freebsd-dev/contrib/apr/memory/unix/apr_pools.c
2015-08-09 05:14:25 +00:00

2656 lines
71 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr.h"
#include "apr_private.h"
#include "apr_atomic.h"
#include "apr_portable.h" /* for get_os_proc */
#include "apr_strings.h"
#include "apr_general.h"
#include "apr_pools.h"
#include "apr_allocator.h"
#include "apr_lib.h"
#include "apr_thread_mutex.h"
#include "apr_hash.h"
#include "apr_time.h"
#define APR_WANT_MEMFUNC
#include "apr_want.h"
#include "apr_env.h"
#if APR_HAVE_STDLIB_H
#include <stdlib.h> /* for malloc, free and abort */
#endif
#if APR_HAVE_UNISTD_H
#include <unistd.h> /* for getpid and sysconf */
#endif
#if APR_ALLOCATOR_USES_MMAP
#include <sys/mman.h>
#endif
/*
* Magic numbers
*/
/*
* XXX: This is not optimal when using --enable-allocator-uses-mmap on
* XXX: machines with large pagesize, but currently the sink is assumed
* XXX: to be index 0, so MIN_ALLOC must be at least two pages.
*/
#define MIN_ALLOC (2 * BOUNDARY_SIZE)
#define MAX_INDEX 20
#if APR_ALLOCATOR_USES_MMAP && defined(_SC_PAGESIZE)
static unsigned int boundary_index;
static unsigned int boundary_size;
#define BOUNDARY_INDEX boundary_index
#define BOUNDARY_SIZE boundary_size
#else
#define BOUNDARY_INDEX 12
#define BOUNDARY_SIZE (1 << BOUNDARY_INDEX)
#endif
/*
* Timing constants for killing subprocesses
* There is a total 3-second delay between sending a SIGINT
* and sending of the final SIGKILL.
* TIMEOUT_INTERVAL should be set to TIMEOUT_USECS / 64
* for the exponetial timeout alogrithm.
*/
#define TIMEOUT_USECS 3000000
#define TIMEOUT_INTERVAL 46875
/*
* Allocator
*
* @note The max_free_index and current_free_index fields are not really
* indices, but quantities of BOUNDARY_SIZE big memory blocks.
*/
struct apr_allocator_t {
/** largest used index into free[], always < MAX_INDEX */
apr_uint32_t max_index;
/** Total size (in BOUNDARY_SIZE multiples) of unused memory before
* blocks are given back. @see apr_allocator_max_free_set().
* @note Initialized to APR_ALLOCATOR_MAX_FREE_UNLIMITED,
* which means to never give back blocks.
*/
apr_uint32_t max_free_index;
/**
* Memory size (in BOUNDARY_SIZE multiples) that currently must be freed
* before blocks are given back. Range: 0..max_free_index
*/
apr_uint32_t current_free_index;
#if APR_HAS_THREADS
apr_thread_mutex_t *mutex;
#endif /* APR_HAS_THREADS */
apr_pool_t *owner;
/**
* Lists of free nodes. Slot 0 is used for oversized nodes,
* and the slots 1..MAX_INDEX-1 contain nodes of sizes
* (i+1) * BOUNDARY_SIZE. Example for BOUNDARY_INDEX == 12:
* slot 0: nodes larger than 81920
* slot 1: size 8192
* slot 2: size 12288
* ...
* slot 19: size 81920
*/
apr_memnode_t *free[MAX_INDEX];
};
#define SIZEOF_ALLOCATOR_T APR_ALIGN_DEFAULT(sizeof(apr_allocator_t))
/*
* Allocator
*/
APR_DECLARE(apr_status_t) apr_allocator_create(apr_allocator_t **allocator)
{
apr_allocator_t *new_allocator;
*allocator = NULL;
if ((new_allocator = malloc(SIZEOF_ALLOCATOR_T)) == NULL)
return APR_ENOMEM;
memset(new_allocator, 0, SIZEOF_ALLOCATOR_T);
new_allocator->max_free_index = APR_ALLOCATOR_MAX_FREE_UNLIMITED;
*allocator = new_allocator;
return APR_SUCCESS;
}
APR_DECLARE(void) apr_allocator_destroy(apr_allocator_t *allocator)
{
apr_uint32_t index;
apr_memnode_t *node, **ref;
for (index = 0; index < MAX_INDEX; index++) {
ref = &allocator->free[index];
while ((node = *ref) != NULL) {
*ref = node->next;
#if APR_ALLOCATOR_USES_MMAP
munmap(node, (node->index+1) << BOUNDARY_INDEX);
#else
free(node);
#endif
}
}
free(allocator);
}
#if APR_HAS_THREADS
APR_DECLARE(void) apr_allocator_mutex_set(apr_allocator_t *allocator,
apr_thread_mutex_t *mutex)
{
allocator->mutex = mutex;
}
APR_DECLARE(apr_thread_mutex_t *) apr_allocator_mutex_get(
apr_allocator_t *allocator)
{
return allocator->mutex;
}
#endif /* APR_HAS_THREADS */
APR_DECLARE(void) apr_allocator_owner_set(apr_allocator_t *allocator,
apr_pool_t *pool)
{
allocator->owner = pool;
}
APR_DECLARE(apr_pool_t *) apr_allocator_owner_get(apr_allocator_t *allocator)
{
return allocator->owner;
}
APR_DECLARE(void) apr_allocator_max_free_set(apr_allocator_t *allocator,
apr_size_t in_size)
{
apr_uint32_t max_free_index;
apr_uint32_t size = (APR_UINT32_TRUNC_CAST)in_size;
#if APR_HAS_THREADS
apr_thread_mutex_t *mutex;
mutex = apr_allocator_mutex_get(allocator);
if (mutex != NULL)
apr_thread_mutex_lock(mutex);
#endif /* APR_HAS_THREADS */
max_free_index = APR_ALIGN(size, BOUNDARY_SIZE) >> BOUNDARY_INDEX;
allocator->current_free_index += max_free_index;
allocator->current_free_index -= allocator->max_free_index;
allocator->max_free_index = max_free_index;
if (allocator->current_free_index > max_free_index)
allocator->current_free_index = max_free_index;
#if APR_HAS_THREADS
if (mutex != NULL)
apr_thread_mutex_unlock(mutex);
#endif
}
static APR_INLINE
apr_memnode_t *allocator_alloc(apr_allocator_t *allocator, apr_size_t in_size)
{
apr_memnode_t *node, **ref;
apr_uint32_t max_index;
apr_size_t size, i, index;
/* Round up the block size to the next boundary, but always
* allocate at least a certain size (MIN_ALLOC).
*/
size = APR_ALIGN(in_size + APR_MEMNODE_T_SIZE, BOUNDARY_SIZE);
if (size < in_size) {
return NULL;
}
if (size < MIN_ALLOC)
size = MIN_ALLOC;
/* Find the index for this node size by
* dividing its size by the boundary size
*/
index = (size >> BOUNDARY_INDEX) - 1;
if (index > APR_UINT32_MAX) {
return NULL;
}
/* First see if there are any nodes in the area we know
* our node will fit into.
*/
if (index <= allocator->max_index) {
#if APR_HAS_THREADS
if (allocator->mutex)
apr_thread_mutex_lock(allocator->mutex);
#endif /* APR_HAS_THREADS */
/* Walk the free list to see if there are
* any nodes on it of the requested size
*
* NOTE: an optimization would be to check
* allocator->free[index] first and if no
* node is present, directly use
* allocator->free[max_index]. This seems
* like overkill though and could cause
* memory waste.
*/
max_index = allocator->max_index;
ref = &allocator->free[index];
i = index;
while (*ref == NULL && i < max_index) {
ref++;
i++;
}
if ((node = *ref) != NULL) {
/* If we have found a node and it doesn't have any
* nodes waiting in line behind it _and_ we are on
* the highest available index, find the new highest
* available index
*/
if ((*ref = node->next) == NULL && i >= max_index) {
do {
ref--;
max_index--;
}
while (*ref == NULL && max_index > 0);
allocator->max_index = max_index;
}
allocator->current_free_index += node->index + 1;
if (allocator->current_free_index > allocator->max_free_index)
allocator->current_free_index = allocator->max_free_index;
#if APR_HAS_THREADS
if (allocator->mutex)
apr_thread_mutex_unlock(allocator->mutex);
#endif /* APR_HAS_THREADS */
node->next = NULL;
node->first_avail = (char *)node + APR_MEMNODE_T_SIZE;
return node;
}
#if APR_HAS_THREADS
if (allocator->mutex)
apr_thread_mutex_unlock(allocator->mutex);
#endif /* APR_HAS_THREADS */
}
/* If we found nothing, seek the sink (at index 0), if
* it is not empty.
*/
else if (allocator->free[0]) {
#if APR_HAS_THREADS
if (allocator->mutex)
apr_thread_mutex_lock(allocator->mutex);
#endif /* APR_HAS_THREADS */
/* Walk the free list to see if there are
* any nodes on it of the requested size
*/
ref = &allocator->free[0];
while ((node = *ref) != NULL && index > node->index)
ref = &node->next;
if (node) {
*ref = node->next;
allocator->current_free_index += node->index + 1;
if (allocator->current_free_index > allocator->max_free_index)
allocator->current_free_index = allocator->max_free_index;
#if APR_HAS_THREADS
if (allocator->mutex)
apr_thread_mutex_unlock(allocator->mutex);
#endif /* APR_HAS_THREADS */
node->next = NULL;
node->first_avail = (char *)node + APR_MEMNODE_T_SIZE;
return node;
}
#if APR_HAS_THREADS
if (allocator->mutex)
apr_thread_mutex_unlock(allocator->mutex);
#endif /* APR_HAS_THREADS */
}
/* If we haven't got a suitable node, malloc a new one
* and initialize it.
*/
#if APR_ALLOCATOR_USES_MMAP
if ((node = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANON, -1, 0)) == MAP_FAILED)
#else
if ((node = malloc(size)) == NULL)
#endif
return NULL;
node->next = NULL;
node->index = (APR_UINT32_TRUNC_CAST)index;
node->first_avail = (char *)node + APR_MEMNODE_T_SIZE;
node->endp = (char *)node + size;
return node;
}
static APR_INLINE
void allocator_free(apr_allocator_t *allocator, apr_memnode_t *node)
{
apr_memnode_t *next, *freelist = NULL;
apr_uint32_t index, max_index;
apr_uint32_t max_free_index, current_free_index;
#if APR_HAS_THREADS
if (allocator->mutex)
apr_thread_mutex_lock(allocator->mutex);
#endif /* APR_HAS_THREADS */
max_index = allocator->max_index;
max_free_index = allocator->max_free_index;
current_free_index = allocator->current_free_index;
/* Walk the list of submitted nodes and free them one by one,
* shoving them in the right 'size' buckets as we go.
*/
do {
next = node->next;
index = node->index;
if (max_free_index != APR_ALLOCATOR_MAX_FREE_UNLIMITED
&& index + 1 > current_free_index) {
node->next = freelist;
freelist = node;
}
else if (index < MAX_INDEX) {
/* Add the node to the appropiate 'size' bucket. Adjust
* the max_index when appropiate.
*/
if ((node->next = allocator->free[index]) == NULL
&& index > max_index) {
max_index = index;
}
allocator->free[index] = node;
if (current_free_index >= index + 1)
current_free_index -= index + 1;
else
current_free_index = 0;
}
else {
/* This node is too large to keep in a specific size bucket,
* just add it to the sink (at index 0).
*/
node->next = allocator->free[0];
allocator->free[0] = node;
if (current_free_index >= index + 1)
current_free_index -= index + 1;
else
current_free_index = 0;
}
} while ((node = next) != NULL);
allocator->max_index = max_index;
allocator->current_free_index = current_free_index;
#if APR_HAS_THREADS
if (allocator->mutex)
apr_thread_mutex_unlock(allocator->mutex);
#endif /* APR_HAS_THREADS */
while (freelist != NULL) {
node = freelist;
freelist = node->next;
#if APR_ALLOCATOR_USES_MMAP
munmap(node, (node->index+1) << BOUNDARY_INDEX);
#else
free(node);
#endif
}
}
APR_DECLARE(apr_memnode_t *) apr_allocator_alloc(apr_allocator_t *allocator,
apr_size_t size)
{
return allocator_alloc(allocator, size);
}
APR_DECLARE(void) apr_allocator_free(apr_allocator_t *allocator,
apr_memnode_t *node)
{
allocator_free(allocator, node);
}
/*
* Debug level
*/
#define APR_POOL_DEBUG_GENERAL 0x01
#define APR_POOL_DEBUG_VERBOSE 0x02
#define APR_POOL_DEBUG_LIFETIME 0x04
#define APR_POOL_DEBUG_OWNER 0x08
#define APR_POOL_DEBUG_VERBOSE_ALLOC 0x10
#define APR_POOL_DEBUG_VERBOSE_ALL (APR_POOL_DEBUG_VERBOSE \
| APR_POOL_DEBUG_VERBOSE_ALLOC)
/*
* Structures
*/
typedef struct cleanup_t cleanup_t;
/** A list of processes */
struct process_chain {
/** The process ID */
apr_proc_t *proc;
apr_kill_conditions_e kill_how;
/** The next process in the list */
struct process_chain *next;
};
#if APR_POOL_DEBUG
typedef struct debug_node_t debug_node_t;
struct debug_node_t {
debug_node_t *next;
apr_uint32_t index;
void *beginp[64];
void *endp[64];
};
#define SIZEOF_DEBUG_NODE_T APR_ALIGN_DEFAULT(sizeof(debug_node_t))
#endif /* APR_POOL_DEBUG */
/* The ref field in the apr_pool_t struct holds a
* pointer to the pointer referencing this pool.
* It is used for parent, child, sibling management.
* Look at apr_pool_create_ex() and apr_pool_destroy()
* to see how it is used.
*/
struct apr_pool_t {
apr_pool_t *parent;
apr_pool_t *child;
apr_pool_t *sibling;
apr_pool_t **ref;
cleanup_t *cleanups;
cleanup_t *free_cleanups;
apr_allocator_t *allocator;
struct process_chain *subprocesses;
apr_abortfunc_t abort_fn;
apr_hash_t *user_data;
const char *tag;
#if !APR_POOL_DEBUG
apr_memnode_t *active;
apr_memnode_t *self; /* The node containing the pool itself */
char *self_first_avail;
#else /* APR_POOL_DEBUG */
apr_pool_t *joined; /* the caller has guaranteed that this pool
* will survive as long as ->joined */
debug_node_t *nodes;
const char *file_line;
apr_uint32_t creation_flags;
unsigned int stat_alloc;
unsigned int stat_total_alloc;
unsigned int stat_clear;
#if APR_HAS_THREADS
apr_os_thread_t owner;
apr_thread_mutex_t *mutex;
#endif /* APR_HAS_THREADS */
#endif /* APR_POOL_DEBUG */
#ifdef NETWARE
apr_os_proc_t owner_proc;
#endif /* defined(NETWARE) */
cleanup_t *pre_cleanups;
};
#define SIZEOF_POOL_T APR_ALIGN_DEFAULT(sizeof(apr_pool_t))
/*
* Variables
*/
static apr_byte_t apr_pools_initialized = 0;
static apr_pool_t *global_pool = NULL;
#if !APR_POOL_DEBUG
static apr_allocator_t *global_allocator = NULL;
#endif /* !APR_POOL_DEBUG */
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
static apr_file_t *file_stderr = NULL;
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
/*
* Local functions
*/
static void run_cleanups(cleanup_t **c);
static void free_proc_chain(struct process_chain *procs);
#if APR_POOL_DEBUG
static void pool_destroy_debug(apr_pool_t *pool, const char *file_line);
#endif
#if !APR_POOL_DEBUG
/*
* Initialization
*/
APR_DECLARE(apr_status_t) apr_pool_initialize(void)
{
apr_status_t rv;
if (apr_pools_initialized++)
return APR_SUCCESS;
#if APR_ALLOCATOR_USES_MMAP && defined(_SC_PAGESIZE)
boundary_size = sysconf(_SC_PAGESIZE);
boundary_index = 12;
while ( (1 << boundary_index) < boundary_size)
boundary_index++;
boundary_size = (1 << boundary_index);
#endif
if ((rv = apr_allocator_create(&global_allocator)) != APR_SUCCESS) {
apr_pools_initialized = 0;
return rv;
}
if ((rv = apr_pool_create_ex(&global_pool, NULL, NULL,
global_allocator)) != APR_SUCCESS) {
apr_allocator_destroy(global_allocator);
global_allocator = NULL;
apr_pools_initialized = 0;
return rv;
}
apr_pool_tag(global_pool, "apr_global_pool");
/* This has to happen here because mutexes might be backed by
* atomics. It used to be snug and safe in apr_initialize().
*
* Warning: apr_atomic_init() must always be called, by any
* means possible, from apr_initialize().
*/
if ((rv = apr_atomic_init(global_pool)) != APR_SUCCESS) {
return rv;
}
#if APR_HAS_THREADS
{
apr_thread_mutex_t *mutex;
if ((rv = apr_thread_mutex_create(&mutex,
APR_THREAD_MUTEX_DEFAULT,
global_pool)) != APR_SUCCESS) {
return rv;
}
apr_allocator_mutex_set(global_allocator, mutex);
}
#endif /* APR_HAS_THREADS */
apr_allocator_owner_set(global_allocator, global_pool);
return APR_SUCCESS;
}
APR_DECLARE(void) apr_pool_terminate(void)
{
if (!apr_pools_initialized)
return;
if (--apr_pools_initialized)
return;
apr_pool_destroy(global_pool); /* This will also destroy the mutex */
global_pool = NULL;
global_allocator = NULL;
}
/* Node list management helper macros; list_insert() inserts 'node'
* before 'point'. */
#define list_insert(node, point) do { \
node->ref = point->ref; \
*node->ref = node; \
node->next = point; \
point->ref = &node->next; \
} while (0)
/* list_remove() removes 'node' from its list. */
#define list_remove(node) do { \
*node->ref = node->next; \
node->next->ref = node->ref; \
} while (0)
/* Returns the amount of free space in the given node. */
#define node_free_space(node_) ((apr_size_t)(node_->endp - node_->first_avail))
/*
* Memory allocation
*/
APR_DECLARE(void *) apr_palloc(apr_pool_t *pool, apr_size_t in_size)
{
apr_memnode_t *active, *node;
void *mem;
apr_size_t size, free_index;
size = APR_ALIGN_DEFAULT(in_size);
if (size < in_size) {
if (pool->abort_fn)
pool->abort_fn(APR_ENOMEM);
return NULL;
}
active = pool->active;
/* If the active node has enough bytes left, use it. */
if (size <= node_free_space(active)) {
mem = active->first_avail;
active->first_avail += size;
return mem;
}
node = active->next;
if (size <= node_free_space(node)) {
list_remove(node);
}
else {
if ((node = allocator_alloc(pool->allocator, size)) == NULL) {
if (pool->abort_fn)
pool->abort_fn(APR_ENOMEM);
return NULL;
}
}
node->free_index = 0;
mem = node->first_avail;
node->first_avail += size;
list_insert(node, active);
pool->active = node;
free_index = (APR_ALIGN(active->endp - active->first_avail + 1,
BOUNDARY_SIZE) - BOUNDARY_SIZE) >> BOUNDARY_INDEX;
active->free_index = (APR_UINT32_TRUNC_CAST)free_index;
node = active->next;
if (free_index >= node->free_index)
return mem;
do {
node = node->next;
}
while (free_index < node->free_index);
list_remove(active);
list_insert(active, node);
return mem;
}
/* Provide an implementation of apr_pcalloc for backward compatibility
* with code built before apr_pcalloc was a macro
*/
#ifdef apr_pcalloc
#undef apr_pcalloc
#endif
APR_DECLARE(void *) apr_pcalloc(apr_pool_t *pool, apr_size_t size);
APR_DECLARE(void *) apr_pcalloc(apr_pool_t *pool, apr_size_t size)
{
void *mem;
if ((mem = apr_palloc(pool, size)) != NULL) {
memset(mem, 0, size);
}
return mem;
}
/*
* Pool creation/destruction
*/
APR_DECLARE(void) apr_pool_clear(apr_pool_t *pool)
{
apr_memnode_t *active;
/* Run pre destroy cleanups */
run_cleanups(&pool->pre_cleanups);
pool->pre_cleanups = NULL;
/* Destroy the subpools. The subpools will detach themselves from
* this pool thus this loop is safe and easy.
*/
while (pool->child)
apr_pool_destroy(pool->child);
/* Run cleanups */
run_cleanups(&pool->cleanups);
pool->cleanups = NULL;
pool->free_cleanups = NULL;
/* Free subprocesses */
free_proc_chain(pool->subprocesses);
pool->subprocesses = NULL;
/* Clear the user data. */
pool->user_data = NULL;
/* Find the node attached to the pool structure, reset it, make
* it the active node and free the rest of the nodes.
*/
active = pool->active = pool->self;
active->first_avail = pool->self_first_avail;
if (active->next == active)
return;
*active->ref = NULL;
allocator_free(pool->allocator, active->next);
active->next = active;
active->ref = &active->next;
}
APR_DECLARE(void) apr_pool_destroy(apr_pool_t *pool)
{
apr_memnode_t *active;
apr_allocator_t *allocator;
/* Run pre destroy cleanups */
run_cleanups(&pool->pre_cleanups);
pool->pre_cleanups = NULL;
/* Destroy the subpools. The subpools will detach themselve from
* this pool thus this loop is safe and easy.
*/
while (pool->child)
apr_pool_destroy(pool->child);
/* Run cleanups */
run_cleanups(&pool->cleanups);
/* Free subprocesses */
free_proc_chain(pool->subprocesses);
/* Remove the pool from the parents child list */
if (pool->parent) {
#if APR_HAS_THREADS
apr_thread_mutex_t *mutex;
if ((mutex = apr_allocator_mutex_get(pool->parent->allocator)) != NULL)
apr_thread_mutex_lock(mutex);
#endif /* APR_HAS_THREADS */
if ((*pool->ref = pool->sibling) != NULL)
pool->sibling->ref = pool->ref;
#if APR_HAS_THREADS
if (mutex)
apr_thread_mutex_unlock(mutex);
#endif /* APR_HAS_THREADS */
}
/* Find the block attached to the pool structure. Save a copy of the
* allocator pointer, because the pool struct soon will be no more.
*/
allocator = pool->allocator;
active = pool->self;
*active->ref = NULL;
#if APR_HAS_THREADS
if (apr_allocator_owner_get(allocator) == pool) {
/* Make sure to remove the lock, since it is highly likely to
* be invalid now.
*/
apr_allocator_mutex_set(allocator, NULL);
}
#endif /* APR_HAS_THREADS */
/* Free all the nodes in the pool (including the node holding the
* pool struct), by giving them back to the allocator.
*/
allocator_free(allocator, active);
/* If this pool happens to be the owner of the allocator, free
* everything in the allocator (that includes the pool struct
* and the allocator). Don't worry about destroying the optional mutex
* in the allocator, it will have been destroyed by the cleanup function.
*/
if (apr_allocator_owner_get(allocator) == pool) {
apr_allocator_destroy(allocator);
}
}
APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
apr_pool_t *parent,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator)
{
apr_pool_t *pool;
apr_memnode_t *node;
*newpool = NULL;
if (!parent)
parent = global_pool;
/* parent will always be non-NULL here except the first time a
* pool is created, in which case allocator is guaranteed to be
* non-NULL. */
if (!abort_fn && parent)
abort_fn = parent->abort_fn;
if (allocator == NULL)
allocator = parent->allocator;
if ((node = allocator_alloc(allocator,
MIN_ALLOC - APR_MEMNODE_T_SIZE)) == NULL) {
if (abort_fn)
abort_fn(APR_ENOMEM);
return APR_ENOMEM;
}
node->next = node;
node->ref = &node->next;
pool = (apr_pool_t *)node->first_avail;
node->first_avail = pool->self_first_avail = (char *)pool + SIZEOF_POOL_T;
pool->allocator = allocator;
pool->active = pool->self = node;
pool->abort_fn = abort_fn;
pool->child = NULL;
pool->cleanups = NULL;
pool->free_cleanups = NULL;
pool->pre_cleanups = NULL;
pool->subprocesses = NULL;
pool->user_data = NULL;
pool->tag = NULL;
#ifdef NETWARE
pool->owner_proc = (apr_os_proc_t)getnlmhandle();
#endif /* defined(NETWARE) */
if ((pool->parent = parent) != NULL) {
#if APR_HAS_THREADS
apr_thread_mutex_t *mutex;
if ((mutex = apr_allocator_mutex_get(parent->allocator)) != NULL)
apr_thread_mutex_lock(mutex);
#endif /* APR_HAS_THREADS */
if ((pool->sibling = parent->child) != NULL)
pool->sibling->ref = &pool->sibling;
parent->child = pool;
pool->ref = &parent->child;
#if APR_HAS_THREADS
if (mutex)
apr_thread_mutex_unlock(mutex);
#endif /* APR_HAS_THREADS */
}
else {
pool->sibling = NULL;
pool->ref = NULL;
}
*newpool = pool;
return APR_SUCCESS;
}
/* Deprecated. Renamed to apr_pool_create_unmanaged_ex
*/
APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator)
{
return apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator);
}
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator)
{
apr_pool_t *pool;
apr_memnode_t *node;
apr_allocator_t *pool_allocator;
*newpool = NULL;
if (!apr_pools_initialized)
return APR_ENOPOOL;
if ((pool_allocator = allocator) == NULL) {
if ((pool_allocator = malloc(SIZEOF_ALLOCATOR_T)) == NULL) {
if (abort_fn)
abort_fn(APR_ENOMEM);
return APR_ENOMEM;
}
memset(pool_allocator, 0, SIZEOF_ALLOCATOR_T);
pool_allocator->max_free_index = APR_ALLOCATOR_MAX_FREE_UNLIMITED;
}
if ((node = allocator_alloc(pool_allocator,
MIN_ALLOC - APR_MEMNODE_T_SIZE)) == NULL) {
if (abort_fn)
abort_fn(APR_ENOMEM);
return APR_ENOMEM;
}
node->next = node;
node->ref = &node->next;
pool = (apr_pool_t *)node->first_avail;
node->first_avail = pool->self_first_avail = (char *)pool + SIZEOF_POOL_T;
pool->allocator = pool_allocator;
pool->active = pool->self = node;
pool->abort_fn = abort_fn;
pool->child = NULL;
pool->cleanups = NULL;
pool->free_cleanups = NULL;
pool->pre_cleanups = NULL;
pool->subprocesses = NULL;
pool->user_data = NULL;
pool->tag = NULL;
pool->parent = NULL;
pool->sibling = NULL;
pool->ref = NULL;
#ifdef NETWARE
pool->owner_proc = (apr_os_proc_t)getnlmhandle();
#endif /* defined(NETWARE) */
if (!allocator)
pool_allocator->owner = pool;
*newpool = pool;
return APR_SUCCESS;
}
/*
* "Print" functions
*/
/*
* apr_psprintf is implemented by writing directly into the current
* block of the pool, starting right at first_avail. If there's
* insufficient room, then a new block is allocated and the earlier
* output is copied over. The new block isn't linked into the pool
* until all the output is done.
*
* Note that this is completely safe because nothing else can
* allocate in this apr_pool_t while apr_psprintf is running. alarms are
* blocked, and the only thing outside of apr_pools.c that's invoked
* is apr_vformatter -- which was purposefully written to be
* self-contained with no callouts.
*/
struct psprintf_data {
apr_vformatter_buff_t vbuff;
apr_memnode_t *node;
apr_pool_t *pool;
apr_byte_t got_a_new_node;
apr_memnode_t *free;
};
#define APR_PSPRINTF_MIN_STRINGSIZE 32
static int psprintf_flush(apr_vformatter_buff_t *vbuff)
{
struct psprintf_data *ps = (struct psprintf_data *)vbuff;
apr_memnode_t *node, *active;
apr_size_t cur_len, size;
char *strp;
apr_pool_t *pool;
apr_size_t free_index;
pool = ps->pool;
active = ps->node;
strp = ps->vbuff.curpos;
cur_len = strp - active->first_avail;
size = cur_len << 1;
/* Make sure that we don't try to use a block that has less
* than APR_PSPRINTF_MIN_STRINGSIZE bytes left in it. This
* also catches the case where size == 0, which would result
* in reusing a block that can't even hold the NUL byte.
*/
if (size < APR_PSPRINTF_MIN_STRINGSIZE)
size = APR_PSPRINTF_MIN_STRINGSIZE;
node = active->next;
if (!ps->got_a_new_node && size <= node_free_space(node)) {
list_remove(node);
list_insert(node, active);
node->free_index = 0;
pool->active = node;
free_index = (APR_ALIGN(active->endp - active->first_avail + 1,
BOUNDARY_SIZE) - BOUNDARY_SIZE) >> BOUNDARY_INDEX;
active->free_index = (APR_UINT32_TRUNC_CAST)free_index;
node = active->next;
if (free_index < node->free_index) {
do {
node = node->next;
}
while (free_index < node->free_index);
list_remove(active);
list_insert(active, node);
}
node = pool->active;
}
else {
if ((node = allocator_alloc(pool->allocator, size)) == NULL)
return -1;
if (ps->got_a_new_node) {
active->next = ps->free;
ps->free = active;
}
ps->got_a_new_node = 1;
}
memcpy(node->first_avail, active->first_avail, cur_len);
ps->node = node;
ps->vbuff.curpos = node->first_avail + cur_len;
ps->vbuff.endpos = node->endp - 1; /* Save a byte for NUL terminator */
return 0;
}
APR_DECLARE(char *) apr_pvsprintf(apr_pool_t *pool, const char *fmt, va_list ap)
{
struct psprintf_data ps;
char *strp;
apr_size_t size;
apr_memnode_t *active, *node;
apr_size_t free_index;
ps.node = active = pool->active;
ps.pool = pool;
ps.vbuff.curpos = ps.node->first_avail;
/* Save a byte for the NUL terminator */
ps.vbuff.endpos = ps.node->endp - 1;
ps.got_a_new_node = 0;
ps.free = NULL;
/* Make sure that the first node passed to apr_vformatter has at least
* room to hold the NUL terminator.
*/
if (ps.node->first_avail == ps.node->endp) {
if (psprintf_flush(&ps.vbuff) == -1)
goto error;
}
if (apr_vformatter(psprintf_flush, &ps.vbuff, fmt, ap) == -1)
goto error;
strp = ps.vbuff.curpos;
*strp++ = '\0';
size = strp - ps.node->first_avail;
size = APR_ALIGN_DEFAULT(size);
strp = ps.node->first_avail;
ps.node->first_avail += size;
if (ps.free)
allocator_free(pool->allocator, ps.free);
/*
* Link the node in if it's a new one
*/
if (!ps.got_a_new_node)
return strp;
active = pool->active;
node = ps.node;
node->free_index = 0;
list_insert(node, active);
pool->active = node;
free_index = (APR_ALIGN(active->endp - active->first_avail + 1,
BOUNDARY_SIZE) - BOUNDARY_SIZE) >> BOUNDARY_INDEX;
active->free_index = (APR_UINT32_TRUNC_CAST)free_index;
node = active->next;
if (free_index >= node->free_index)
return strp;
do {
node = node->next;
}
while (free_index < node->free_index);
list_remove(active);
list_insert(active, node);
return strp;
error:
if (pool->abort_fn)
pool->abort_fn(APR_ENOMEM);
if (ps.got_a_new_node) {
ps.node->next = ps.free;
allocator_free(pool->allocator, ps.node);
}
return NULL;
}
#else /* APR_POOL_DEBUG */
/*
* Debug helper functions
*/
/*
* Walk the pool tree rooted at pool, depth first. When fn returns
* anything other than 0, abort the traversal and return the value
* returned by fn.
*/
static int apr_pool_walk_tree(apr_pool_t *pool,
int (*fn)(apr_pool_t *pool, void *data),
void *data)
{
int rv;
apr_pool_t *child;
rv = fn(pool, data);
if (rv)
return rv;
#if APR_HAS_THREADS
if (pool->mutex) {
apr_thread_mutex_lock(pool->mutex);
}
#endif /* APR_HAS_THREADS */
child = pool->child;
while (child) {
rv = apr_pool_walk_tree(child, fn, data);
if (rv)
break;
child = child->sibling;
}
#if APR_HAS_THREADS
if (pool->mutex) {
apr_thread_mutex_unlock(pool->mutex);
}
#endif /* APR_HAS_THREADS */
return rv;
}
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
static void apr_pool_log_event(apr_pool_t *pool, const char *event,
const char *file_line, int deref)
{
if (file_stderr) {
if (deref) {
apr_file_printf(file_stderr,
"POOL DEBUG: "
"[%lu"
#if APR_HAS_THREADS
"/%lu"
#endif /* APR_HAS_THREADS */
"] "
"%7s "
"(%10lu/%10lu/%10lu) "
"0x%pp \"%s\" "
"<%s> "
"(%u/%u/%u) "
"\n",
(unsigned long)getpid(),
#if APR_HAS_THREADS
(unsigned long)apr_os_thread_current(),
#endif /* APR_HAS_THREADS */
event,
(unsigned long)apr_pool_num_bytes(pool, 0),
(unsigned long)apr_pool_num_bytes(pool, 1),
(unsigned long)apr_pool_num_bytes(global_pool, 1),
pool, pool->tag,
file_line,
pool->stat_alloc, pool->stat_total_alloc, pool->stat_clear);
}
else {
apr_file_printf(file_stderr,
"POOL DEBUG: "
"[%lu"
#if APR_HAS_THREADS
"/%lu"
#endif /* APR_HAS_THREADS */
"] "
"%7s "
" "
"0x%pp "
"<%s> "
"\n",
(unsigned long)getpid(),
#if APR_HAS_THREADS
(unsigned long)apr_os_thread_current(),
#endif /* APR_HAS_THREADS */
event,
pool,
file_line);
}
}
}
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_LIFETIME)
static int pool_is_child_of(apr_pool_t *parent, void *data)
{
apr_pool_t *pool = (apr_pool_t *)data;
return (pool == parent);
}
static int apr_pool_is_child_of(apr_pool_t *pool, apr_pool_t *parent)
{
if (parent == NULL)
return 0;
return apr_pool_walk_tree(parent, pool_is_child_of, pool);
}
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_LIFETIME) */
static void apr_pool_check_integrity(apr_pool_t *pool)
{
/* Rule of thumb: use of the global pool is always
* ok, since the only user is apr_pools.c. Unless
* people have searched for the top level parent and
* started to use that...
*/
if (pool == global_pool || global_pool == NULL)
return;
/* Lifetime
* This basically checks to see if the pool being used is still
* a relative to the global pool. If not it was previously
* destroyed, in which case we abort().
*/
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_LIFETIME)
if (!apr_pool_is_child_of(pool, global_pool)) {
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
apr_pool_log_event(pool, "LIFE",
__FILE__ ":apr_pool_integrity check", 0);
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
abort();
}
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_LIFETIME) */
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_OWNER)
#if APR_HAS_THREADS
if (!apr_os_thread_equal(pool->owner, apr_os_thread_current())) {
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
apr_pool_log_event(pool, "THREAD",
__FILE__ ":apr_pool_integrity check", 0);
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
abort();
}
#endif /* APR_HAS_THREADS */
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_OWNER) */
}
/*
* Initialization (debug)
*/
APR_DECLARE(apr_status_t) apr_pool_initialize(void)
{
apr_status_t rv;
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
char *logpath;
apr_file_t *debug_log = NULL;
#endif
if (apr_pools_initialized++)
return APR_SUCCESS;
#if APR_ALLOCATOR_USES_MMAP && defined(_SC_PAGESIZE)
boundary_size = sysconf(_SC_PAGESIZE);
boundary_index = 12;
while ( (1 << boundary_index) < boundary_size)
boundary_index++;
boundary_size = (1 << boundary_index);
#endif
/* Since the debug code works a bit differently then the
* regular pools code, we ask for a lock here. The regular
* pools code has got this lock embedded in the global
* allocator, a concept unknown to debug mode.
*/
if ((rv = apr_pool_create_ex(&global_pool, NULL, NULL,
NULL)) != APR_SUCCESS) {
return rv;
}
apr_pool_tag(global_pool, "APR global pool");
apr_pools_initialized = 1;
/* This has to happen here because mutexes might be backed by
* atomics. It used to be snug and safe in apr_initialize().
*/
if ((rv = apr_atomic_init(global_pool)) != APR_SUCCESS) {
return rv;
}
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
rv = apr_env_get(&logpath, "APR_POOL_DEBUG_LOG", global_pool);
/* Don't pass file_stderr directly to apr_file_open() here, since
* apr_file_open() can call back to apr_pool_log_event() and that
* may attempt to use then then non-NULL but partially set up file
* object. */
if (rv == APR_SUCCESS) {
apr_file_open(&debug_log, logpath, APR_APPEND|APR_WRITE|APR_CREATE,
APR_OS_DEFAULT, global_pool);
}
else {
apr_file_open_stderr(&debug_log, global_pool);
}
/* debug_log is now a file handle. */
file_stderr = debug_log;
if (file_stderr) {
apr_file_printf(file_stderr,
"POOL DEBUG: [PID"
#if APR_HAS_THREADS
"/TID"
#endif /* APR_HAS_THREADS */
"] ACTION (SIZE /POOL SIZE /TOTAL SIZE) "
"POOL \"TAG\" <__FILE__:__LINE__> (ALLOCS/TOTAL ALLOCS/CLEARS)\n");
apr_pool_log_event(global_pool, "GLOBAL", __FILE__ ":apr_pool_initialize", 0);
}
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
return APR_SUCCESS;
}
APR_DECLARE(void) apr_pool_terminate(void)
{
if (!apr_pools_initialized)
return;
if (--apr_pools_initialized)
return;
apr_pool_destroy(global_pool); /* This will also destroy the mutex */
global_pool = NULL;
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
file_stderr = NULL;
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
}
/*
* Memory allocation (debug)
*/
static void *pool_alloc(apr_pool_t *pool, apr_size_t size)
{
debug_node_t *node;
void *mem;
if ((mem = malloc(size)) == NULL) {
if (pool->abort_fn)
pool->abort_fn(APR_ENOMEM);
return NULL;
}
node = pool->nodes;
if (node == NULL || node->index == 64) {
if ((node = malloc(SIZEOF_DEBUG_NODE_T)) == NULL) {
free(mem);
if (pool->abort_fn)
pool->abort_fn(APR_ENOMEM);
return NULL;
}
memset(node, 0, SIZEOF_DEBUG_NODE_T);
node->next = pool->nodes;
pool->nodes = node;
node->index = 0;
}
node->beginp[node->index] = mem;
node->endp[node->index] = (char *)mem + size;
node->index++;
pool->stat_alloc++;
pool->stat_total_alloc++;
return mem;
}
APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *pool, apr_size_t size,
const char *file_line)
{
void *mem;
apr_pool_check_integrity(pool);
mem = pool_alloc(pool, size);
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALLOC)
apr_pool_log_event(pool, "PALLOC", file_line, 1);
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALLOC) */
return mem;
}
APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *pool, apr_size_t size,
const char *file_line)
{
void *mem;
apr_pool_check_integrity(pool);
mem = pool_alloc(pool, size);
memset(mem, 0, size);
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALLOC)
apr_pool_log_event(pool, "PCALLOC", file_line, 1);
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALLOC) */
return mem;
}
/*
* Pool creation/destruction (debug)
*/
#define POOL_POISON_BYTE 'A'
static void pool_clear_debug(apr_pool_t *pool, const char *file_line)
{
debug_node_t *node;
apr_uint32_t index;
/* Run pre destroy cleanups */
run_cleanups(&pool->pre_cleanups);
pool->pre_cleanups = NULL;
/* Destroy the subpools. The subpools will detach themselves from
* this pool thus this loop is safe and easy.
*/
while (pool->child)
pool_destroy_debug(pool->child, file_line);
/* Run cleanups */
run_cleanups(&pool->cleanups);
pool->free_cleanups = NULL;
pool->cleanups = NULL;
/* If new child pools showed up, this is a reason to raise a flag */
if (pool->child)
abort();
/* Free subprocesses */
free_proc_chain(pool->subprocesses);
pool->subprocesses = NULL;
/* Clear the user data. */
pool->user_data = NULL;
/* Free the blocks, scribbling over them first to help highlight
* use-after-free issues. */
while ((node = pool->nodes) != NULL) {
pool->nodes = node->next;
for (index = 0; index < node->index; index++) {
memset(node->beginp[index], POOL_POISON_BYTE,
(char *)node->endp[index] - (char *)node->beginp[index]);
free(node->beginp[index]);
}
memset(node, POOL_POISON_BYTE, SIZEOF_DEBUG_NODE_T);
free(node);
}
pool->stat_alloc = 0;
pool->stat_clear++;
}
APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *pool,
const char *file_line)
{
#if APR_HAS_THREADS
apr_thread_mutex_t *mutex = NULL;
#endif
apr_pool_check_integrity(pool);
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE)
apr_pool_log_event(pool, "CLEAR", file_line, 1);
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE) */
#if APR_HAS_THREADS
if (pool->parent != NULL)
mutex = pool->parent->mutex;
/* Lock the parent mutex before clearing so that if we have our
* own mutex it won't be accessed by apr_pool_walk_tree after
* it has been destroyed.
*/
if (mutex != NULL && mutex != pool->mutex) {
apr_thread_mutex_lock(mutex);
}
#endif
pool_clear_debug(pool, file_line);
#if APR_HAS_THREADS
/* If we had our own mutex, it will have been destroyed by
* the registered cleanups. Recreate the mutex. Unlock
* the mutex we obtained above.
*/
if (mutex != pool->mutex) {
(void)apr_thread_mutex_create(&pool->mutex,
APR_THREAD_MUTEX_NESTED, pool);
if (mutex != NULL)
(void)apr_thread_mutex_unlock(mutex);
}
#endif /* APR_HAS_THREADS */
}
static void pool_destroy_debug(apr_pool_t *pool, const char *file_line)
{
apr_pool_check_integrity(pool);
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE)
apr_pool_log_event(pool, "DESTROY", file_line, 1);
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE) */
pool_clear_debug(pool, file_line);
/* Remove the pool from the parents child list */
if (pool->parent) {
#if APR_HAS_THREADS
apr_thread_mutex_t *mutex;
if ((mutex = pool->parent->mutex) != NULL)
apr_thread_mutex_lock(mutex);
#endif /* APR_HAS_THREADS */
if ((*pool->ref = pool->sibling) != NULL)
pool->sibling->ref = pool->ref;
#if APR_HAS_THREADS
if (mutex)
apr_thread_mutex_unlock(mutex);
#endif /* APR_HAS_THREADS */
}
if (pool->allocator != NULL
&& apr_allocator_owner_get(pool->allocator) == pool) {
apr_allocator_destroy(pool->allocator);
}
/* Free the pool itself */
free(pool);
}
APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *pool,
const char *file_line)
{
if (pool->joined) {
/* Joined pools must not be explicitly destroyed; the caller
* has broken the guarantee. */
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL)
apr_pool_log_event(pool, "LIFE",
__FILE__ ":apr_pool_destroy abort on joined", 0);
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE_ALL) */
abort();
}
pool_destroy_debug(pool, file_line);
}
APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool,
apr_pool_t *parent,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator,
const char *file_line)
{
apr_pool_t *pool;
*newpool = NULL;
if (!parent) {
parent = global_pool;
}
else {
apr_pool_check_integrity(parent);
if (!allocator)
allocator = parent->allocator;
}
if (!abort_fn && parent)
abort_fn = parent->abort_fn;
if ((pool = malloc(SIZEOF_POOL_T)) == NULL) {
if (abort_fn)
abort_fn(APR_ENOMEM);
return APR_ENOMEM;
}
memset(pool, 0, SIZEOF_POOL_T);
pool->allocator = allocator;
pool->abort_fn = abort_fn;
pool->tag = file_line;
pool->file_line = file_line;
if ((pool->parent = parent) != NULL) {
#if APR_HAS_THREADS
if (parent->mutex)
apr_thread_mutex_lock(parent->mutex);
#endif /* APR_HAS_THREADS */
if ((pool->sibling = parent->child) != NULL)
pool->sibling->ref = &pool->sibling;
parent->child = pool;
pool->ref = &parent->child;
#if APR_HAS_THREADS
if (parent->mutex)
apr_thread_mutex_unlock(parent->mutex);
#endif /* APR_HAS_THREADS */
}
else {
pool->sibling = NULL;
pool->ref = NULL;
}
#if APR_HAS_THREADS
pool->owner = apr_os_thread_current();
#endif /* APR_HAS_THREADS */
#ifdef NETWARE
pool->owner_proc = (apr_os_proc_t)getnlmhandle();
#endif /* defined(NETWARE) */
if (parent == NULL || parent->allocator != allocator) {
#if APR_HAS_THREADS
apr_status_t rv;
/* No matter what the creation flags say, always create
* a lock. Without it integrity_check and apr_pool_num_bytes
* blow up (because they traverse pools child lists that
* possibly belong to another thread, in combination with
* the pool having no lock). However, this might actually
* hide problems like creating a child pool of a pool
* belonging to another thread.
*/
if ((rv = apr_thread_mutex_create(&pool->mutex,
APR_THREAD_MUTEX_NESTED, pool)) != APR_SUCCESS) {
free(pool);
return rv;
}
#endif /* APR_HAS_THREADS */
}
else {
#if APR_HAS_THREADS
if (parent)
pool->mutex = parent->mutex;
#endif /* APR_HAS_THREADS */
}
*newpool = pool;
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE)
apr_pool_log_event(pool, "CREATE", file_line, 1);
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE) */
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_pool_create_core_ex_debug(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator,
const char *file_line)
{
return apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator,
file_line);
}
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex_debug(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator,
const char *file_line)
{
apr_pool_t *pool;
apr_allocator_t *pool_allocator;
*newpool = NULL;
if ((pool = malloc(SIZEOF_POOL_T)) == NULL) {
if (abort_fn)
abort_fn(APR_ENOMEM);
return APR_ENOMEM;
}
memset(pool, 0, SIZEOF_POOL_T);
pool->abort_fn = abort_fn;
pool->tag = file_line;
pool->file_line = file_line;
#if APR_HAS_THREADS
pool->owner = apr_os_thread_current();
#endif /* APR_HAS_THREADS */
#ifdef NETWARE
pool->owner_proc = (apr_os_proc_t)getnlmhandle();
#endif /* defined(NETWARE) */
if ((pool_allocator = allocator) == NULL) {
apr_status_t rv;
if ((rv = apr_allocator_create(&pool_allocator)) != APR_SUCCESS) {
if (abort_fn)
abort_fn(rv);
return rv;
}
pool_allocator->owner = pool;
}
pool->allocator = pool_allocator;
if (pool->allocator != allocator) {
#if APR_HAS_THREADS
apr_status_t rv;
/* No matter what the creation flags say, always create
* a lock. Without it integrity_check and apr_pool_num_bytes
* blow up (because they traverse pools child lists that
* possibly belong to another thread, in combination with
* the pool having no lock). However, this might actually
* hide problems like creating a child pool of a pool
* belonging to another thread.
*/
if ((rv = apr_thread_mutex_create(&pool->mutex,
APR_THREAD_MUTEX_NESTED, pool)) != APR_SUCCESS) {
free(pool);
return rv;
}
#endif /* APR_HAS_THREADS */
}
*newpool = pool;
#if (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE)
apr_pool_log_event(pool, "CREATE", file_line, 1);
#endif /* (APR_POOL_DEBUG & APR_POOL_DEBUG_VERBOSE) */
return APR_SUCCESS;
}
/*
* "Print" functions (debug)
*/
struct psprintf_data {
apr_vformatter_buff_t vbuff;
char *mem;
apr_size_t size;
};
static int psprintf_flush(apr_vformatter_buff_t *vbuff)
{
struct psprintf_data *ps = (struct psprintf_data *)vbuff;
apr_size_t size;
size = ps->vbuff.curpos - ps->mem;
ps->size <<= 1;
if ((ps->mem = realloc(ps->mem, ps->size)) == NULL)
return -1;
ps->vbuff.curpos = ps->mem + size;
ps->vbuff.endpos = ps->mem + ps->size - 1;
return 0;
}
APR_DECLARE(char *) apr_pvsprintf(apr_pool_t *pool, const char *fmt, va_list ap)
{
struct psprintf_data ps;
debug_node_t *node;
apr_pool_check_integrity(pool);
ps.size = 64;
ps.mem = malloc(ps.size);
ps.vbuff.curpos = ps.mem;
/* Save a byte for the NUL terminator */
ps.vbuff.endpos = ps.mem + ps.size - 1;
if (apr_vformatter(psprintf_flush, &ps.vbuff, fmt, ap) == -1) {
if (pool->abort_fn)
pool->abort_fn(APR_ENOMEM);
return NULL;
}
*ps.vbuff.curpos++ = '\0';
/*
* Link the node in
*/
node = pool->nodes;
if (node == NULL || node->index == 64) {
if ((node = malloc(SIZEOF_DEBUG_NODE_T)) == NULL) {
if (pool->abort_fn)
pool->abort_fn(APR_ENOMEM);
return NULL;
}
node->next = pool->nodes;
pool->nodes = node;
node->index = 0;
}
node->beginp[node->index] = ps.mem;
node->endp[node->index] = ps.mem + ps.size;
node->index++;
return ps.mem;
}
/*
* Debug functions
*/
APR_DECLARE(void) apr_pool_join(apr_pool_t *p, apr_pool_t *sub)
{
#if APR_POOL_DEBUG
if (sub->parent != p) {
abort();
}
sub->joined = p;
#endif
}
static int pool_find(apr_pool_t *pool, void *data)
{
void **pmem = (void **)data;
debug_node_t *node;
apr_uint32_t index;
node = pool->nodes;
while (node) {
for (index = 0; index < node->index; index++) {
if (node->beginp[index] <= *pmem
&& node->endp[index] > *pmem) {
*pmem = pool;
return 1;
}
}
node = node->next;
}
return 0;
}
APR_DECLARE(apr_pool_t *) apr_pool_find(const void *mem)
{
void *pool = (void *)mem;
if (apr_pool_walk_tree(global_pool, pool_find, &pool))
return pool;
return NULL;
}
static int pool_num_bytes(apr_pool_t *pool, void *data)
{
apr_size_t *psize = (apr_size_t *)data;
debug_node_t *node;
apr_uint32_t index;
node = pool->nodes;
while (node) {
for (index = 0; index < node->index; index++) {
*psize += (char *)node->endp[index] - (char *)node->beginp[index];
}
node = node->next;
}
return 0;
}
APR_DECLARE(apr_size_t) apr_pool_num_bytes(apr_pool_t *pool, int recurse)
{
apr_size_t size = 0;
if (!recurse) {
pool_num_bytes(pool, &size);
return size;
}
apr_pool_walk_tree(pool, pool_num_bytes, &size);
return size;
}
APR_DECLARE(void) apr_pool_lock(apr_pool_t *pool, int flag)
{
}
#endif /* !APR_POOL_DEBUG */
#ifdef NETWARE
void netware_pool_proc_cleanup ()
{
apr_pool_t *pool = global_pool->child;
apr_os_proc_t owner_proc = (apr_os_proc_t)getnlmhandle();
while (pool) {
if (pool->owner_proc == owner_proc) {
apr_pool_destroy (pool);
pool = global_pool->child;
}
else {
pool = pool->sibling;
}
}
return;
}
#endif /* defined(NETWARE) */
/*
* "Print" functions (common)
*/
APR_DECLARE_NONSTD(char *) apr_psprintf(apr_pool_t *p, const char *fmt, ...)
{
va_list ap;
char *res;
va_start(ap, fmt);
res = apr_pvsprintf(p, fmt, ap);
va_end(ap);
return res;
}
/*
* Pool Properties
*/
APR_DECLARE(void) apr_pool_abort_set(apr_abortfunc_t abort_fn,
apr_pool_t *pool)
{
pool->abort_fn = abort_fn;
}
APR_DECLARE(apr_abortfunc_t) apr_pool_abort_get(apr_pool_t *pool)
{
return pool->abort_fn;
}
APR_DECLARE(apr_pool_t *) apr_pool_parent_get(apr_pool_t *pool)
{
#ifdef NETWARE
/* On NetWare, don't return the global_pool, return the application pool
as the top most pool */
if (pool->parent == global_pool)
return pool;
else
#endif
return pool->parent;
}
APR_DECLARE(apr_allocator_t *) apr_pool_allocator_get(apr_pool_t *pool)
{
return pool->allocator;
}
/* return TRUE if a is an ancestor of b
* NULL is considered an ancestor of all pools
*/
APR_DECLARE(int) apr_pool_is_ancestor(apr_pool_t *a, apr_pool_t *b)
{
if (a == NULL)
return 1;
#if APR_POOL_DEBUG
/* Find the pool with the longest lifetime guaranteed by the
* caller: */
while (a->joined) {
a = a->joined;
}
#endif
while (b) {
if (a == b)
return 1;
b = b->parent;
}
return 0;
}
APR_DECLARE(void) apr_pool_tag(apr_pool_t *pool, const char *tag)
{
pool->tag = tag;
}
/*
* User data management
*/
APR_DECLARE(apr_status_t) apr_pool_userdata_set(const void *data, const char *key,
apr_status_t (*cleanup) (void *),
apr_pool_t *pool)
{
#if APR_POOL_DEBUG
apr_pool_check_integrity(pool);
#endif /* APR_POOL_DEBUG */
if (pool->user_data == NULL)
pool->user_data = apr_hash_make(pool);
if (apr_hash_get(pool->user_data, key, APR_HASH_KEY_STRING) == NULL) {
char *new_key = apr_pstrdup(pool, key);
apr_hash_set(pool->user_data, new_key, APR_HASH_KEY_STRING, data);
}
else {
apr_hash_set(pool->user_data, key, APR_HASH_KEY_STRING, data);
}
if (cleanup)
apr_pool_cleanup_register(pool, data, cleanup, cleanup);
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_pool_userdata_setn(const void *data,
const char *key,
apr_status_t (*cleanup)(void *),
apr_pool_t *pool)
{
#if APR_POOL_DEBUG
apr_pool_check_integrity(pool);
#endif /* APR_POOL_DEBUG */
if (pool->user_data == NULL)
pool->user_data = apr_hash_make(pool);
apr_hash_set(pool->user_data, key, APR_HASH_KEY_STRING, data);
if (cleanup)
apr_pool_cleanup_register(pool, data, cleanup, cleanup);
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_pool_userdata_get(void **data, const char *key,
apr_pool_t *pool)
{
#if APR_POOL_DEBUG
apr_pool_check_integrity(pool);
#endif /* APR_POOL_DEBUG */
if (pool->user_data == NULL) {
*data = NULL;
}
else {
*data = apr_hash_get(pool->user_data, key, APR_HASH_KEY_STRING);
}
return APR_SUCCESS;
}
/*
* Cleanup
*/
struct cleanup_t {
struct cleanup_t *next;
const void *data;
apr_status_t (*plain_cleanup_fn)(void *data);
apr_status_t (*child_cleanup_fn)(void *data);
};
APR_DECLARE(void) apr_pool_cleanup_register(apr_pool_t *p, const void *data,
apr_status_t (*plain_cleanup_fn)(void *data),
apr_status_t (*child_cleanup_fn)(void *data))
{
cleanup_t *c;
#if APR_POOL_DEBUG
apr_pool_check_integrity(p);
#endif /* APR_POOL_DEBUG */
if (p != NULL) {
if (p->free_cleanups) {
/* reuse a cleanup structure */
c = p->free_cleanups;
p->free_cleanups = c->next;
} else {
c = apr_palloc(p, sizeof(cleanup_t));
}
c->data = data;
c->plain_cleanup_fn = plain_cleanup_fn;
c->child_cleanup_fn = child_cleanup_fn;
c->next = p->cleanups;
p->cleanups = c;
}
}
APR_DECLARE(void) apr_pool_pre_cleanup_register(apr_pool_t *p, const void *data,
apr_status_t (*plain_cleanup_fn)(void *data))
{
cleanup_t *c;
#if APR_POOL_DEBUG
apr_pool_check_integrity(p);
#endif /* APR_POOL_DEBUG */
if (p != NULL) {
if (p->free_cleanups) {
/* reuse a cleanup structure */
c = p->free_cleanups;
p->free_cleanups = c->next;
} else {
c = apr_palloc(p, sizeof(cleanup_t));
}
c->data = data;
c->plain_cleanup_fn = plain_cleanup_fn;
c->next = p->pre_cleanups;
p->pre_cleanups = c;
}
}
APR_DECLARE(void) apr_pool_cleanup_kill(apr_pool_t *p, const void *data,
apr_status_t (*cleanup_fn)(void *))
{
cleanup_t *c, **lastp;
#if APR_POOL_DEBUG
apr_pool_check_integrity(p);
#endif /* APR_POOL_DEBUG */
if (p == NULL)
return;
c = p->cleanups;
lastp = &p->cleanups;
while (c) {
#if APR_POOL_DEBUG
/* Some cheap loop detection to catch a corrupt list: */
if (c == c->next
|| (c->next && c == c->next->next)
|| (c->next && c->next->next && c == c->next->next->next)) {
abort();
}
#endif
if (c->data == data && c->plain_cleanup_fn == cleanup_fn) {
*lastp = c->next;
/* move to freelist */
c->next = p->free_cleanups;
p->free_cleanups = c;
break;
}
lastp = &c->next;
c = c->next;
}
/* Remove any pre-cleanup as well */
c = p->pre_cleanups;
lastp = &p->pre_cleanups;
while (c) {
#if APR_POOL_DEBUG
/* Some cheap loop detection to catch a corrupt list: */
if (c == c->next
|| (c->next && c == c->next->next)
|| (c->next && c->next->next && c == c->next->next->next)) {
abort();
}
#endif
if (c->data == data && c->plain_cleanup_fn == cleanup_fn) {
*lastp = c->next;
/* move to freelist */
c->next = p->free_cleanups;
p->free_cleanups = c;
break;
}
lastp = &c->next;
c = c->next;
}
}
APR_DECLARE(void) apr_pool_child_cleanup_set(apr_pool_t *p, const void *data,
apr_status_t (*plain_cleanup_fn)(void *),
apr_status_t (*child_cleanup_fn)(void *))
{
cleanup_t *c;
#if APR_POOL_DEBUG
apr_pool_check_integrity(p);
#endif /* APR_POOL_DEBUG */
if (p == NULL)
return;
c = p->cleanups;
while (c) {
if (c->data == data && c->plain_cleanup_fn == plain_cleanup_fn) {
c->child_cleanup_fn = child_cleanup_fn;
break;
}
c = c->next;
}
}
APR_DECLARE(apr_status_t) apr_pool_cleanup_run(apr_pool_t *p, void *data,
apr_status_t (*cleanup_fn)(void *))
{
apr_pool_cleanup_kill(p, data, cleanup_fn);
return (*cleanup_fn)(data);
}
static void run_cleanups(cleanup_t **cref)
{
cleanup_t *c = *cref;
while (c) {
*cref = c->next;
(*c->plain_cleanup_fn)((void *)c->data);
c = *cref;
}
}
#if !defined(WIN32) && !defined(OS2)
static void run_child_cleanups(cleanup_t **cref)
{
cleanup_t *c = *cref;
while (c) {
*cref = c->next;
(*c->child_cleanup_fn)((void *)c->data);
c = *cref;
}
}
static void cleanup_pool_for_exec(apr_pool_t *p)
{
run_child_cleanups(&p->cleanups);
for (p = p->child; p; p = p->sibling)
cleanup_pool_for_exec(p);
}
APR_DECLARE(void) apr_pool_cleanup_for_exec(void)
{
cleanup_pool_for_exec(global_pool);
}
#else /* !defined(WIN32) && !defined(OS2) */
APR_DECLARE(void) apr_pool_cleanup_for_exec(void)
{
/*
* Don't need to do anything on NT or OS/2, because
* these platforms will spawn the new process - not
* fork for exec. All handles that are not inheritable,
* will be automajically closed. The only problem is
* with file handles that are open, but there isn't
* much that can be done about that (except if the
* child decides to go out and close them, or the
* developer quits opening them shared)
*/
return;
}
#endif /* !defined(WIN32) && !defined(OS2) */
APR_DECLARE_NONSTD(apr_status_t) apr_pool_cleanup_null(void *data)
{
/* do nothing cleanup routine */
return APR_SUCCESS;
}
/* Subprocesses don't use the generic cleanup interface because
* we don't want multiple subprocesses to result in multiple
* three-second pauses; the subprocesses have to be "freed" all
* at once. If other resources are introduced with the same property,
* we might want to fold support for that into the generic interface.
* For now, it's a special case.
*/
APR_DECLARE(void) apr_pool_note_subprocess(apr_pool_t *pool, apr_proc_t *proc,
apr_kill_conditions_e how)
{
struct process_chain *pc = apr_palloc(pool, sizeof(struct process_chain));
pc->proc = proc;
pc->kill_how = how;
pc->next = pool->subprocesses;
pool->subprocesses = pc;
}
static void free_proc_chain(struct process_chain *procs)
{
/* Dispose of the subprocesses we've spawned off in the course of
* whatever it was we're cleaning up now. This may involve killing
* some of them off...
*/
struct process_chain *pc;
int need_timeout = 0;
apr_time_t timeout_interval;
if (!procs)
return; /* No work. Whew! */
/* First, check to see if we need to do the SIGTERM, sleep, SIGKILL
* dance with any of the processes we're cleaning up. If we've got
* any kill-on-sight subprocesses, ditch them now as well, so they
* don't waste any more cycles doing whatever it is that they shouldn't
* be doing anymore.
*/
#ifndef NEED_WAITPID
/* Pick up all defunct processes */
for (pc = procs; pc; pc = pc->next) {
if (apr_proc_wait(pc->proc, NULL, NULL, APR_NOWAIT) != APR_CHILD_NOTDONE)
pc->kill_how = APR_KILL_NEVER;
}
#endif /* !defined(NEED_WAITPID) */
for (pc = procs; pc; pc = pc->next) {
#ifndef WIN32
if ((pc->kill_how == APR_KILL_AFTER_TIMEOUT)
|| (pc->kill_how == APR_KILL_ONLY_ONCE)) {
/*
* Subprocess may be dead already. Only need the timeout if not.
* Note: apr_proc_kill on Windows is TerminateProcess(), which is
* similar to a SIGKILL, so always give the process a timeout
* under Windows before killing it.
*/
if (apr_proc_kill(pc->proc, SIGTERM) == APR_SUCCESS)
need_timeout = 1;
}
else if (pc->kill_how == APR_KILL_ALWAYS) {
#else /* WIN32 knows only one fast, clean method of killing processes today */
if (pc->kill_how != APR_KILL_NEVER) {
need_timeout = 1;
pc->kill_how = APR_KILL_ALWAYS;
#endif
apr_proc_kill(pc->proc, SIGKILL);
}
}
/* Sleep only if we have to. The sleep algorithm grows
* by a factor of two on each iteration. TIMEOUT_INTERVAL
* is equal to TIMEOUT_USECS / 64.
*/
if (need_timeout) {
timeout_interval = TIMEOUT_INTERVAL;
apr_sleep(timeout_interval);
do {
/* check the status of the subprocesses */
need_timeout = 0;
for (pc = procs; pc; pc = pc->next) {
if (pc->kill_how == APR_KILL_AFTER_TIMEOUT) {
if (apr_proc_wait(pc->proc, NULL, NULL, APR_NOWAIT)
== APR_CHILD_NOTDONE)
need_timeout = 1; /* subprocess is still active */
else
pc->kill_how = APR_KILL_NEVER; /* subprocess has exited */
}
}
if (need_timeout) {
if (timeout_interval >= TIMEOUT_USECS) {
break;
}
apr_sleep(timeout_interval);
timeout_interval *= 2;
}
} while (need_timeout);
}
/* OK, the scripts we just timed out for have had a chance to clean up
* --- now, just get rid of them, and also clean up the system accounting
* goop...
*/
for (pc = procs; pc; pc = pc->next) {
if (pc->kill_how == APR_KILL_AFTER_TIMEOUT)
apr_proc_kill(pc->proc, SIGKILL);
}
/* Now wait for all the signaled processes to die */
for (pc = procs; pc; pc = pc->next) {
if (pc->kill_how != APR_KILL_NEVER)
(void)apr_proc_wait(pc->proc, NULL, NULL, APR_WAIT);
}
}
/*
* Pool creation/destruction stubs, for people who are running
* mixed release/debug enviroments.
*/
#if !APR_POOL_DEBUG
APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *pool, apr_size_t size,
const char *file_line)
{
return apr_palloc(pool, size);
}
APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *pool, apr_size_t size,
const char *file_line)
{
return apr_pcalloc(pool, size);
}
APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *pool,
const char *file_line)
{
apr_pool_clear(pool);
}
APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *pool,
const char *file_line)
{
apr_pool_destroy(pool);
}
APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool,
apr_pool_t *parent,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator,
const char *file_line)
{
return apr_pool_create_ex(newpool, parent, abort_fn, allocator);
}
APR_DECLARE(apr_status_t) apr_pool_create_core_ex_debug(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator,
const char *file_line)
{
return apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator);
}
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex_debug(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator,
const char *file_line)
{
return apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator);
}
#else /* APR_POOL_DEBUG */
#undef apr_palloc
APR_DECLARE(void *) apr_palloc(apr_pool_t *pool, apr_size_t size);
APR_DECLARE(void *) apr_palloc(apr_pool_t *pool, apr_size_t size)
{
return apr_palloc_debug(pool, size, "undefined");
}
#undef apr_pcalloc
APR_DECLARE(void *) apr_pcalloc(apr_pool_t *pool, apr_size_t size);
APR_DECLARE(void *) apr_pcalloc(apr_pool_t *pool, apr_size_t size)
{
return apr_pcalloc_debug(pool, size, "undefined");
}
#undef apr_pool_clear
APR_DECLARE(void) apr_pool_clear(apr_pool_t *pool);
APR_DECLARE(void) apr_pool_clear(apr_pool_t *pool)
{
apr_pool_clear_debug(pool, "undefined");
}
#undef apr_pool_destroy
APR_DECLARE(void) apr_pool_destroy(apr_pool_t *pool);
APR_DECLARE(void) apr_pool_destroy(apr_pool_t *pool)
{
apr_pool_destroy_debug(pool, "undefined");
}
#undef apr_pool_create_ex
APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
apr_pool_t *parent,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator);
APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
apr_pool_t *parent,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator)
{
return apr_pool_create_ex_debug(newpool, parent,
abort_fn, allocator,
"undefined");
}
#undef apr_pool_create_core_ex
APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator);
APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator)
{
return apr_pool_create_unmanaged_ex_debug(newpool, abort_fn,
allocator, "undefined");
}
#undef apr_pool_create_unmanaged_ex
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator);
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator)
{
return apr_pool_create_unmanaged_ex_debug(newpool, abort_fn,
allocator, "undefined");
}
#endif /* APR_POOL_DEBUG */