freebsd-dev/stand/fdt/fdt_loader_cmd.c
Kyle Evans cc03366097 stand/fdt: Scale blob size better as overlays apply
Currently, our overlay blob will grow to include the size of the complete
overlay blob we're applying. This doesn't scale very well with a lot of
overlays- they tend to include a lot of overhead, and they will generally
only add a fraction of their total size to the blob they're being applied
to.

To combat this, pack the blob as we apply new overlays and keep track of how
many overlays we've applied. Only ubldr has any fixups to be applied after
overlays, so we only need to re-pad the blob in ubldr. Presumably the
allocation won't fail since we just did a lot worse in trying to apply
overlays and succeeded.

I have no intention of removing the padding in make_dtb.sh. There might be
an argument to be had over whether it should be configurable, since ubldr
*is* the only loader that actually has fixups to be applied and we can do
this at runtime, but I'm not too concerned about this.

This diff has been sitting in Phabricator for a year and a half, but I've
decided to flush it as it does make sure that we're scaling the blob
appropriately and leave room at the end for fixups in case of some freak
circumstance where applying overlays leaves us with a blob of insufficient
size.

Reviewed by:	gonzo (a long time ago)
MFC after:	1 week
Differential Revision:	https://reviews.freebsd.org/D14133
2020-01-09 04:34:42 +00:00

1956 lines
42 KiB
C

/*-
* Copyright (c) 2009-2010 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Semihalf under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stand.h>
#include <libfdt.h>
#include <fdt.h>
#include <sys/param.h>
#include <sys/linker.h>
#include <machine/elf.h>
#include "bootstrap.h"
#include "fdt_platform.h"
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
#define FDT_CWD_LEN 256
#define FDT_MAX_DEPTH 12
#define FDT_PROP_SEP " = "
#define COPYOUT(s,d,l) archsw.arch_copyout(s, d, l)
#define COPYIN(s,d,l) archsw.arch_copyin(s, d, l)
#define FDT_STATIC_DTB_SYMBOL "fdt_static_dtb"
#define CMD_REQUIRES_BLOB 0x01
/* Location of FDT yet to be loaded. */
/* This may be in read-only memory, so can't be manipulated directly. */
static struct fdt_header *fdt_to_load = NULL;
/* Location of FDT on heap. */
/* This is the copy we actually manipulate. */
static struct fdt_header *fdtp = NULL;
/* Size of FDT blob */
static size_t fdtp_size = 0;
/* Have we loaded all the needed overlays */
static int fdt_overlays_applied = 0;
static int fdt_load_dtb(vm_offset_t va);
static void fdt_print_overlay_load_error(int err, const char *filename);
static int fdt_check_overlay_compatible(void *base_fdt, void *overlay_fdt);
static int fdt_cmd_nyi(int argc, char *argv[]);
static int fdt_load_dtb_overlays_string(const char * filenames);
static int fdt_cmd_addr(int argc, char *argv[]);
static int fdt_cmd_mkprop(int argc, char *argv[]);
static int fdt_cmd_cd(int argc, char *argv[]);
static int fdt_cmd_hdr(int argc, char *argv[]);
static int fdt_cmd_ls(int argc, char *argv[]);
static int fdt_cmd_prop(int argc, char *argv[]);
static int fdt_cmd_pwd(int argc, char *argv[]);
static int fdt_cmd_rm(int argc, char *argv[]);
static int fdt_cmd_mknode(int argc, char *argv[]);
static int fdt_cmd_mres(int argc, char *argv[]);
typedef int cmdf_t(int, char *[]);
struct cmdtab {
const char *name;
cmdf_t *handler;
int flags;
};
static const struct cmdtab commands[] = {
{ "addr", &fdt_cmd_addr, 0 },
{ "alias", &fdt_cmd_nyi, 0 },
{ "cd", &fdt_cmd_cd, CMD_REQUIRES_BLOB },
{ "header", &fdt_cmd_hdr, CMD_REQUIRES_BLOB },
{ "ls", &fdt_cmd_ls, CMD_REQUIRES_BLOB },
{ "mknode", &fdt_cmd_mknode, CMD_REQUIRES_BLOB },
{ "mkprop", &fdt_cmd_mkprop, CMD_REQUIRES_BLOB },
{ "mres", &fdt_cmd_mres, CMD_REQUIRES_BLOB },
{ "prop", &fdt_cmd_prop, CMD_REQUIRES_BLOB },
{ "pwd", &fdt_cmd_pwd, CMD_REQUIRES_BLOB },
{ "rm", &fdt_cmd_rm, CMD_REQUIRES_BLOB },
{ NULL, NULL }
};
static char cwd[FDT_CWD_LEN] = "/";
static vm_offset_t
fdt_find_static_dtb()
{
Elf_Ehdr *ehdr;
Elf_Shdr *shdr;
Elf_Sym sym;
vm_offset_t strtab, symtab, fdt_start;
uint64_t offs;
struct preloaded_file *kfp;
struct file_metadata *md;
char *strp;
int i, sym_count;
debugf("fdt_find_static_dtb()\n");
sym_count = symtab = strtab = 0;
strp = NULL;
offs = __elfN(relocation_offset);
kfp = file_findfile(NULL, NULL);
if (kfp == NULL)
return (0);
/* Locate the dynamic symbols and strtab. */
md = file_findmetadata(kfp, MODINFOMD_ELFHDR);
if (md == NULL)
return (0);
ehdr = (Elf_Ehdr *)md->md_data;
md = file_findmetadata(kfp, MODINFOMD_SHDR);
if (md == NULL)
return (0);
shdr = (Elf_Shdr *)md->md_data;
for (i = 0; i < ehdr->e_shnum; ++i) {
if (shdr[i].sh_type == SHT_DYNSYM && symtab == 0) {
symtab = shdr[i].sh_addr + offs;
sym_count = shdr[i].sh_size / sizeof(Elf_Sym);
} else if (shdr[i].sh_type == SHT_STRTAB && strtab == 0) {
strtab = shdr[i].sh_addr + offs;
}
}
/*
* The most efficient way to find a symbol would be to calculate a
* hash, find proper bucket and chain, and thus find a symbol.
* However, that would involve code duplication (e.g. for hash
* function). So we're using simpler and a bit slower way: we're
* iterating through symbols, searching for the one which name is
* 'equal' to 'fdt_static_dtb'. To speed up the process a little bit,
* we are eliminating symbols type of which is not STT_NOTYPE, or(and)
* those which binding attribute is not STB_GLOBAL.
*/
fdt_start = 0;
while (sym_count > 0 && fdt_start == 0) {
COPYOUT(symtab, &sym, sizeof(sym));
symtab += sizeof(sym);
--sym_count;
if (ELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
ELF_ST_TYPE(sym.st_info) != STT_NOTYPE)
continue;
strp = strdupout(strtab + sym.st_name);
if (strcmp(strp, FDT_STATIC_DTB_SYMBOL) == 0)
fdt_start = (vm_offset_t)sym.st_value + offs;
free(strp);
}
return (fdt_start);
}
static int
fdt_load_dtb(vm_offset_t va)
{
struct fdt_header header;
int err;
debugf("fdt_load_dtb(0x%08jx)\n", (uintmax_t)va);
COPYOUT(va, &header, sizeof(header));
err = fdt_check_header(&header);
if (err < 0) {
if (err == -FDT_ERR_BADVERSION) {
snprintf(command_errbuf, sizeof(command_errbuf),
"incompatible blob version: %d, should be: %d",
fdt_version(fdtp), FDT_LAST_SUPPORTED_VERSION);
} else {
snprintf(command_errbuf, sizeof(command_errbuf),
"error validating blob: %s", fdt_strerror(err));
}
return (1);
}
/*
* Release previous blob
*/
if (fdtp)
free(fdtp);
fdtp_size = fdt_totalsize(&header);
fdtp = malloc(fdtp_size);
if (fdtp == NULL) {
command_errmsg = "can't allocate memory for device tree copy";
return (1);
}
COPYOUT(va, fdtp, fdtp_size);
debugf("DTB blob found at 0x%jx, size: 0x%jx\n", (uintmax_t)va, (uintmax_t)fdtp_size);
return (0);
}
int
fdt_load_dtb_addr(struct fdt_header *header)
{
int err;
debugf("fdt_load_dtb_addr(%p)\n", header);
fdtp_size = fdt_totalsize(header);
err = fdt_check_header(header);
if (err < 0) {
snprintf(command_errbuf, sizeof(command_errbuf),
"error validating blob: %s", fdt_strerror(err));
return (err);
}
free(fdtp);
if ((fdtp = malloc(fdtp_size)) == NULL) {
command_errmsg = "can't allocate memory for device tree copy";
return (1);
}
bcopy(header, fdtp, fdtp_size);
return (0);
}
int
fdt_load_dtb_file(const char * filename)
{
struct preloaded_file *bfp, *oldbfp;
int err;
debugf("fdt_load_dtb_file(%s)\n", filename);
oldbfp = file_findfile(NULL, "dtb");
/* Attempt to load and validate a new dtb from a file. */
if ((bfp = file_loadraw(filename, "dtb", 1)) == NULL) {
snprintf(command_errbuf, sizeof(command_errbuf),
"failed to load file '%s'", filename);
return (1);
}
if ((err = fdt_load_dtb(bfp->f_addr)) != 0) {
file_discard(bfp);
return (err);
}
/* A new dtb was validated, discard any previous file. */
if (oldbfp)
file_discard(oldbfp);
return (0);
}
static int
fdt_load_dtb_overlay(const char * filename)
{
struct preloaded_file *bfp;
struct fdt_header header;
int err;
debugf("fdt_load_dtb_overlay(%s)\n", filename);
/* Attempt to load and validate a new dtb from a file. FDT_ERR_NOTFOUND
* is normally a libfdt error code, but libfdt would actually return
* -FDT_ERR_NOTFOUND. We re-purpose the error code here to convey a
* similar meaning: the file itself was not found, which can still be
* considered an error dealing with FDT pieces.
*/
if ((bfp = file_loadraw(filename, "dtbo", 1)) == NULL)
return (FDT_ERR_NOTFOUND);
COPYOUT(bfp->f_addr, &header, sizeof(header));
err = fdt_check_header(&header);
if (err < 0) {
file_discard(bfp);
return (err);
}
return (0);
}
static void
fdt_print_overlay_load_error(int err, const char *filename)
{
switch (err) {
case FDT_ERR_NOTFOUND:
printf("%s: failed to load file\n", filename);
break;
case -FDT_ERR_BADVERSION:
printf("%s: incompatible blob version: %d, should be: %d\n",
filename, fdt_version(fdtp),
FDT_LAST_SUPPORTED_VERSION);
break;
default:
/* libfdt errs are negative */
if (err < 0)
printf("%s: error validating blob: %s\n",
filename, fdt_strerror(err));
else
printf("%s: unknown load error\n", filename);
break;
}
}
static int
fdt_load_dtb_overlays_string(const char * filenames)
{
char *names;
char *name, *name_ext;
char *comaptr;
int err, namesz;
debugf("fdt_load_dtb_overlays_string(%s)\n", filenames);
names = strdup(filenames);
if (names == NULL)
return (1);
name = names;
do {
comaptr = strchr(name, ',');
if (comaptr)
*comaptr = '\0';
err = fdt_load_dtb_overlay(name);
if (err == FDT_ERR_NOTFOUND) {
/* Allocate enough to append ".dtbo" */
namesz = strlen(name) + 6;
name_ext = malloc(namesz);
if (name_ext == NULL) {
fdt_print_overlay_load_error(err, name);
name = comaptr + 1;
continue;
}
snprintf(name_ext, namesz, "%s.dtbo", name);
err = fdt_load_dtb_overlay(name_ext);
free(name_ext);
}
/* Catch error with either initial load or fallback load */
if (err != 0)
fdt_print_overlay_load_error(err, name);
name = comaptr + 1;
} while(comaptr);
free(names);
return (0);
}
/*
* fdt_check_overlay_compatible - check that the overlay_fdt is compatible with
* base_fdt before we attempt to apply it. It will need to re-calculate offsets
* in the base every time, rather than trying to cache them earlier in the
* process, because the overlay application process can/will invalidate a lot of
* offsets.
*/
static int
fdt_check_overlay_compatible(void *base_fdt, void *overlay_fdt)
{
const char *compat;
int compat_len, ocompat_len;
int oroot_offset, root_offset;
int slidx, sllen;
oroot_offset = fdt_path_offset(overlay_fdt, "/");
if (oroot_offset < 0)
return (oroot_offset);
/*
* If /compatible in the overlay does not exist or if it is empty, then
* we're automatically compatible. We do this for the sake of rapid
* overlay development for overlays that aren't intended to be deployed.
* The user assumes the risk of using an overlay without /compatible.
*/
if (fdt_get_property(overlay_fdt, oroot_offset, "compatible",
&ocompat_len) == NULL || ocompat_len == 0)
return (0);
root_offset = fdt_path_offset(base_fdt, "/");
if (root_offset < 0)
return (root_offset);
/*
* However, an empty or missing /compatible on the base is an error,
* because allowing this offers no advantages.
*/
if (fdt_get_property(base_fdt, root_offset, "compatible",
&compat_len) == NULL)
return (compat_len);
else if(compat_len == 0)
return (1);
slidx = 0;
compat = fdt_stringlist_get(overlay_fdt, oroot_offset, "compatible",
slidx, &sllen);
while (compat != NULL) {
if (fdt_stringlist_search(base_fdt, root_offset, "compatible",
compat) >= 0)
return (0);
++slidx;
compat = fdt_stringlist_get(overlay_fdt, oroot_offset,
"compatible", slidx, &sllen);
};
/* We've exhausted the overlay's /compatible property... no match */
return (1);
}
/*
* Returns the number of overlays successfully applied
*/
int
fdt_apply_overlays()
{
struct preloaded_file *fp;
size_t max_overlay_size, next_fdtp_size;
size_t current_fdtp_size;
void *current_fdtp;
void *next_fdtp;
void *overlay;
int overlays_applied, rv;
if ((fdtp == NULL) || (fdtp_size == 0))
return (0);
if (fdt_overlays_applied)
return (0);
max_overlay_size = 0;
for (fp = file_findfile(NULL, "dtbo"); fp != NULL; fp = fp->f_next) {
if (max_overlay_size < fp->f_size)
max_overlay_size = fp->f_size;
}
/* Nothing to apply */
if (max_overlay_size == 0)
return (0);
overlay = malloc(max_overlay_size);
if (overlay == NULL) {
printf("failed to allocate memory for DTB blob with overlays\n");
return (0);
}
current_fdtp = fdtp;
current_fdtp_size = fdtp_size;
overlays_applied = 0;
for (fp = file_findfile(NULL, "dtbo"); fp != NULL; fp = fp->f_next) {
COPYOUT(fp->f_addr, overlay, fp->f_size);
/* Check compatible first to avoid unnecessary allocation */
rv = fdt_check_overlay_compatible(current_fdtp, overlay);
if (rv != 0) {
printf("DTB overlay '%s' not compatible\n", fp->f_name);
continue;
}
printf("applying DTB overlay '%s'\n", fp->f_name);
next_fdtp_size = current_fdtp_size + fp->f_size;
next_fdtp = malloc(next_fdtp_size);
if (next_fdtp == NULL) {
/*
* Output warning, then move on to applying other
* overlays in case this one is simply too large.
*/
printf("failed to allocate memory for overlay base\n");
continue;
}
rv = fdt_open_into(current_fdtp, next_fdtp, next_fdtp_size);
if (rv != 0) {
free(next_fdtp);
printf("failed to open base dtb into overlay base\n");
continue;
}
/* Both overlay and next_fdtp may be modified in place */
rv = fdt_overlay_apply(next_fdtp, overlay);
if (rv == 0) {
/* Rotate next -> current */
if (current_fdtp != fdtp)
free(current_fdtp);
current_fdtp = next_fdtp;
fdt_pack(current_fdtp);
current_fdtp_size = fdt_totalsize(current_fdtp);
overlays_applied++;
} else {
/*
* Assume here that the base we tried to apply on is
* either trashed or in an inconsistent state. Trying to
* load it might work, but it's better to discard it and
* play it safe. */
free(next_fdtp);
printf("failed to apply overlay: %s\n",
fdt_strerror(rv));
}
}
/* We could have failed to apply all overlays; then we do nothing */
if (current_fdtp != fdtp) {
free(fdtp);
fdtp = current_fdtp;
fdtp_size = current_fdtp_size;
}
free(overlay);
fdt_overlays_applied = 1;
return (overlays_applied);
}
int
fdt_pad_dtb(size_t padding)
{
void *padded_fdtp;
size_t padded_fdtp_size;
padded_fdtp_size = fdtp_size + padding;
padded_fdtp = malloc(padded_fdtp_size);
if (padded_fdtp == NULL)
return (1);
if (fdt_open_into(fdtp, padded_fdtp, padded_fdtp_size) != 0) {
free(padded_fdtp);
return (1);
}
fdtp = padded_fdtp;
fdtp_size = padded_fdtp_size;
return (0);
}
int
fdt_is_setup(void)
{
if (fdtp != NULL)
return (1);
return (0);
}
int
fdt_setup_fdtp()
{
struct preloaded_file *bfp;
vm_offset_t va;
debugf("fdt_setup_fdtp()\n");
/* If we already loaded a file, use it. */
if ((bfp = file_findfile(NULL, "dtb")) != NULL) {
if (fdt_load_dtb(bfp->f_addr) == 0) {
printf("Using DTB from loaded file '%s'.\n",
bfp->f_name);
fdt_platform_load_overlays();
return (0);
}
}
/* If we were given the address of a valid blob in memory, use it. */
if (fdt_to_load != NULL) {
if (fdt_load_dtb_addr(fdt_to_load) == 0) {
printf("Using DTB from memory address %p.\n",
fdt_to_load);
fdt_platform_load_overlays();
return (0);
}
}
if (fdt_platform_load_dtb() == 0) {
fdt_platform_load_overlays();
return (0);
}
/* If there is a dtb compiled into the kernel, use it. */
if ((va = fdt_find_static_dtb()) != 0) {
if (fdt_load_dtb(va) == 0) {
printf("Using DTB compiled into kernel.\n");
return (0);
}
}
command_errmsg = "No device tree blob found!\n";
return (1);
}
#define fdt_strtovect(str, cellbuf, lim, cellsize) _fdt_strtovect((str), \
(cellbuf), (lim), (cellsize), 0);
/* Force using base 16 */
#define fdt_strtovectx(str, cellbuf, lim, cellsize) _fdt_strtovect((str), \
(cellbuf), (lim), (cellsize), 16);
static int
_fdt_strtovect(const char *str, void *cellbuf, int lim, unsigned char cellsize,
uint8_t base)
{
const char *buf = str;
const char *end = str + strlen(str) - 2;
uint32_t *u32buf = NULL;
uint8_t *u8buf = NULL;
int cnt = 0;
if (cellsize == sizeof(uint32_t))
u32buf = (uint32_t *)cellbuf;
else
u8buf = (uint8_t *)cellbuf;
if (lim == 0)
return (0);
while (buf < end) {
/* Skip white whitespace(s)/separators */
while (!isxdigit(*buf) && buf < end)
buf++;
if (u32buf != NULL)
u32buf[cnt] =
cpu_to_fdt32((uint32_t)strtol(buf, NULL, base));
else
u8buf[cnt] = (uint8_t)strtol(buf, NULL, base);
if (cnt + 1 <= lim - 1)
cnt++;
else
break;
buf++;
/* Find another number */
while ((isxdigit(*buf) || *buf == 'x') && buf < end)
buf++;
}
return (cnt);
}
void
fdt_fixup_ethernet(const char *str, char *ethstr, int len)
{
uint8_t tmp_addr[6];
/* Convert macaddr string into a vector of uints */
fdt_strtovectx(str, &tmp_addr, 6, sizeof(uint8_t));
/* Set actual property to a value from vect */
fdt_setprop(fdtp, fdt_path_offset(fdtp, ethstr),
"local-mac-address", &tmp_addr, 6 * sizeof(uint8_t));
}
void
fdt_fixup_cpubusfreqs(unsigned long cpufreq, unsigned long busfreq)
{
int lo, o = 0, o2, maxo = 0, depth;
const uint32_t zero = 0;
/* We want to modify every subnode of /cpus */
o = fdt_path_offset(fdtp, "/cpus");
if (o < 0)
return;
/* maxo should contain offset of node next to /cpus */
depth = 0;
maxo = o;
while (depth != -1)
maxo = fdt_next_node(fdtp, maxo, &depth);
/* Find CPU frequency properties */
o = fdt_node_offset_by_prop_value(fdtp, o, "clock-frequency",
&zero, sizeof(uint32_t));
o2 = fdt_node_offset_by_prop_value(fdtp, o, "bus-frequency", &zero,
sizeof(uint32_t));
lo = MIN(o, o2);
while (o != -FDT_ERR_NOTFOUND && o2 != -FDT_ERR_NOTFOUND) {
o = fdt_node_offset_by_prop_value(fdtp, lo,
"clock-frequency", &zero, sizeof(uint32_t));
o2 = fdt_node_offset_by_prop_value(fdtp, lo, "bus-frequency",
&zero, sizeof(uint32_t));
/* We're only interested in /cpus subnode(s) */
if (lo > maxo)
break;
fdt_setprop_inplace_cell(fdtp, lo, "clock-frequency",
(uint32_t)cpufreq);
fdt_setprop_inplace_cell(fdtp, lo, "bus-frequency",
(uint32_t)busfreq);
lo = MIN(o, o2);
}
}
#ifdef notyet
static int
fdt_reg_valid(uint32_t *reg, int len, int addr_cells, int size_cells)
{
int cells_in_tuple, i, tuples, tuple_size;
uint32_t cur_start, cur_size;
cells_in_tuple = (addr_cells + size_cells);
tuple_size = cells_in_tuple * sizeof(uint32_t);
tuples = len / tuple_size;
if (tuples == 0)
return (EINVAL);
for (i = 0; i < tuples; i++) {
if (addr_cells == 2)
cur_start = fdt64_to_cpu(reg[i * cells_in_tuple]);
else
cur_start = fdt32_to_cpu(reg[i * cells_in_tuple]);
if (size_cells == 2)
cur_size = fdt64_to_cpu(reg[i * cells_in_tuple + 2]);
else
cur_size = fdt32_to_cpu(reg[i * cells_in_tuple + 1]);
if (cur_size == 0)
return (EINVAL);
debugf(" reg#%d (start: 0x%0x size: 0x%0x) valid!\n",
i, cur_start, cur_size);
}
return (0);
}
#endif
void
fdt_fixup_memory(struct fdt_mem_region *region, size_t num)
{
struct fdt_mem_region *curmr;
uint32_t addr_cells, size_cells;
uint32_t *addr_cellsp, *size_cellsp;
int err, i, len, memory, root;
size_t realmrno;
uint8_t *buf, *sb;
uint64_t rstart, rsize;
int reserved;
root = fdt_path_offset(fdtp, "/");
if (root < 0) {
sprintf(command_errbuf, "Could not find root node !");
return;
}
memory = fdt_path_offset(fdtp, "/memory");
if (memory <= 0) {
/* Create proper '/memory' node. */
memory = fdt_add_subnode(fdtp, root, "memory");
if (memory <= 0) {
snprintf(command_errbuf, sizeof(command_errbuf),
"Could not fixup '/memory' "
"node, error code : %d!\n", memory);
return;
}
err = fdt_setprop(fdtp, memory, "device_type", "memory",
sizeof("memory"));
if (err < 0)
return;
}
addr_cellsp = (uint32_t *)fdt_getprop(fdtp, root, "#address-cells",
NULL);
size_cellsp = (uint32_t *)fdt_getprop(fdtp, root, "#size-cells", NULL);
if (addr_cellsp == NULL || size_cellsp == NULL) {
snprintf(command_errbuf, sizeof(command_errbuf),
"Could not fixup '/memory' node : "
"%s %s property not found in root node!\n",
(!addr_cellsp) ? "#address-cells" : "",
(!size_cellsp) ? "#size-cells" : "");
return;
}
addr_cells = fdt32_to_cpu(*addr_cellsp);
size_cells = fdt32_to_cpu(*size_cellsp);
/*
* Convert memreserve data to memreserve property
* Check if property already exists
*/
reserved = fdt_num_mem_rsv(fdtp);
if (reserved &&
(fdt_getprop(fdtp, root, "memreserve", NULL) == NULL)) {
len = (addr_cells + size_cells) * reserved * sizeof(uint32_t);
sb = buf = (uint8_t *)malloc(len);
if (!buf)
return;
bzero(buf, len);
for (i = 0; i < reserved; i++) {
if (fdt_get_mem_rsv(fdtp, i, &rstart, &rsize))
break;
if (rsize) {
/* Ensure endianness, and put cells into a buffer */
if (addr_cells == 2)
*(uint64_t *)buf =
cpu_to_fdt64(rstart);
else
*(uint32_t *)buf =
cpu_to_fdt32(rstart);
buf += sizeof(uint32_t) * addr_cells;
if (size_cells == 2)
*(uint64_t *)buf =
cpu_to_fdt64(rsize);
else
*(uint32_t *)buf =
cpu_to_fdt32(rsize);
buf += sizeof(uint32_t) * size_cells;
}
}
/* Set property */
if ((err = fdt_setprop(fdtp, root, "memreserve", sb, len)) < 0)
printf("Could not fixup 'memreserve' property.\n");
free(sb);
}
/* Count valid memory regions entries in sysinfo. */
realmrno = num;
for (i = 0; i < num; i++)
if (region[i].start == 0 && region[i].size == 0)
realmrno--;
if (realmrno == 0) {
sprintf(command_errbuf, "Could not fixup '/memory' node : "
"sysinfo doesn't contain valid memory regions info!\n");
return;
}
len = (addr_cells + size_cells) * realmrno * sizeof(uint32_t);
sb = buf = (uint8_t *)malloc(len);
if (!buf)
return;
bzero(buf, len);
for (i = 0; i < num; i++) {
curmr = &region[i];
if (curmr->size != 0) {
/* Ensure endianness, and put cells into a buffer */
if (addr_cells == 2)
*(uint64_t *)buf =
cpu_to_fdt64(curmr->start);
else
*(uint32_t *)buf =
cpu_to_fdt32(curmr->start);
buf += sizeof(uint32_t) * addr_cells;
if (size_cells == 2)
*(uint64_t *)buf =
cpu_to_fdt64(curmr->size);
else
*(uint32_t *)buf =
cpu_to_fdt32(curmr->size);
buf += sizeof(uint32_t) * size_cells;
}
}
/* Set property */
if ((err = fdt_setprop(fdtp, memory, "reg", sb, len)) < 0)
sprintf(command_errbuf, "Could not fixup '/memory' node.\n");
free(sb);
}
void
fdt_fixup_stdout(const char *str)
{
char *ptr;
int len, no, sero;
const struct fdt_property *prop;
char *tmp[10];
ptr = (char *)str + strlen(str) - 1;
while (ptr > str && isdigit(*(str - 1)))
str--;
if (ptr == str)
return;
no = fdt_path_offset(fdtp, "/chosen");
if (no < 0)
return;
prop = fdt_get_property(fdtp, no, "stdout", &len);
/* If /chosen/stdout does not extist, create it */
if (prop == NULL || (prop != NULL && len == 0)) {
bzero(tmp, 10 * sizeof(char));
strcpy((char *)&tmp, "serial");
if (strlen(ptr) > 3)
/* Serial number too long */
return;
strncpy((char *)tmp + 6, ptr, 3);
sero = fdt_path_offset(fdtp, (const char *)tmp);
if (sero < 0)
/*
* If serial device we're trying to assign
* stdout to doesn't exist in DT -- return.
*/
return;
fdt_setprop(fdtp, no, "stdout", &tmp,
strlen((char *)&tmp) + 1);
fdt_setprop(fdtp, no, "stdin", &tmp,
strlen((char *)&tmp) + 1);
}
}
void
fdt_load_dtb_overlays(const char *extras)
{
const char *s;
/* Any extra overlays supplied by pre-loader environment */
if (extras != NULL && *extras != '\0') {
printf("Loading DTB overlays: '%s'\n", extras);
fdt_load_dtb_overlays_string(extras);
}
/* Any overlays supplied by loader environment */
s = getenv("fdt_overlays");
if (s != NULL && *s != '\0') {
printf("Loading DTB overlays: '%s'\n", s);
fdt_load_dtb_overlays_string(s);
}
}
/*
* Locate the blob, fix it up and return its location.
*/
static int
fdt_fixup(void)
{
int chosen;
debugf("fdt_fixup()\n");
if (fdtp == NULL && fdt_setup_fdtp() != 0)
return (0);
/* Create /chosen node (if not exists) */
if ((chosen = fdt_subnode_offset(fdtp, 0, "chosen")) ==
-FDT_ERR_NOTFOUND)
chosen = fdt_add_subnode(fdtp, 0, "chosen");
/* Value assigned to fixup-applied does not matter. */
if (fdt_getprop(fdtp, chosen, "fixup-applied", NULL))
return (1);
fdt_platform_fixups();
/*
* Re-fetch the /chosen subnode; our fixups may apply overlays or add
* nodes/properties that invalidate the offset we grabbed or created
* above, so we can no longer trust it.
*/
chosen = fdt_subnode_offset(fdtp, 0, "chosen");
fdt_setprop(fdtp, chosen, "fixup-applied", NULL, 0);
return (1);
}
/*
* Copy DTB blob to specified location and return size
*/
int
fdt_copy(vm_offset_t va)
{
int err;
debugf("fdt_copy va 0x%08x\n", va);
if (fdtp == NULL) {
err = fdt_setup_fdtp();
if (err) {
printf("No valid device tree blob found!\n");
return (0);
}
}
if (fdt_fixup() == 0)
return (0);
COPYIN(fdtp, va, fdtp_size);
return (fdtp_size);
}
int
command_fdt_internal(int argc, char *argv[])
{
cmdf_t *cmdh;
int flags;
int i, err;
if (argc < 2) {
command_errmsg = "usage is 'fdt <command> [<args>]";
return (CMD_ERROR);
}
/*
* Validate fdt <command>.
*/
i = 0;
cmdh = NULL;
while (!(commands[i].name == NULL)) {
if (strcmp(argv[1], commands[i].name) == 0) {
/* found it */
cmdh = commands[i].handler;
flags = commands[i].flags;
break;
}
i++;
}
if (cmdh == NULL) {
command_errmsg = "unknown command";
return (CMD_ERROR);
}
if (flags & CMD_REQUIRES_BLOB) {
/*
* Check if uboot env vars were parsed already. If not, do it now.
*/
if (fdt_fixup() == 0)
return (CMD_ERROR);
}
/*
* Call command handler.
*/
err = (*cmdh)(argc, argv);
return (err);
}
static int
fdt_cmd_addr(int argc, char *argv[])
{
struct preloaded_file *fp;
struct fdt_header *hdr;
const char *addr;
char *cp;
fdt_to_load = NULL;
if (argc > 2)
addr = argv[2];
else {
sprintf(command_errbuf, "no address specified");
return (CMD_ERROR);
}
hdr = (struct fdt_header *)strtoul(addr, &cp, 16);
if (cp == addr) {
snprintf(command_errbuf, sizeof(command_errbuf),
"Invalid address: %s", addr);
return (CMD_ERROR);
}
while ((fp = file_findfile(NULL, "dtb")) != NULL) {
file_discard(fp);
}
fdt_to_load = hdr;
return (CMD_OK);
}
static int
fdt_cmd_cd(int argc, char *argv[])
{
char *path;
char tmp[FDT_CWD_LEN];
int len, o;
path = (argc > 2) ? argv[2] : "/";
if (path[0] == '/') {
len = strlen(path);
if (len >= FDT_CWD_LEN)
goto fail;
} else {
/* Handle path specification relative to cwd */
len = strlen(cwd) + strlen(path) + 1;
if (len >= FDT_CWD_LEN)
goto fail;
strcpy(tmp, cwd);
strcat(tmp, "/");
strcat(tmp, path);
path = tmp;
}
o = fdt_path_offset(fdtp, path);
if (o < 0) {
snprintf(command_errbuf, sizeof(command_errbuf),
"could not find node: '%s'", path);
return (CMD_ERROR);
}
strcpy(cwd, path);
return (CMD_OK);
fail:
snprintf(command_errbuf, sizeof(command_errbuf),
"path too long: %d, max allowed: %d", len, FDT_CWD_LEN - 1);
return (CMD_ERROR);
}
static int
fdt_cmd_hdr(int argc __unused, char *argv[] __unused)
{
char line[80];
int ver;
if (fdtp == NULL) {
command_errmsg = "no device tree blob pointer?!";
return (CMD_ERROR);
}
ver = fdt_version(fdtp);
pager_open();
sprintf(line, "\nFlattened device tree header (%p):\n", fdtp);
if (pager_output(line))
goto out;
sprintf(line, " magic = 0x%08x\n", fdt_magic(fdtp));
if (pager_output(line))
goto out;
sprintf(line, " size = %d\n", fdt_totalsize(fdtp));
if (pager_output(line))
goto out;
sprintf(line, " off_dt_struct = 0x%08x\n",
fdt_off_dt_struct(fdtp));
if (pager_output(line))
goto out;
sprintf(line, " off_dt_strings = 0x%08x\n",
fdt_off_dt_strings(fdtp));
if (pager_output(line))
goto out;
sprintf(line, " off_mem_rsvmap = 0x%08x\n",
fdt_off_mem_rsvmap(fdtp));
if (pager_output(line))
goto out;
sprintf(line, " version = %d\n", ver);
if (pager_output(line))
goto out;
sprintf(line, " last compatible version = %d\n",
fdt_last_comp_version(fdtp));
if (pager_output(line))
goto out;
if (ver >= 2) {
sprintf(line, " boot_cpuid = %d\n",
fdt_boot_cpuid_phys(fdtp));
if (pager_output(line))
goto out;
}
if (ver >= 3) {
sprintf(line, " size_dt_strings = %d\n",
fdt_size_dt_strings(fdtp));
if (pager_output(line))
goto out;
}
if (ver >= 17) {
sprintf(line, " size_dt_struct = %d\n",
fdt_size_dt_struct(fdtp));
if (pager_output(line))
goto out;
}
out:
pager_close();
return (CMD_OK);
}
static int
fdt_cmd_ls(int argc, char *argv[])
{
const char *prevname[FDT_MAX_DEPTH] = { NULL };
const char *name;
char *path;
int i, o, depth;
path = (argc > 2) ? argv[2] : NULL;
if (path == NULL)
path = cwd;
o = fdt_path_offset(fdtp, path);
if (o < 0) {
snprintf(command_errbuf, sizeof(command_errbuf),
"could not find node: '%s'", path);
return (CMD_ERROR);
}
for (depth = 0;
(o >= 0) && (depth >= 0);
o = fdt_next_node(fdtp, o, &depth)) {
name = fdt_get_name(fdtp, o, NULL);
if (depth > FDT_MAX_DEPTH) {
printf("max depth exceeded: %d\n", depth);
continue;
}
prevname[depth] = name;
/* Skip root (i = 1) when printing devices */
for (i = 1; i <= depth; i++) {
if (prevname[i] == NULL)
break;
if (strcmp(cwd, "/") == 0)
printf("/");
printf("%s", prevname[i]);
}
printf("\n");
}
return (CMD_OK);
}
static __inline int
isprint(int c)
{
return (c >= ' ' && c <= 0x7e);
}
static int
fdt_isprint(const void *data, int len, int *count)
{
const char *d;
char ch;
int yesno, i;
if (len == 0)
return (0);
d = (const char *)data;
if (d[len - 1] != '\0')
return (0);
*count = 0;
yesno = 1;
for (i = 0; i < len; i++) {
ch = *(d + i);
if (isprint(ch) || (ch == '\0' && i > 0)) {
/* Count strings */
if (ch == '\0')
(*count)++;
continue;
}
yesno = 0;
break;
}
return (yesno);
}
static int
fdt_data_str(const void *data, int len, int count, char **buf)
{
char *b, *tmp;
const char *d;
int buf_len, i, l;
/*
* Calculate the length for the string and allocate memory.
*
* Note that 'len' already includes at least one terminator.
*/
buf_len = len;
if (count > 1) {
/*
* Each token had already a terminator buried in 'len', but we
* only need one eventually, don't count space for these.
*/
buf_len -= count - 1;
/* Each consecutive token requires a ", " separator. */
buf_len += count * 2;
}
/* Add some space for surrounding double quotes. */
buf_len += count * 2;
/* Note that string being put in 'tmp' may be as big as 'buf_len'. */
b = (char *)malloc(buf_len);
tmp = (char *)malloc(buf_len);
if (b == NULL)
goto error;
if (tmp == NULL) {
free(b);
goto error;
}
b[0] = '\0';
/*
* Now that we have space, format the string.
*/
i = 0;
do {
d = (const char *)data + i;
l = strlen(d) + 1;
sprintf(tmp, "\"%s\"%s", d,
(i + l) < len ? ", " : "");
strcat(b, tmp);
i += l;
} while (i < len);
*buf = b;
free(tmp);
return (0);
error:
return (1);
}
static int
fdt_data_cell(const void *data, int len, char **buf)
{
char *b, *tmp;
const uint32_t *c;
int count, i, l;
/* Number of cells */
count = len / 4;
/*
* Calculate the length for the string and allocate memory.
*/
/* Each byte translates to 2 output characters */
l = len * 2;
if (count > 1) {
/* Each consecutive cell requires a " " separator. */
l += (count - 1) * 1;
}
/* Each cell will have a "0x" prefix */
l += count * 2;
/* Space for surrounding <> and terminator */
l += 3;
b = (char *)malloc(l);
tmp = (char *)malloc(l);
if (b == NULL)
goto error;
if (tmp == NULL) {
free(b);
goto error;
}
b[0] = '\0';
strcat(b, "<");
for (i = 0; i < len; i += 4) {
c = (const uint32_t *)((const uint8_t *)data + i);
sprintf(tmp, "0x%08x%s", fdt32_to_cpu(*c),
i < (len - 4) ? " " : "");
strcat(b, tmp);
}
strcat(b, ">");
*buf = b;
free(tmp);
return (0);
error:
return (1);
}
static int
fdt_data_bytes(const void *data, int len, char **buf)
{
char *b, *tmp;
const char *d;
int i, l;
/*
* Calculate the length for the string and allocate memory.
*/
/* Each byte translates to 2 output characters */
l = len * 2;
if (len > 1)
/* Each consecutive byte requires a " " separator. */
l += (len - 1) * 1;
/* Each byte will have a "0x" prefix */
l += len * 2;
/* Space for surrounding [] and terminator. */
l += 3;
b = (char *)malloc(l);
tmp = (char *)malloc(l);
if (b == NULL)
goto error;
if (tmp == NULL) {
free(b);
goto error;
}
b[0] = '\0';
strcat(b, "[");
for (i = 0, d = data; i < len; i++) {
sprintf(tmp, "0x%02x%s", d[i], i < len - 1 ? " " : "");
strcat(b, tmp);
}
strcat(b, "]");
*buf = b;
free(tmp);
return (0);
error:
return (1);
}
static int
fdt_data_fmt(const void *data, int len, char **buf)
{
int count;
if (len == 0) {
*buf = NULL;
return (1);
}
if (fdt_isprint(data, len, &count))
return (fdt_data_str(data, len, count, buf));
else if ((len % 4) == 0)
return (fdt_data_cell(data, len, buf));
else
return (fdt_data_bytes(data, len, buf));
}
static int
fdt_prop(int offset)
{
char *line, *buf;
const struct fdt_property *prop;
const char *name;
const void *data;
int len, rv;
line = NULL;
prop = fdt_offset_ptr(fdtp, offset, sizeof(*prop));
if (prop == NULL)
return (1);
name = fdt_string(fdtp, fdt32_to_cpu(prop->nameoff));
len = fdt32_to_cpu(prop->len);
rv = 0;
buf = NULL;
if (len == 0) {
/* Property without value */
line = (char *)malloc(strlen(name) + 2);
if (line == NULL) {
rv = 2;
goto out2;
}
sprintf(line, "%s\n", name);
goto out1;
}
/*
* Process property with value
*/
data = prop->data;
if (fdt_data_fmt(data, len, &buf) != 0) {
rv = 3;
goto out2;
}
line = (char *)malloc(strlen(name) + strlen(FDT_PROP_SEP) +
strlen(buf) + 2);
if (line == NULL) {
sprintf(command_errbuf, "could not allocate space for string");
rv = 4;
goto out2;
}
sprintf(line, "%s" FDT_PROP_SEP "%s\n", name, buf);
out1:
pager_open();
pager_output(line);
pager_close();
out2:
if (buf)
free(buf);
if (line)
free(line);
return (rv);
}
static int
fdt_modprop(int nodeoff, char *propname, void *value, char mode)
{
uint32_t cells[100];
const char *buf;
int len, rv;
const struct fdt_property *p;
p = fdt_get_property(fdtp, nodeoff, propname, NULL);
if (p != NULL) {
if (mode == 1) {
/* Adding inexistant value in mode 1 is forbidden */
sprintf(command_errbuf, "property already exists!");
return (CMD_ERROR);
}
} else if (mode == 0) {
sprintf(command_errbuf, "property does not exist!");
return (CMD_ERROR);
}
rv = 0;
buf = value;
switch (*buf) {
case '&':
/* phandles */
break;
case '<':
/* Data cells */
len = fdt_strtovect(buf, (void *)&cells, 100,
sizeof(uint32_t));
rv = fdt_setprop(fdtp, nodeoff, propname, &cells,
len * sizeof(uint32_t));
break;
case '[':
/* Data bytes */
len = fdt_strtovect(buf, (void *)&cells, 100,
sizeof(uint8_t));
rv = fdt_setprop(fdtp, nodeoff, propname, &cells,
len * sizeof(uint8_t));
break;
case '"':
default:
/* Default -- string */
rv = fdt_setprop_string(fdtp, nodeoff, propname, value);
break;
}
if (rv != 0) {
if (rv == -FDT_ERR_NOSPACE)
sprintf(command_errbuf,
"Device tree blob is too small!\n");
else
sprintf(command_errbuf,
"Could not add/modify property!\n");
}
return (rv);
}
/* Merge strings from argv into a single string */
static int
fdt_merge_strings(int argc, char *argv[], int start, char **buffer)
{
char *buf;
int i, idx, sz;
*buffer = NULL;
sz = 0;
for (i = start; i < argc; i++)
sz += strlen(argv[i]);
/* Additional bytes for whitespaces between args */
sz += argc - start;
buf = (char *)malloc(sizeof(char) * sz);
if (buf == NULL) {
sprintf(command_errbuf, "could not allocate space "
"for string");
return (1);
}
bzero(buf, sizeof(char) * sz);
idx = 0;
for (i = start, idx = 0; i < argc; i++) {
strcpy(buf + idx, argv[i]);
idx += strlen(argv[i]);
buf[idx] = ' ';
idx++;
}
buf[sz - 1] = '\0';
*buffer = buf;
return (0);
}
/* Extract offset and name of node/property from a given path */
static int
fdt_extract_nameloc(char **pathp, char **namep, int *nodeoff)
{
int o;
char *path = *pathp, *name = NULL, *subpath = NULL;
subpath = strrchr(path, '/');
if (subpath == NULL) {
o = fdt_path_offset(fdtp, cwd);
name = path;
path = (char *)&cwd;
} else {
*subpath = '\0';
if (strlen(path) == 0)
path = cwd;
name = subpath + 1;
o = fdt_path_offset(fdtp, path);
}
if (strlen(name) == 0) {
sprintf(command_errbuf, "name not specified");
return (1);
}
if (o < 0) {
snprintf(command_errbuf, sizeof(command_errbuf),
"could not find node: '%s'", path);
return (1);
}
*namep = name;
*nodeoff = o;
*pathp = path;
return (0);
}
static int
fdt_cmd_prop(int argc, char *argv[])
{
char *path, *propname, *value;
int o, next, depth, rv;
uint32_t tag;
path = (argc > 2) ? argv[2] : NULL;
value = NULL;
if (argc > 3) {
/* Merge property value strings into one */
if (fdt_merge_strings(argc, argv, 3, &value) != 0)
return (CMD_ERROR);
} else
value = NULL;
if (path == NULL)
path = cwd;
rv = CMD_OK;
if (value) {
/* If value is specified -- try to modify prop. */
if (fdt_extract_nameloc(&path, &propname, &o) != 0)
return (CMD_ERROR);
rv = fdt_modprop(o, propname, value, 0);
if (rv)
return (CMD_ERROR);
return (CMD_OK);
}
/* User wants to display properties */
o = fdt_path_offset(fdtp, path);
if (o < 0) {
snprintf(command_errbuf, sizeof(command_errbuf),
"could not find node: '%s'", path);
rv = CMD_ERROR;
goto out;
}
depth = 0;
while (depth >= 0) {
tag = fdt_next_tag(fdtp, o, &next);
switch (tag) {
case FDT_NOP:
break;
case FDT_PROP:
if (depth > 1)
/* Don't process properties of nested nodes */
break;
if (fdt_prop(o) != 0) {
sprintf(command_errbuf, "could not process "
"property");
rv = CMD_ERROR;
goto out;
}
break;
case FDT_BEGIN_NODE:
depth++;
if (depth > FDT_MAX_DEPTH) {
printf("warning: nesting too deep: %d\n",
depth);
goto out;
}
break;
case FDT_END_NODE:
depth--;
if (depth == 0)
/*
* This is the end of our starting node, force
* the loop finish.
*/
depth--;
break;
}
o = next;
}
out:
return (rv);
}
static int
fdt_cmd_mkprop(int argc, char *argv[])
{
int o;
char *path, *propname, *value;
path = (argc > 2) ? argv[2] : NULL;
value = NULL;
if (argc > 3) {
/* Merge property value strings into one */
if (fdt_merge_strings(argc, argv, 3, &value) != 0)
return (CMD_ERROR);
} else
value = NULL;
if (fdt_extract_nameloc(&path, &propname, &o) != 0)
return (CMD_ERROR);
if (fdt_modprop(o, propname, value, 1))
return (CMD_ERROR);
return (CMD_OK);
}
static int
fdt_cmd_rm(int argc, char *argv[])
{
int o, rv;
char *path = NULL, *propname;
if (argc > 2)
path = argv[2];
else {
sprintf(command_errbuf, "no node/property name specified");
return (CMD_ERROR);
}
o = fdt_path_offset(fdtp, path);
if (o < 0) {
/* If node not found -- try to find & delete property */
if (fdt_extract_nameloc(&path, &propname, &o) != 0)
return (CMD_ERROR);
if ((rv = fdt_delprop(fdtp, o, propname)) != 0) {
snprintf(command_errbuf, sizeof(command_errbuf),
"could not delete %s\n",
(rv == -FDT_ERR_NOTFOUND) ?
"(property/node does not exist)" : "");
return (CMD_ERROR);
} else
return (CMD_OK);
}
/* If node exists -- remove node */
rv = fdt_del_node(fdtp, o);
if (rv) {
sprintf(command_errbuf, "could not delete node");
return (CMD_ERROR);
}
return (CMD_OK);
}
static int
fdt_cmd_mknode(int argc, char *argv[])
{
int o, rv;
char *path = NULL, *nodename = NULL;
if (argc > 2)
path = argv[2];
else {
sprintf(command_errbuf, "no node name specified");
return (CMD_ERROR);
}
if (fdt_extract_nameloc(&path, &nodename, &o) != 0)
return (CMD_ERROR);
rv = fdt_add_subnode(fdtp, o, nodename);
if (rv < 0) {
if (rv == -FDT_ERR_NOSPACE)
sprintf(command_errbuf,
"Device tree blob is too small!\n");
else
sprintf(command_errbuf,
"Could not add node!\n");
return (CMD_ERROR);
}
return (CMD_OK);
}
static int
fdt_cmd_pwd(int argc, char *argv[])
{
char line[FDT_CWD_LEN];
pager_open();
sprintf(line, "%s\n", cwd);
pager_output(line);
pager_close();
return (CMD_OK);
}
static int
fdt_cmd_mres(int argc, char *argv[])
{
uint64_t start, size;
int i, total;
char line[80];
pager_open();
total = fdt_num_mem_rsv(fdtp);
if (total > 0) {
if (pager_output("Reserved memory regions:\n"))
goto out;
for (i = 0; i < total; i++) {
fdt_get_mem_rsv(fdtp, i, &start, &size);
sprintf(line, "reg#%d: (start: 0x%jx, size: 0x%jx)\n",
i, start, size);
if (pager_output(line))
goto out;
}
} else
pager_output("No reserved memory regions\n");
out:
pager_close();
return (CMD_OK);
}
static int
fdt_cmd_nyi(int argc, char *argv[])
{
printf("command not yet implemented\n");
return (CMD_ERROR);
}
const char *
fdt_devmatch_next(int *tag, int *compatlen)
{
const struct fdt_property *p;
const struct fdt_property *status;
int o, len = -1;
static int depth = 0;
if (fdtp == NULL) {
fdt_setup_fdtp();
fdt_apply_overlays();
}
if (*tag != 0) {
o = *tag;
/* We are at the end of the DTB */
if (o < 0)
return (NULL);
} else {
o = fdt_path_offset(fdtp, "/");
if (o < 0) {
printf("Can't find dtb\n");
return (NULL);
}
depth = 0;
}
/* Find the next node with a compatible property */
while (1) {
p = NULL;
if (o >= 0 && depth >= 0) {
/* skip disabled nodes */
status = fdt_get_property(fdtp, o, "status", &len);
if (len > 0) {
if (strcmp(status->data, "disabled") == 0) {
o = fdt_next_node(fdtp, o, &depth);
if (o < 0) /* End of tree */
return (NULL);
continue;
}
}
p = fdt_get_property(fdtp, o, "compatible", &len);
}
if (p)
break;
o = fdt_next_node(fdtp, o, &depth);
if (o < 0) /* End of tree */
return (NULL);
}
/* Prepare next node for next call */
o = fdt_next_node(fdtp, o, &depth);
*tag = o;
if (len >= 0) {
*compatlen = len;
return (p->data);
}
return (NULL);
}