freebsd-dev/sys/pci/if_fxp.c
1997-08-02 14:33:27 +00:00

1164 lines
29 KiB
C

/*
* Copyright (c) 1995, David Greenman
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: if_fxp.c,v 1.37 1997/07/25 23:41:12 davidg Exp $
*/
/*
* Intel EtherExpress Pro/100B PCI Fast Ethernet driver
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <net/if.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <pci/pcivar.h>
#include <pci/if_fxpreg.h>
struct fxp_softc {
struct arpcom arpcom; /* per-interface network data */
struct fxp_csr *csr; /* control/status registers */
struct fxp_cb_tx *cbl_base; /* base of TxCB list */
struct fxp_cb_tx *cbl_first; /* first active TxCB in list */
struct fxp_cb_tx *cbl_last; /* last active TxCB in list */
struct mbuf *rfa_headm; /* first mbuf in receive frame area */
struct mbuf *rfa_tailm; /* last mbuf in receive frame area */
struct fxp_stats *fxp_stats; /* Pointer to interface stats */
int tx_queued; /* # of active TxCB's */
int promisc_mode; /* promiscuous mode enabled */
int phy_primary_addr; /* address of primary PHY */
int phy_primary_device; /* device type of primary PHY */
int phy_10Mbps_only; /* PHY is 10Mbps-only device */
};
static u_long fxp_count;
/*
* Template for default configuration parameters.
* See struct fxp_cb_config for the bit definitions.
*/
static u_char fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x80, 0x2, /* cb_command */
0xff, 0xff, 0xff, 0xff, /* link_addr */
0x16, /* 0 */
0x8, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x80, /* 5 */
0xb2, /* 6 */
0x3, /* 7 */
0x1, /* 8 */
0x0, /* 9 */
0x26, /* 10 */
0x0, /* 11 */
0x60, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf3, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5, /* 21 */
0x0, 0x0
};
static inline void fxp_scb_wait __P((struct fxp_csr *));
static char *fxp_probe __P((pcici_t, pcidi_t));
static void fxp_attach __P((pcici_t, int));
static void fxp_intr __P((void *));
static void fxp_start __P((struct ifnet *));
static int fxp_ioctl __P((struct ifnet *, int, caddr_t));
static void fxp_init __P((void *));
static void fxp_stop __P((struct fxp_softc *));
static void fxp_watchdog __P((struct ifnet *));
static int fxp_add_rfabuf __P((struct fxp_softc *, struct mbuf *));
static void fxp_shutdown __P((int, void *));
static int fxp_mdi_read __P((struct fxp_csr *, int, int));
static void fxp_mdi_write __P((struct fxp_csr *, int, int, int));
static void fxp_read_eeprom __P((struct fxp_csr *, u_short *, int, int));
timeout_t fxp_stats_update;
static struct pci_device fxp_device = {
"fxp",
fxp_probe,
fxp_attach,
&fxp_count,
NULL
};
DATA_SET(pcidevice_set, fxp_device);
/*
* Set initial transmit threshold at 64 (512 bytes). This is
* increased by 64 (512 bytes) at a time, to maximum of 192
* (1536 bytes), if an underrun occurs.
*/
static int tx_threshold = 64;
/*
* Number of transmit control blocks. This determines the number
* of transmit buffers that can be chained in the CB list.
* This must be a power of two.
*/
#define FXP_NTXCB 128
/*
* TxCB list index mask. This is used to do list wrap-around.
*/
#define FXP_TXCB_MASK (FXP_NTXCB - 1)
/*
* Number of DMA segments in a TxCB. Note that this is carefully
* chosen to make the total struct size an even power of two. It's
* critical that no TxCB be split across a page boundry since
* no attempt is made to allocate physically contiguous memory.
*
* XXX - don't forget to change the hard-coded constant in the
* fxp_cb_tx struct (defined in if_fxpreg.h), too!
*/
#define FXP_NTXSEG 29
/*
* Number of receive frame area buffers. These are large so chose
* wisely.
*/
#define FXP_NRFABUFS 32
/*
* Wait for the previous command to be accepted (but not necessarily
* completed).
*/
static inline void
fxp_scb_wait(csr)
struct fxp_csr *csr;
{
int i = 10000;
while ((csr->scb_command & FXP_SCB_COMMAND_MASK) && --i);
}
/*
* Return identification string if this is device is ours.
*/
static char *
fxp_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
if (((device_id & 0xffff) == FXP_VENDORID_INTEL) &&
((device_id >> 16) & 0xffff) == FXP_DEVICEID_i82557)
return ("Intel EtherExpress Pro 10/100B Ethernet");
return NULL;
}
/*
* Allocate data structures and attach the device.
*/
static void
fxp_attach(config_id, unit)
pcici_t config_id;
int unit;
{
struct fxp_softc *sc;
struct ifnet *ifp;
vm_offset_t pbase;
int s, i;
u_short data;
sc = malloc(sizeof(struct fxp_softc), M_DEVBUF, M_NOWAIT);
if (sc == NULL)
return;
bzero(sc, sizeof(struct fxp_softc));
s = splimp();
/*
* Map control/status registers.
*/
if (!pci_map_mem(config_id, FXP_PCI_MMBA,
(vm_offset_t *)&sc->csr, &pbase)) {
printf("fxp%d: couldn't map memory\n", unit);
goto fail;
}
/*
* Reset to a stable state.
*/
sc->csr->port = FXP_PORT_SELECTIVE_RESET;
DELAY(10);
/*
* Allocate our interrupt.
*/
if (!pci_map_int(config_id, fxp_intr, sc, &net_imask)) {
printf("fxp%d: couldn't map interrupt\n", unit);
goto fail;
}
sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
M_DEVBUF, M_NOWAIT);
if (sc->cbl_base == NULL)
goto malloc_fail;
sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT);
if (sc->fxp_stats == NULL)
goto malloc_fail;
bzero(sc->fxp_stats, sizeof(struct fxp_stats));
/*
* Pre-allocate our receive buffers.
*/
for (i = 0; i < FXP_NRFABUFS; i++) {
if (fxp_add_rfabuf(sc, NULL) != 0) {
goto malloc_fail;
}
}
/*
* Get info about the primary PHY
*/
fxp_read_eeprom(sc->csr, (u_short *)&data, 6, 1);
sc->phy_primary_addr = data & 0xff;
sc->phy_primary_device = (data >> 8) & 0x3f;
sc->phy_10Mbps_only = data >> 15;
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "fxp";
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = fxp_ioctl;
ifp->if_output = ether_output;
ifp->if_start = fxp_start;
ifp->if_watchdog = fxp_watchdog;
ifp->if_baudrate = 100000000;
ifp->if_init = fxp_init;
/*
* Read MAC address
*/
fxp_read_eeprom(sc->csr, (u_short *)sc->arpcom.ac_enaddr, 0, 3);
printf("fxp%d: Ethernet address %6D", unit, sc->arpcom.ac_enaddr, ":");
if (sc->phy_10Mbps_only)
printf(", 10Mbps");
printf("\n");
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPFILTER > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
/*
* Add shutdown hook so that DMA is disabled prior to reboot. Not
* doing do could allow DMA to corrupt kernel memory during the
* reboot before the driver initializes.
*/
at_shutdown(fxp_shutdown, sc, SHUTDOWN_POST_SYNC);
splx(s);
return;
malloc_fail:
printf("fxp%d: Failed to malloc memory\n", unit);
(void) pci_unmap_int(config_id);
if (sc && sc->cbl_base)
free(sc->cbl_base, M_DEVBUF);
if (sc && sc->fxp_stats)
free(sc->fxp_stats, M_DEVBUF);
/* frees entire chain */
if (sc && sc->rfa_headm)
m_freem(sc->rfa_headm);
fail:
if (sc)
free(sc, M_DEVBUF);
splx(s);
}
/*
* Read from the serial EEPROM. Basically, you manually shift in
* the read opcode (one bit at a time) and then shift in the address,
* and then you shift out the data (all of this one bit at a time).
* The word size is 16 bits, so you have to provide the address for
* every 16 bits of data.
*/
static void
fxp_read_eeprom(csr, data, offset, words)
struct fxp_csr *csr;
u_short *data;
int offset;
int words;
{
u_short reg;
int i, x;
for (i = 0; i < words; i++) {
csr->eeprom_control = FXP_EEPROM_EECS;
/*
* Shift in read opcode.
*/
for (x = 3; x > 0; x--) {
if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
csr->eeprom_control = reg;
csr->eeprom_control = reg | FXP_EEPROM_EESK;
DELAY(1);
csr->eeprom_control = reg;
DELAY(1);
}
/*
* Shift in address.
*/
for (x = 6; x > 0; x--) {
if ((i + offset) & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
csr->eeprom_control = reg;
csr->eeprom_control = reg | FXP_EEPROM_EESK;
DELAY(1);
csr->eeprom_control = reg;
DELAY(1);
}
reg = FXP_EEPROM_EECS;
data[i] = 0;
/*
* Shift out data.
*/
for (x = 16; x > 0; x--) {
csr->eeprom_control = reg | FXP_EEPROM_EESK;
DELAY(1);
if (csr->eeprom_control & FXP_EEPROM_EEDO)
data[i] |= (1 << (x - 1));
csr->eeprom_control = reg;
DELAY(1);
}
csr->eeprom_control = 0;
DELAY(1);
}
}
/*
* Device shutdown routine. Called at system shutdown after sync. The
* main purpose of this routine is to shut off receiver DMA so that
* kernel memory doesn't get clobbered during warmboot.
*/
static void
fxp_shutdown(howto, sc)
int howto;
void *sc;
{
fxp_stop((struct fxp_softc *) sc);
}
/*
* Start packet transmission on the interface.
*/
static void
fxp_start(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
struct fxp_csr *csr = sc->csr;
struct fxp_cb_tx *txp;
struct mbuf *m, *mb_head;
int segment, first = 1;
txloop:
/*
* See if we're all filled up with buffers to transmit.
*/
if (sc->tx_queued >= FXP_NTXCB)
return;
/*
* Grab a packet to transmit.
*/
IF_DEQUEUE(&ifp->if_snd, mb_head);
if (mb_head == NULL) {
/*
* No more packets to send.
*/
return;
}
/*
* Get pointer to next available (unused) descriptor.
*/
txp = sc->cbl_last->next;
/*
* Go through each of the mbufs in the chain and initialize
* the transmit buffers descriptors with the physical address
* and size of the mbuf.
*/
tbdinit:
for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (segment == FXP_NTXSEG)
break;
txp->tbd[segment].tb_addr =
vtophys(mtod(m, vm_offset_t));
txp->tbd[segment].tb_size = m->m_len;
segment++;
}
}
if (m != NULL) {
struct mbuf *mn;
/*
* We ran out of segments. We have to recopy this mbuf
* chain first.
*/
MGETHDR(mn, M_DONTWAIT, MT_DATA);
if (mn == NULL) {
m_freem(mb_head);
return;
}
if (mb_head->m_pkthdr.len > MHLEN) {
MCLGET(mn, M_DONTWAIT);
if ((mn->m_flags & M_EXT) == 0) {
m_freem(mn);
m_freem(mb_head);
return;
}
}
m_copydata(mb_head, 0, mb_head->m_pkthdr.len, mtod(mn, caddr_t));
mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
m_freem(mb_head);
mb_head = mn;
goto tbdinit;
}
txp->tbd_number = segment;
txp->mb_head = mb_head;
/*
* Finish the initialization of this TxCB.
*/
txp->cb_status = 0;
txp->cb_command =
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S;
txp->tx_threshold = tx_threshold;
/*
* Advance the end-of-list forward.
*/
sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
sc->cbl_last = txp;
/*
* Advance the beginning of the list forward if there are
* no other packets queued (when nothing is queued, cbl_first
* sits on the last TxCB that was sent out)..
*/
if (sc->tx_queued == 0)
sc->cbl_first = txp;
sc->tx_queued++;
/*
* Only need to wait prior to the first resume command.
*/
if (first) {
first--;
fxp_scb_wait(csr);
}
/*
* Resume transmission if suspended.
*/
csr->scb_command = FXP_SCB_COMMAND_CU_RESUME;
#if NBPFILTER > 0
/*
* Pass packet to bpf if there is a listener.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, mb_head);
#endif
/*
* Set a 5 second timer just in case we don't hear from the
* card again.
*/
ifp->if_timer = 5;
goto txloop;
}
/*
* Process interface interrupts.
*/
static void
fxp_intr(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct fxp_csr *csr = sc->csr;
struct ifnet *ifp = &sc->arpcom.ac_if;
u_int8_t statack;
while ((statack = csr->scb_statack) != 0) {
/*
* First ACK all the interrupts in this pass.
*/
csr->scb_statack = statack;
/*
* Free any finished transmit mbuf chains.
*/
if (statack & FXP_SCB_STATACK_CNA) {
struct fxp_cb_tx *txp;
for (txp = sc->cbl_first;
(txp->cb_status & FXP_CB_STATUS_C) != 0;
txp = txp->next) {
if (txp->mb_head != NULL) {
m_freem(txp->mb_head);
txp->mb_head = NULL;
sc->tx_queued--;
}
if (txp == sc->cbl_last)
break;
}
sc->cbl_first = txp;
ifp->if_timer = 0;
/*
* Try to start more packets transmitting.
*/
if (ifp->if_snd.ifq_head != NULL)
fxp_start(ifp);
}
/*
* Process receiver interrupts. If a no-resource (RNR)
* condition exists, get whatever packets we can and
* re-start the receiver.
*/
if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
struct mbuf *m;
struct fxp_rfa *rfa;
rcvloop:
m = sc->rfa_headm;
rfa = (struct fxp_rfa *)m->m_ext.ext_buf;
if (rfa->rfa_status & FXP_RFA_STATUS_C) {
/*
* Remove first packet from the chain.
*/
sc->rfa_headm = m->m_next;
m->m_next = NULL;
/*
* Add a new buffer to the receive chain. If this
* fails, the old buffer is recycled instead.
*/
if (fxp_add_rfabuf(sc, m) == 0) {
struct ether_header *eh;
u_short total_len;
total_len = rfa->actual_size & (MCLBYTES - 1);
if (total_len < sizeof(struct ether_header)) {
m_freem(m);
goto rcvloop;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len -
sizeof(struct ether_header);
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
if (ifp->if_bpf) {
bpf_tap(ifp, mtod(m, caddr_t), total_len);
/*
* Only pass this packet up if it is for us.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(rfa->rfa_status & FXP_RFA_STATUS_IAMATCH) &&
(eh->ether_dhost[0] & 1) == 0) {
m_freem(m);
goto rcvloop;
}
}
#endif
m->m_data += sizeof(struct ether_header);
ether_input(ifp, eh, m);
}
goto rcvloop;
}
if (statack & FXP_SCB_STATACK_RNR) {
fxp_scb_wait(csr);
csr->scb_general = vtophys(sc->rfa_headm->m_ext.ext_buf);
csr->scb_command = FXP_SCB_COMMAND_RU_START;
}
}
}
}
/*
* Update packet in/out/collision statistics. The i82557 doesn't
* allow you to access these counters without doing a fairly
* expensive DMA to get _all_ of the statistics it maintains, so
* we do this operation here only once per second. The statistics
* counters in the kernel are updated from the previous dump-stats
* DMA and then a new dump-stats DMA is started. The on-chip
* counters are zeroed when the DMA completes. If we can't start
* the DMA immediately, we don't wait - we just prepare to read
* them again next time.
*/
void
fxp_stats_update(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct fxp_stats *sp = sc->fxp_stats;
ifp->if_opackets += sp->tx_good;
ifp->if_collisions += sp->tx_total_collisions;
ifp->if_ipackets += sp->rx_good;
ifp->if_ierrors +=
sp->rx_crc_errors +
sp->rx_alignment_errors +
sp->rx_rnr_errors +
sp->rx_overrun_errors;
/*
* If any transmit underruns occured, bump up the transmit
* threshold by another 512 bytes (64 * 8).
*/
if (sp->tx_underruns) {
ifp->if_oerrors += sp->tx_underruns;
if (tx_threshold < 192)
tx_threshold += 64;
}
/*
* If there is no pending command, start another stats
* dump. Otherwise punt for now.
*/
if ((sc->csr->scb_command & FXP_SCB_COMMAND_MASK) == 0) {
/*
* Start another stats dump. By waiting for it to be
* accepted, we avoid having to do splhigh locking when
* writing scb_command in other parts of the driver.
*/
sc->csr->scb_command = FXP_SCB_COMMAND_CU_DUMPRESET;
fxp_scb_wait(sc->csr);
} else {
/*
* A previous command is still waiting to be accepted.
* Just zero our copy of the stats and wait for the
* next timer event to update them.
*/
sp->tx_good = 0;
sp->tx_underruns = 0;
sp->tx_total_collisions = 0;
sp->rx_good = 0;
sp->rx_crc_errors = 0;
sp->rx_alignment_errors = 0;
sp->rx_rnr_errors = 0;
sp->rx_overrun_errors = 0;
}
/*
* Schedule another timeout one second from now.
*/
timeout(fxp_stats_update, sc, hz);
}
/*
* Stop the interface. Cancels the statistics updater and resets
* the interface.
*/
static void
fxp_stop(sc)
struct fxp_softc *sc;
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct fxp_cb_tx *txp;
int i;
/*
* Cancel stats updater.
*/
untimeout(fxp_stats_update, sc);
/*
* Issue software reset
*/
sc->csr->port = FXP_PORT_SELECTIVE_RESET;
DELAY(10);
/*
* Release any xmit buffers.
*/
for (txp = sc->cbl_first; txp != NULL && txp->mb_head != NULL;
txp = txp->next) {
m_freem(txp->mb_head);
txp->mb_head = NULL;
}
sc->tx_queued = 0;
/*
* Free all the receive buffers then reallocate/reinitialize
*/
if (sc->rfa_headm != NULL)
m_freem(sc->rfa_headm);
sc->rfa_headm = NULL;
sc->rfa_tailm = NULL;
for (i = 0; i < FXP_NRFABUFS; i++) {
if (fxp_add_rfabuf(sc, NULL) != 0) {
/*
* This "can't happen" - we're at splimp()
* and we just freed all the buffers we need
* above.
*/
panic("fxp_stop: no buffers!");
}
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* Watchdog/transmission transmit timeout handler. Called when a
* transmission is started on the interface, but no interrupt is
* received before the timeout. This usually indicates that the
* card has wedged for some reason.
*/
static void
fxp_watchdog(ifp)
struct ifnet *ifp;
{
log(LOG_ERR, "fxp%d: device timeout\n", ifp->if_unit);
ifp->if_oerrors++;
fxp_init(ifp->if_softc);
}
static void
fxp_init(xsc)
void *xsc;
{
struct fxp_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct fxp_cb_config *cbp;
struct fxp_cb_ias *cb_ias;
struct fxp_cb_tx *txp;
struct fxp_csr *csr = sc->csr;
int i, s, mcast, prm;
s = splimp();
/*
* Cancel any pending I/O
*/
fxp_stop(sc);
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
sc->promisc_mode = prm;
/*
* Sleeze out here and enable reception of all multicasts if
* multicasts are enabled. Ideally, we'd program the multicast
* address filter to only accept specific multicasts.
*/
mcast = (ifp->if_flags & (IFF_MULTICAST|IFF_ALLMULTI)) ? 1 : 0;
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
csr->scb_general = 0;
csr->scb_command = FXP_SCB_COMMAND_CU_BASE;
fxp_scb_wait(csr);
csr->scb_command = FXP_SCB_COMMAND_RU_BASE;
/*
* Initialize base of dump-stats buffer.
*/
fxp_scb_wait(csr);
csr->scb_general = vtophys(sc->fxp_stats);
csr->scb_command = FXP_SCB_COMMAND_CU_DUMP_ADR;
/*
* We temporarily use memory that contains the TxCB list to
* construct the config CB. The TxCB list memory is rebuilt
* later.
*/
cbp = (struct fxp_cb_config *) sc->cbl_base;
/*
* This bcopy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
bcopy(fxp_cb_config_template, cbp, sizeof(struct fxp_cb_config));
cbp->cb_status = 0;
cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
cbp->link_addr = -1; /* (no) next command */
cbp->byte_count = 22; /* (22) bytes to config */
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_bce = 0; /* (disable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->tno_int = 0; /* (disable) tx not okay interrupt */
cbp->ci_int = 0; /* interrupt on CU not active */
cbp->save_bf = prm; /* save bad frames */
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->crscdt = 0; /* (CRS only) */
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = mcast; /* accept all multicasts */
/*
* Start the config command/DMA.
*/
fxp_scb_wait(csr);
csr->scb_general = vtophys(cbp);
csr->scb_command = FXP_SCB_COMMAND_CU_START;
/* ...and wait for it to complete. */
while (!(cbp->cb_status & FXP_CB_STATUS_C));
/*
* Now initialize the station address. Temporarily use the TxCB
* memory area like we did above for the config CB.
*/
cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
cb_ias->cb_status = 0;
cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
cb_ias->link_addr = -1;
bcopy(sc->arpcom.ac_enaddr, (void *)cb_ias->macaddr,
sizeof(sc->arpcom.ac_enaddr));
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait(csr);
csr->scb_command = FXP_SCB_COMMAND_CU_START;
/* ...and wait for it to complete. */
while (!(cb_ias->cb_status & FXP_CB_STATUS_C));
/*
* Initialize transmit control block (TxCB) list.
*/
txp = sc->cbl_base;
bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
for (i = 0; i < FXP_NTXCB; i++) {
txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
txp[i].cb_command = FXP_CB_COMMAND_NOP;
txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK]);
txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
}
/*
* Set the stop flag on the first TxCB and start the control
* unit. It will execute the NOP and then suspend.
*/
txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
sc->cbl_first = sc->cbl_last = txp;
sc->tx_queued = 0;
fxp_scb_wait(csr);
csr->scb_command = FXP_SCB_COMMAND_CU_START;
/*
* Initialize receiver buffer area - RFA.
*/
fxp_scb_wait(csr);
csr->scb_general = vtophys(sc->rfa_headm->m_ext.ext_buf);
csr->scb_command = FXP_SCB_COMMAND_RU_START;
/*
* Toggle a few bits in the PHY.
*/
switch (sc->phy_primary_device) {
case FXP_PHY_DP83840:
case FXP_PHY_DP83840A:
fxp_mdi_write(sc->csr, sc->phy_primary_addr, FXP_DP83840_PCR,
fxp_mdi_read(sc->csr, sc->phy_primary_addr, FXP_DP83840_PCR) |
FXP_DP83840_PCR_LED4_MODE | /* LED4 always indicates duplex */
FXP_DP83840_PCR_F_CONNECT | /* force link disconnect bypass */
FXP_DP83840_PCR_BIT10); /* XXX I have no idea */
/* fall through */
case FXP_PHY_82555:
/*
* If link0 is set, disable auto-negotiation and then:
* If link1 is unset = 10Mbps
* If link1 is set = 100Mbps
* If link2 is unset = half duplex
* If link2 is set = full duplex
*/
if (ifp->if_flags & IFF_LINK0) {
int flags;
flags = (ifp->if_flags & IFF_LINK1) ?
FXP_PHY_BMCR_SPEED_100M : 0;
flags |= (ifp->if_flags & IFF_LINK2) ?
FXP_PHY_BMCR_FULLDUPLEX : 0;
fxp_mdi_write(sc->csr, sc->phy_primary_addr, FXP_PHY_BMCR,
(fxp_mdi_read(sc->csr, sc->phy_primary_addr, FXP_PHY_BMCR) &
~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M |
FXP_PHY_BMCR_FULLDUPLEX)) | flags);
} else {
fxp_mdi_write(sc->csr, sc->phy_primary_addr, FXP_PHY_BMCR,
(fxp_mdi_read(sc->csr, sc->phy_primary_addr, FXP_PHY_BMCR) |
FXP_PHY_BMCR_AUTOEN));
}
break;
/*
* The Seeq 80c24 doesn't have a PHY programming interface, so do
* nothing.
*/
case FXP_PHY_80C24:
break;
default:
printf("fxp%d: warning: unsupported PHY, type = %d, addr = %d\n",
ifp->if_unit, sc->phy_primary_device, sc->phy_primary_addr);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
/*
* Start stats updater.
*/
timeout(fxp_stats_update, sc, hz);
}
/*
* Add a buffer to the end of the RFA buffer list.
* Return 0 if successful, 1 for failure. A failure results in
* adding the 'oldm' (if non-NULL) on to the end of the list -
* tossing out it's old contents and recycling it.
* The RFA struct is stuck at the beginning of mbuf cluster and the
* data pointer is fixed up to point just past it.
*/
static int
fxp_add_rfabuf(sc, oldm)
struct fxp_softc *sc;
struct mbuf *oldm;
{
struct mbuf *m;
struct fxp_rfa *rfa, *p_rfa;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
if (oldm == NULL)
return 1;
m = oldm;
m->m_data = m->m_ext.ext_buf;
}
} else {
if (oldm == NULL)
return 1;
m = oldm;
m->m_data = m->m_ext.ext_buf;
}
/*
* Get a pointer to the base of the mbuf cluster and move
* data start past it.
*/
rfa = mtod(m, struct fxp_rfa *);
m->m_data += sizeof(struct fxp_rfa);
rfa->size = MCLBYTES - sizeof(struct fxp_rfa);
rfa->rfa_status = 0;
rfa->rfa_control = FXP_RFA_CONTROL_EL;
rfa->link_addr = -1;
rfa->rbd_addr = -1;
rfa->actual_size = 0;
/*
* If there are other buffers already on the list, attach this
* one to the end by fixing up the tail to point to this one.
*/
if (sc->rfa_headm != NULL) {
p_rfa = (struct fxp_rfa *) sc->rfa_tailm->m_ext.ext_buf;
sc->rfa_tailm->m_next = m;
p_rfa->link_addr = vtophys(rfa);
p_rfa->rfa_control &= ~FXP_RFA_CONTROL_EL;
} else {
sc->rfa_headm = m;
}
sc->rfa_tailm = m;
return (m == oldm);
}
static volatile int
fxp_mdi_read(csr, phy, reg)
struct fxp_csr *csr;
int phy;
int reg;
{
int count = 10000;
int value;
csr->mdi_control = (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21);
while (((value = csr->mdi_control) & 0x10000000) == 0 && count--)
DELAY(10);
if (count <= 0)
printf("fxp_mdi_read: timed out\n");
return (value & 0xffff);
}
static void
fxp_mdi_write(csr, phy, reg, value)
struct fxp_csr *csr;
int phy;
int reg;
int value;
{
int count = 10000;
csr->mdi_control = (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21)
| (value & 0xffff);
while ((csr->mdi_control & 0x10000000) == 0 && count--)
DELAY(10);
if (count <= 0)
printf("fxp_mdi_write: timed out\n");
}
static int
fxp_ioctl(ifp, command, data)
struct ifnet *ifp;
int command;
caddr_t data;
{
struct ifaddr *ifa = (struct ifaddr *) data;
struct fxp_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch (command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
* XXX If it's up then re-initialize it. This is so flags
* such as IFF_PROMISC are handled.
*/
if (ifp->if_flags & IFF_UP) {
fxp_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
fxp_stop(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
fxp_init(sc);
error = 0;
break;
default:
error = EINVAL;
}
(void) splx(s);
return (error);
}