, media)
struct rl_softc *sc;
int media;
{
u_int16_t bmcr;
printf("rl%d: selecting MII, ", sc->rl_unit);
bmcr = rl_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
}
rl_phy_writereg(sc, PHY_BMCR, bmcr);
return;
}
static void rl_reset(sc)
struct rl_softc *sc;
{
register int i;
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
for (i = 0; i < RL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
break;
}
if (i == RL_TIMEOUT)
printf("rl%d: reset never completed!\n", sc->rl_unit);
return;
}
/*
* Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static const char *
rl_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
struct rl_type *t;
t = rl_devs;
while(t->rl_name != NULL) {
if ((device_id & 0xFFFF) == t->rl_vid &&
((device_id >> 16) & 0xFFFF) == t->rl_did) {
return(t->rl_name);
}
t++;
}
return(NULL);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
rl_attach(config_id, unit)
pcici_t config_id;
int unit;
{
int s, i;
#ifndef RL_USEIOSPACE
vm_offset_t pbase, vbase;
#endif
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct rl_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
struct rl_type *p;
u_int16_t phy_vid, phy_did, phy_sts;
u_int16_t rl_did = 0;
s = splimp();
sc = malloc(sizeof(struct rl_softc), M_DEVBUF, M_NOWAIT);
if (sc == NULL) {
printf("rl%d: no memory for softc struct!\n", unit);
goto fail;
}
bzero(sc, sizeof(struct rl_softc));
/*
* Handle power management nonsense.
*/
command = pci_conf_read(config_id, RL_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = pci_conf_read(config_id, RL_PCI_PWRMGMTCTRL);
if (command & RL_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_conf_read(config_id, RL_PCI_LOIO);
membase = pci_conf_read(config_id, RL_PCI_LOMEM);
irq = pci_conf_read(config_id, RL_PCI_INTLINE);
/* Reset the power state. */
printf("rl%d: chip is is in D%d power mode "
"-- setting to D0\n", unit, command & RL_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_conf_write(config_id, RL_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
pci_conf_write(config_id, RL_PCI_LOIO, iobase);
pci_conf_write(config_id, RL_PCI_LOMEM, membase);
pci_conf_write(config_id, RL_PCI_INTLINE, irq);
}
}
/*
* Map control/status registers.
*/
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
#ifdef RL_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("rl%d: failed to enable I/O ports!\n", unit);
free(sc, M_DEVBUF);
goto fail;
}
if (!pci_map_port(config_id, RL_PCI_LOIO,
(pci_port_t *)&(sc->rl_bhandle))) {
printf ("rl%d: couldn't map ports\n", unit);
goto fail;
}
#ifdef __i386__
sc->rl_btag = I386_BUS_SPACE_IO;
#endif
#ifdef __alpha__
sc->rl_btag = ALPHA_BUS_SPACE_IO;
#endif
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("rl%d: failed to enable memory mapping!\n", unit);
goto fail;
}
if (!pci_map_mem(config_id, RL_PCI_LOMEM, &vbase, &pbase)) {
printf ("rl%d: couldn't map memory\n", unit);
goto fail;
}
#ifdef __i386__
sc->rl_btag = I386_BUS_SPACE_MEM;
#endif
#ifdef __alpha__
sc->rl_btag = ALPHA_BUS_SPACE_MEM;
#endif
sc->rl_bhandle = vbase;
#endif
/* Allocate interrupt */
if (!pci_map_int(config_id, rl_intr, sc, &net_imask)) {
printf("rl%d: couldn't map interrupt\n", unit);
goto fail;
}
/* Reset the adapter. */
rl_reset(sc);
/*
* Get station address from the EEPROM.
*/
rl_read_eeprom(sc, (caddr_t)&eaddr, RL_EE_EADDR, 3, 0);
/*
* A RealTek chip was detected. Inform the world.
*/
printf("rl%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->rl_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
/*
* Now read the exact device type from the EEPROM to find
* out if it's an 8129 or 8139.
*/
rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 ||
rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139)
sc->rl_type = RL_8139;
else if (rl_did == RT_DEVICEID_8129)
sc->rl_type = RL_8129;
else {
printf("rl%d: unknown device ID: %x\n", unit, rl_did);
free(sc, M_DEVBUF);
goto fail;
}
sc->rl_cdata.rl_rx_buf = contigmalloc(RL_RXBUFLEN + 32, M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->rl_cdata.rl_rx_buf == NULL) {
free(sc, M_DEVBUF);
printf("rl%d: no memory for list buffers!\n", unit);
goto fail;
}
/* Leave a few bytes before the start of the RX ring buffer. */
sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "rl";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = rl_ioctl;
ifp->if_output = ether_output;
ifp->if_start = rl_start;
ifp->if_watchdog = rl_watchdog;
ifp->if_init = rl_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
if (sc->rl_type == RL_8129) {
if (bootverbose)
printf("rl%d: probing for a PHY\n", sc->rl_unit);
for (i = RL_PHYADDR_MIN; i < RL_PHYADDR_MAX + 1; i++) {
if (bootverbose)
printf("rl%d: checking address: %d\n",
sc->rl_unit, i);
sc->rl_phy_addr = i;
rl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(rl_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
if ((phy_sts = rl_phy_readreg(sc, PHY_BMSR)))
break;
}
if (phy_sts) {
phy_vid = rl_phy_readreg(sc, PHY_VENID);
phy_did = rl_phy_readreg(sc, PHY_DEVID);
if (bootverbose)
printf("rl%d: found PHY at address %d, ",
sc->rl_unit, sc->rl_phy_addr);
if (bootverbose)
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
p = rl_phys;
while(p->rl_vid) {
if (phy_vid == p->rl_vid &&
(phy_did | 0x000F) == p->rl_did) {
sc->rl_pinfo = p;
break;
}
p++;
}
if (sc->rl_pinfo == NULL)
sc->rl_pinfo = &rl_phys[PHY_UNKNOWN];
if (bootverbose)
printf("rl%d: PHY type: %s\n",
sc->rl_unit, sc->rl_pinfo->rl_name);
} else {
printf("rl%d: MII without any phy!\n", sc->rl_unit);
}
}
/*
* Do ifmedia setup.
*/
ifmedia_init(&sc->ifmedia, 0, rl_ifmedia_upd, rl_ifmedia_sts);
rl_getmode_mii(sc);
/* Choose a default media. */
media = IFM_ETHER|IFM_AUTO;
ifmedia_set(&sc->ifmedia, media);
rl_autoneg_mii(sc, RL_FLAG_FORCEDELAY, 1);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPF > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
EVENTHANDLER_REGISTER(shutdown_post_sync, rl_shutdown, sc,
SHUTDOWN_PRI_DEFAULT);
fail:
splx(s);
return;
}
/*
* Initialize the transmit descriptors.
*/
static int rl_list_tx_init(sc)
struct rl_softc *sc;
{
struct rl_chain_data *cd;
int i;
cd = &sc->rl_cdata;
for (i = 0; i < RL_TX_LIST_CNT; i++) {
cd->rl_tx_chain[i] = NULL;
CSR_WRITE_4(sc,
RL_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000);
}
sc->rl_cdata.cur_tx = 0;
sc->rl_cdata.last_tx = 0;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*
* You know there's something wrong with a PCI bus-master chip design
* when you have to use m_devget().
*
* The receive operation is badly documented in the datasheet, so I'll
* attempt to document it here. The driver provides a buffer area and
* places its base address in the RX buffer start address register.
* The chip then begins copying frames into the RX buffer. Each frame
* is preceeded by a 32-bit RX status word which specifies the length
* of the frame and certain other status bits. Each frame (starting with
* the status word) is also 32-bit aligned. The frame length is in the
* first 16 bits of the status word; the lower 15 bits correspond with
* the 'rx status register' mentioned in the datasheet.
*
* Note: to make the Alpha happy, the frame payload needs to be aligned
* on a 32-bit boundary. To achieve this, we cheat a bit by copying from
* the ring buffer starting at an address two bytes before the actual
* data location. We can then shave off the first two bytes using m_adj().
* The reason we do this is because m_devget() doesn't let us specify an
* offset into the mbuf storage space, so we have to artificially create
* one. The ring is allocated in such a way that there are a few unused
* bytes of space preceecing it so that it will be safe for us to do the
* 2-byte backstep even if reading from the ring at offset 0.
*/
static void rl_rxeof(sc)
struct rl_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
int total_len = 0;
u_int32_t rxstat;
caddr_t rxbufpos;
int wrap = 0;
u_int16_t cur_rx;
u_int16_t limit;
u_int16_t rx_bytes = 0, max_bytes;
ifp = &sc->arpcom.ac_if;
cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
/* Do not try to read past this point. */
limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
if (limit < cur_rx)
max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
else
max_bytes = limit - cur_rx;
while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
rxstat = *(u_int32_t *)rxbufpos;
/*
* Here's a totally undocumented fact for you. When the
* RealTek chip is in the process of copying a packet into
* RAM for you, the length will be 0xfff0. If you spot a
* packet header with this value, you need to stop. The
* datasheet makes absolutely no mention of this and
* RealTek should be shot for this.
*/
if ((u_int16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
break;
if (!(rxstat & RL_RXSTAT_RXOK)) {
ifp->if_ierrors++;
if (rxstat & (RL_RXSTAT_BADSYM|RL_RXSTAT_RUNT|
RL_RXSTAT_GIANT|RL_RXSTAT_CRCERR|
RL_RXSTAT_ALIGNERR)) {
CSR_WRITE_2(sc, RL_COMMAND, RL_CMD_TX_ENB);
CSR_WRITE_2(sc, RL_COMMAND, RL_CMD_TX_ENB|
RL_CMD_RX_ENB);
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
CSR_WRITE_4(sc, RL_RXADDR,
vtophys(sc->rl_cdata.rl_rx_buf));
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
cur_rx = 0;
}
break;
}
/* No errors; receive the packet. */
total_len = rxstat >> 16;
rx_bytes += total_len + 4;
/*
* XXX The RealTek chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
/*
* Avoid trying to read more bytes than we know
* the chip has prepared for us.
*/
if (rx_bytes > max_bytes)
break;
rxbufpos = sc->rl_cdata.rl_rx_buf +
((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN);
if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
rxbufpos = sc->rl_cdata.rl_rx_buf;
wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
if (total_len > wrap) {
m = m_devget(rxbufpos - RL_ETHER_ALIGN,
wrap + RL_ETHER_ALIGN, 0, ifp, NULL);
if (m == NULL) {
ifp->if_ierrors++;
printf("rl%d: out of mbufs, tried to "
"copy %d bytes\n", sc->rl_unit, wrap);
}
else {
m_adj(m, RL_ETHER_ALIGN);
m_copyback(m, wrap, total_len - wrap,
sc->rl_cdata.rl_rx_buf);
}
cur_rx = (total_len - wrap + ETHER_CRC_LEN);
} else {
m = m_devget(rxbufpos - RL_ETHER_ALIGN,
total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
if (m == NULL) {
ifp->if_ierrors++;
printf("rl%d: out of mbufs, tried to "
"copy %d bytes\n", sc->rl_unit, total_len);
} else
m_adj(m, RL_ETHER_ALIGN);
cur_rx += total_len + 4 + ETHER_CRC_LEN;
}
/*
* Round up to 32-bit boundary.
*/
cur_rx = (cur_rx + 3) & ~3;
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
if (m == NULL)
continue;
eh = mtod(m, struct ether_header *);
ifp->if_ipackets++;
#if NBPF > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void rl_txeof(sc)
struct rl_softc *sc;
{
struct ifnet *ifp;
u_int32_t txstat;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/*
* Go through our tx list and free mbufs for those
* frames that have been uploaded.
*/
do {
txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
if (!(txstat & (RL_TXSTAT_TX_OK|
RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
break;
ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
if (RL_LAST_TXMBUF(sc) != NULL) {
m_freem(RL_LAST_TXMBUF(sc));
RL_LAST_TXMBUF(sc) = NULL;
}
if (txstat & RL_TXSTAT_TX_OK)
ifp->if_opackets++;
else {
ifp->if_oerrors++;
if ((txstat & RL_TXSTAT_TXABRT) ||
(txstat & RL_TXSTAT_OUTOFWIN))
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
}
RL_INC(sc->rl_cdata.last_tx);
ifp->if_flags &= ~IFF_OACTIVE;
} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
if (sc->rl_cdata.last_tx == sc->rl_cdata.cur_tx) {
if (sc->rl_want_auto)
rl_autoneg_mii(sc, RL_FLAG_SCHEDDELAY, 1);
}
return;
}
static void rl_intr(arg)
void *arg;
{
struct rl_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Disable interrupts. */
CSR_WRITE_2(sc, RL_IMR, 0x0000);
for (;;) {
status = CSR_READ_2(sc, RL_ISR);
if (status)
CSR_WRITE_2(sc, RL_ISR, status);
if ((status & RL_INTRS) == 0)
break;
if (status & RL_ISR_RX_OK)
rl_rxeof(sc);
if (status & RL_ISR_RX_ERR)
rl_rxeof(sc);
if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
rl_txeof(sc);
if (status & RL_ISR_SYSTEM_ERR) {
rl_reset(sc);
rl_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
rl_start(ifp);
}
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int rl_encap(sc, m_head)
struct rl_softc *sc;
struct mbuf *m_head;
{
struct mbuf *m_new = NULL;
/*
* The RealTek is brain damaged and wants longword-aligned
* TX buffers, plus we can only have one fragment buffer
* per packet. We have to copy pretty much all the time.
*/
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("rl%d: no memory for tx list", sc->rl_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("rl%d: no memory for tx list",
sc->rl_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
/* Pad frames to at least 60 bytes. */
if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
m_head->m_pkthdr.len +=
(RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
m_head->m_len = m_head->m_pkthdr.len;
}
RL_CUR_TXMBUF(sc) = m_head;
return(0);
}
/*
* Main transmit routine.
*/
static void rl_start(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
struct mbuf *m_head = NULL;
sc = ifp->if_softc;
if (sc->rl_autoneg) {
sc->rl_tx_pend = 1;
return;
}
while(RL_CUR_TXMBUF(sc) == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
rl_encap(sc, m_head);
#if NBPF > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, RL_CUR_TXMBUF(sc));
#endif
/*
* Transmit the frame.
*/
CSR_WRITE_4(sc, RL_CUR_TXADDR(sc),
vtophys(mtod(RL_CUR_TXMBUF(sc), caddr_t)));
CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
RL_TX_EARLYTHRESH | RL_CUR_TXMBUF(sc)->m_pkthdr.len);
RL_INC(sc->rl_cdata.cur_tx);
}
/*
* We broke out of the loop because all our TX slots are
* full. Mark the NIC as busy until it drains some of the
* packets from the queue.
*/
if (RL_CUR_TXMBUF(sc) != NULL)
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void rl_init(xsc)
void *xsc;
{
struct rl_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
int s, i;
u_int32_t rxcfg = 0;
u_int16_t phy_bmcr = 0;
if (sc->rl_autoneg)
return;
s = splimp();
/*
* XXX Hack for the 8139: the built-in autoneg logic's state
* gets reset by rl_init() when we don't want it to. Try
* to preserve it. (For 8129 cards with real external PHYs,
* the BMCR register doesn't change, but this doesn't hurt.)
*/
if (sc->rl_type == RL_8139)
phy_bmcr = rl_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
rl_stop(sc);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, RL_IDR0 + i, sc->arpcom.ac_enaddr[i]);
}
/* Init the RX buffer pointer register. */
CSR_WRITE_4(sc, RL_RXADDR, vtophys(sc->rl_cdata.rl_rx_buf));
/* Init TX descriptors. */
rl_list_tx_init(sc);
/*
* Enable transmit and receive.
*/
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
/*
* Set the initial TX and RX configuration.
*/
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
/* Set the individual bit to receive frames for this host only. */
rxcfg = CSR_READ_4(sc, RL_RXCFG);
rxcfg |= RL_RXCFG_RX_INDIV;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
rxcfg |= RL_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
} else {
rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
rxcfg |= RL_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
} else {
rxcfg &= ~RL_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
}
/*
* Program the multicast filter, if necessary.
*/
rl_setmulti(sc);
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
/* Start RX/TX process. */
CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
/* Restore state of BMCR */
if (sc->rl_pinfo != NULL)
rl_phy_writereg(sc, PHY_BMCR, phy_bmcr);
CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
return;
}
/*
* Set media options.
*/
static int rl_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
rl_autoneg_mii(sc, RL_FLAG_SCHEDDELAY, 1);
else
rl_setmode_mii(sc, ifm->ifm_media);
return(0);
}
/*
* Report current media status.
*/
static void rl_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct rl_softc *sc;
u_int16_t advert = 0, ability = 0;
sc = ifp->if_softc;
if (!(rl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
if (rl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (rl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
return;
}
ability = rl_phy_readreg(sc, PHY_LPAR);
advert = rl_phy_readreg(sc, PHY_ANAR);
if (advert & PHY_ANAR_100BT4 &&
ability & PHY_ANAR_100BT4) {
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
}
return;
}
static int rl_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct rl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
rl_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
rl_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
rl_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void rl_watchdog(ifp)
struct ifnet *ifp;
{
struct rl_softc *sc;
sc = ifp->if_softc;
if (sc->rl_autoneg) {
rl_autoneg_mii(sc, RL_FLAG_DELAYTIMEO, 1);
return;
}
printf("rl%d: watchdog timeout\n", sc->rl_unit);
ifp->if_oerrors++;
if (!(rl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
printf("rl%d: no carrier - transceiver cable problem?\n",
sc->rl_unit);
rl_txeof(sc);
rl_rxeof(sc);
rl_init(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void rl_stop(sc)
struct rl_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
CSR_WRITE_2(sc, RL_IMR, 0x0000);
/*
* Free the TX list buffers.
*/
for (i = 0; i < RL_TX_LIST_CNT; i++) {
if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
m_freem(sc->rl_cdata.rl_tx_chain[i]);
sc->rl_cdata.rl_tx_chain[i] = NULL;
CSR_WRITE_4(sc, RL_TXADDR0 + i, 0x0000000);
}
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void rl_shutdown(arg, howto)
void *arg;
int howto;
{
struct rl_softc *sc = (struct rl_softc *)arg;
rl_stop(sc);
return;
}
static struct pci_device rl_device = {
"rl",
rl_probe,
rl_attach,
&rl_count,
NULL
};
COMPAT_PCI_DRIVER(rl, rl_device);