freebsd-dev/sys/dev/vmware/pvscsi/pvscsi.c
Josh Paetzel 4c6bf7c398 Fix build with GCC
Fix suggested by:	jhb, scottl
Sponsored by:	Panzura
2019-11-15 01:07:39 +00:00

1804 lines
42 KiB
C

/*-
* Copyright (c) 2018 VMware, Inc.
*
* SPDX-License-Identifier: (BSD-2-Clause OR GPL-2.0)
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_message.h>
#include "pvscsi.h"
#define PVSCSI_DEFAULT_NUM_PAGES_REQ_RING 8
#define PVSCSI_SENSE_LENGTH 256
MALLOC_DECLARE(M_PVSCSI);
MALLOC_DEFINE(M_PVSCSI, "pvscsi", "PVSCSI memory");
#ifdef PVSCSI_DEBUG_LOGGING
#define DEBUG_PRINTF(level, dev, fmt, ...) \
do { \
if (pvscsi_log_level >= (level)) { \
device_printf((dev), (fmt), ##__VA_ARGS__); \
} \
} while(0)
#else
#define DEBUG_PRINTF(level, dev, fmt, ...)
#endif /* PVSCSI_DEBUG_LOGGING */
#define ccb_pvscsi_hcb spriv_ptr0
#define ccb_pvscsi_sc spriv_ptr1
struct pvscsi_softc;
struct pvscsi_hcb;
struct pvscsi_dma;
static inline uint32_t pvscsi_reg_read(struct pvscsi_softc *sc,
uint32_t offset);
static inline void pvscsi_reg_write(struct pvscsi_softc *sc, uint32_t offset,
uint32_t val);
static inline uint32_t pvscsi_read_intr_status(struct pvscsi_softc *sc);
static inline void pvscsi_write_intr_status(struct pvscsi_softc *sc,
uint32_t val);
static inline void pvscsi_intr_enable(struct pvscsi_softc *sc);
static inline void pvscsi_intr_disable(struct pvscsi_softc *sc);
static void pvscsi_kick_io(struct pvscsi_softc *sc, uint8_t cdb0);
static void pvscsi_write_cmd(struct pvscsi_softc *sc, uint32_t cmd, void *data,
uint32_t len);
static uint32_t pvscsi_get_max_targets(struct pvscsi_softc *sc);
static int pvscsi_setup_req_call(struct pvscsi_softc *sc, uint32_t enable);
static void pvscsi_setup_rings(struct pvscsi_softc *sc);
static void pvscsi_setup_msg_ring(struct pvscsi_softc *sc);
static int pvscsi_hw_supports_msg(struct pvscsi_softc *sc);
static void pvscsi_timeout(void *arg);
static void pvscsi_freeze(struct pvscsi_softc *sc);
static void pvscsi_adapter_reset(struct pvscsi_softc *sc);
static void pvscsi_bus_reset(struct pvscsi_softc *sc);
static void pvscsi_device_reset(struct pvscsi_softc *sc, uint32_t target);
static void pvscsi_abort(struct pvscsi_softc *sc, uint32_t target,
union ccb *ccb);
static void pvscsi_process_completion(struct pvscsi_softc *sc,
struct pvscsi_ring_cmp_desc *e);
static void pvscsi_process_cmp_ring(struct pvscsi_softc *sc);
static void pvscsi_process_msg(struct pvscsi_softc *sc,
struct pvscsi_ring_msg_desc *e);
static void pvscsi_process_msg_ring(struct pvscsi_softc *sc);
static void pvscsi_intr_locked(struct pvscsi_softc *sc);
static void pvscsi_intr(void *xsc);
static void pvscsi_poll(struct cam_sim *sim);
static void pvscsi_execute_ccb(void *arg, bus_dma_segment_t *segs, int nseg,
int error);
static void pvscsi_action(struct cam_sim *sim, union ccb *ccb);
static inline uint64_t pvscsi_hcb_to_context(struct pvscsi_softc *sc,
struct pvscsi_hcb *hcb);
static inline struct pvscsi_hcb* pvscsi_context_to_hcb(struct pvscsi_softc *sc,
uint64_t context);
static struct pvscsi_hcb * pvscsi_hcb_get(struct pvscsi_softc *sc);
static void pvscsi_hcb_put(struct pvscsi_softc *sc, struct pvscsi_hcb *hcb);
static void pvscsi_dma_cb(void *arg, bus_dma_segment_t *segs, int nseg,
int error);
static void pvscsi_dma_free(struct pvscsi_softc *sc, struct pvscsi_dma *dma);
static int pvscsi_dma_alloc(struct pvscsi_softc *sc, struct pvscsi_dma *dma,
bus_size_t size, bus_size_t alignment);
static int pvscsi_dma_alloc_ppns(struct pvscsi_softc *sc,
struct pvscsi_dma *dma, uint64_t *ppn_list, uint32_t num_pages);
static void pvscsi_dma_free_per_hcb(struct pvscsi_softc *sc,
uint32_t hcbs_allocated);
static int pvscsi_dma_alloc_per_hcb(struct pvscsi_softc *sc);
static void pvscsi_free_rings(struct pvscsi_softc *sc);
static int pvscsi_allocate_rings(struct pvscsi_softc *sc);
static void pvscsi_free_interrupts(struct pvscsi_softc *sc);
static int pvscsi_setup_interrupts(struct pvscsi_softc *sc);
static void pvscsi_free_all(struct pvscsi_softc *sc);
static int pvscsi_attach(device_t dev);
static int pvscsi_detach(device_t dev);
static int pvscsi_probe(device_t dev);
static int pvscsi_shutdown(device_t dev);
static int pvscsi_get_tunable(struct pvscsi_softc *sc, char *name, int value);
#ifdef PVSCSI_DEBUG_LOGGING
static int pvscsi_log_level = 0;
static SYSCTL_NODE(_hw, OID_AUTO, pvscsi, CTLFLAG_RD, 0,
"PVSCSI driver parameters");
SYSCTL_INT(_hw_pvscsi, OID_AUTO, log_level, CTLFLAG_RWTUN, &pvscsi_log_level,
0, "PVSCSI debug log level");
#endif
static int pvscsi_request_ring_pages = 0;
TUNABLE_INT("hw.pvscsi.request_ring_pages", &pvscsi_request_ring_pages);
static int pvscsi_use_msg = 1;
TUNABLE_INT("hw.pvscsi.use_msg", &pvscsi_use_msg);
static int pvscsi_use_msi = 1;
TUNABLE_INT("hw.pvscsi.use_msi", &pvscsi_use_msi);
static int pvscsi_use_msix = 1;
TUNABLE_INT("hw.pvscsi.use_msix", &pvscsi_use_msix);
static int pvscsi_use_req_call_threshold = 1;
TUNABLE_INT("hw.pvscsi.use_req_call_threshold", &pvscsi_use_req_call_threshold);
static int pvscsi_max_queue_depth = 0;
TUNABLE_INT("hw.pvscsi.max_queue_depth", &pvscsi_max_queue_depth);
struct pvscsi_sg_list {
struct pvscsi_sg_element sge[PVSCSI_MAX_SG_ENTRIES_PER_SEGMENT];
};
#define PVSCSI_ABORT_TIMEOUT 2
#define PVSCSI_RESET_TIMEOUT 10
#define PVSCSI_HCB_NONE 0
#define PVSCSI_HCB_ABORT 1
#define PVSCSI_HCB_DEVICE_RESET 2
#define PVSCSI_HCB_BUS_RESET 3
struct pvscsi_hcb {
union ccb *ccb;
struct pvscsi_ring_req_desc *e;
int recovery;
SLIST_ENTRY(pvscsi_hcb) links;
struct callout callout;
bus_dmamap_t dma_map;
void *sense_buffer;
bus_addr_t sense_buffer_paddr;
struct pvscsi_sg_list *sg_list;
bus_addr_t sg_list_paddr;
};
struct pvscsi_dma
{
bus_dma_tag_t tag;
bus_dmamap_t map;
void *vaddr;
bus_addr_t paddr;
bus_size_t size;
};
struct pvscsi_softc {
device_t dev;
struct mtx lock;
struct cam_sim *sim;
struct cam_path *bus_path;
int frozen;
struct pvscsi_rings_state *rings_state;
struct pvscsi_ring_req_desc *req_ring;
struct pvscsi_ring_cmp_desc *cmp_ring;
struct pvscsi_ring_msg_desc *msg_ring;
uint32_t hcb_cnt;
struct pvscsi_hcb *hcbs;
SLIST_HEAD(, pvscsi_hcb) free_list;
bus_dma_tag_t parent_dmat;
bus_dma_tag_t buffer_dmat;
bool use_msg;
uint32_t max_targets;
int mm_rid;
struct resource *mm_res;
int irq_id;
struct resource *irq_res;
void *irq_handler;
int use_req_call_threshold;
int use_msi_or_msix;
uint64_t rings_state_ppn;
uint32_t req_ring_num_pages;
uint64_t req_ring_ppn[PVSCSI_MAX_NUM_PAGES_REQ_RING];
uint32_t cmp_ring_num_pages;
uint64_t cmp_ring_ppn[PVSCSI_MAX_NUM_PAGES_CMP_RING];
uint32_t msg_ring_num_pages;
uint64_t msg_ring_ppn[PVSCSI_MAX_NUM_PAGES_MSG_RING];
struct pvscsi_dma rings_state_dma;
struct pvscsi_dma req_ring_dma;
struct pvscsi_dma cmp_ring_dma;
struct pvscsi_dma msg_ring_dma;
struct pvscsi_dma sg_list_dma;
struct pvscsi_dma sense_buffer_dma;
};
static int pvscsi_get_tunable(struct pvscsi_softc *sc, char *name, int value)
{
char cfg[64];
snprintf(cfg, sizeof(cfg), "hw.pvscsi.%d.%s", device_get_unit(sc->dev),
name);
TUNABLE_INT_FETCH(cfg, &value);
return (value);
}
static void
pvscsi_freeze(struct pvscsi_softc *sc)
{
if (!sc->frozen) {
xpt_freeze_simq(sc->sim, 1);
sc->frozen = 1;
}
}
static inline uint32_t
pvscsi_reg_read(struct pvscsi_softc *sc, uint32_t offset)
{
return (bus_read_4(sc->mm_res, offset));
}
static inline void
pvscsi_reg_write(struct pvscsi_softc *sc, uint32_t offset, uint32_t val)
{
bus_write_4(sc->mm_res, offset, val);
}
static inline uint32_t
pvscsi_read_intr_status(struct pvscsi_softc *sc)
{
return (pvscsi_reg_read(sc, PVSCSI_REG_OFFSET_INTR_STATUS));
}
static inline void
pvscsi_write_intr_status(struct pvscsi_softc *sc, uint32_t val)
{
pvscsi_reg_write(sc, PVSCSI_REG_OFFSET_INTR_STATUS, val);
}
static inline void
pvscsi_intr_enable(struct pvscsi_softc *sc)
{
uint32_t mask;
mask = PVSCSI_INTR_CMPL_MASK;
if (sc->use_msg) {
mask |= PVSCSI_INTR_MSG_MASK;
}
pvscsi_reg_write(sc, PVSCSI_REG_OFFSET_INTR_MASK, mask);
}
static inline void
pvscsi_intr_disable(struct pvscsi_softc *sc)
{
pvscsi_reg_write(sc, PVSCSI_REG_OFFSET_INTR_MASK, 0);
}
static void
pvscsi_kick_io(struct pvscsi_softc *sc, uint8_t cdb0)
{
struct pvscsi_rings_state *s;
if (cdb0 == READ_6 || cdb0 == READ_10 ||
cdb0 == READ_12 || cdb0 == READ_16 ||
cdb0 == WRITE_6 || cdb0 == WRITE_10 ||
cdb0 == WRITE_12 || cdb0 == WRITE_16) {
s = sc->rings_state;
if (!sc->use_req_call_threshold ||
(s->req_prod_idx - s->req_cons_idx) >=
s->req_call_threshold) {
pvscsi_reg_write(sc, PVSCSI_REG_OFFSET_KICK_RW_IO, 0);
}
} else {
pvscsi_reg_write(sc, PVSCSI_REG_OFFSET_KICK_NON_RW_IO, 0);
}
}
static void
pvscsi_write_cmd(struct pvscsi_softc *sc, uint32_t cmd, void *data,
uint32_t len)
{
uint32_t *data_ptr;
int i;
KASSERT(len % sizeof(uint32_t) == 0,
("command size not a multiple of 4"));
data_ptr = data;
len /= sizeof(uint32_t);
pvscsi_reg_write(sc, PVSCSI_REG_OFFSET_COMMAND, cmd);
for (i = 0; i < len; ++i) {
pvscsi_reg_write(sc, PVSCSI_REG_OFFSET_COMMAND_DATA,
data_ptr[i]);
}
}
static inline uint64_t pvscsi_hcb_to_context(struct pvscsi_softc *sc,
struct pvscsi_hcb *hcb)
{
/* Offset by 1 because context must not be 0 */
return (hcb - sc->hcbs + 1);
}
static inline struct pvscsi_hcb* pvscsi_context_to_hcb(struct pvscsi_softc *sc,
uint64_t context)
{
return (sc->hcbs + (context - 1));
}
static struct pvscsi_hcb *
pvscsi_hcb_get(struct pvscsi_softc *sc)
{
struct pvscsi_hcb *hcb;
mtx_assert(&sc->lock, MA_OWNED);
hcb = SLIST_FIRST(&sc->free_list);
if (hcb) {
SLIST_REMOVE_HEAD(&sc->free_list, links);
}
return (hcb);
}
static void
pvscsi_hcb_put(struct pvscsi_softc *sc, struct pvscsi_hcb *hcb)
{
mtx_assert(&sc->lock, MA_OWNED);
hcb->ccb = NULL;
hcb->e = NULL;
hcb->recovery = PVSCSI_HCB_NONE;
SLIST_INSERT_HEAD(&sc->free_list, hcb, links);
}
static uint32_t
pvscsi_get_max_targets(struct pvscsi_softc *sc)
{
uint32_t max_targets;
pvscsi_write_cmd(sc, PVSCSI_CMD_GET_MAX_TARGETS, NULL, 0);
max_targets = pvscsi_reg_read(sc, PVSCSI_REG_OFFSET_COMMAND_STATUS);
if (max_targets == ~0) {
max_targets = 16;
}
return (max_targets);
}
static int pvscsi_setup_req_call(struct pvscsi_softc *sc, uint32_t enable)
{
uint32_t status;
struct pvscsi_cmd_desc_setup_req_call cmd;
if (!pvscsi_get_tunable(sc, "pvscsi_use_req_call_threshold",
pvscsi_use_req_call_threshold)) {
return (0);
}
pvscsi_reg_write(sc, PVSCSI_REG_OFFSET_COMMAND,
PVSCSI_CMD_SETUP_REQCALLTHRESHOLD);
status = pvscsi_reg_read(sc, PVSCSI_REG_OFFSET_COMMAND_STATUS);
if (status != -1) {
bzero(&cmd, sizeof(cmd));
cmd.enable = enable;
pvscsi_write_cmd(sc, PVSCSI_CMD_SETUP_REQCALLTHRESHOLD,
&cmd, sizeof(cmd));
status = pvscsi_reg_read(sc, PVSCSI_REG_OFFSET_COMMAND_STATUS);
return (status != 0);
} else {
return (0);
}
}
static void
pvscsi_dma_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *dest;
KASSERT(nseg == 1, ("more than one segment"));
dest = arg;
if (!error) {
*dest = segs->ds_addr;
}
}
static void
pvscsi_dma_free(struct pvscsi_softc *sc, struct pvscsi_dma *dma)
{
if (dma->tag != NULL) {
if (dma->paddr != 0) {
bus_dmamap_unload(dma->tag, dma->map);
}
if (dma->vaddr != NULL) {
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
}
bus_dma_tag_destroy(dma->tag);
}
bzero(dma, sizeof(*dma));
}
static int
pvscsi_dma_alloc(struct pvscsi_softc *sc, struct pvscsi_dma *dma,
bus_size_t size, bus_size_t alignment)
{
int error;
bzero(dma, sizeof(*dma));
error = bus_dma_tag_create(sc->parent_dmat, alignment, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size,
BUS_DMA_ALLOCNOW, NULL, NULL, &dma->tag);
if (error) {
device_printf(sc->dev, "error creating dma tag, error %d\n",
error);
goto fail;
}
error = bus_dmamem_alloc(dma->tag, &dma->vaddr,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &dma->map);
if (error) {
device_printf(sc->dev, "error allocating dma mem, error %d\n",
error);
goto fail;
}
error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
pvscsi_dma_cb, &dma->paddr, BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->dev, "error mapping dma mam, error %d\n",
error);
goto fail;
}
dma->size = size;
fail:
if (error) {
pvscsi_dma_free(sc, dma);
}
return (error);
}
static int
pvscsi_dma_alloc_ppns(struct pvscsi_softc *sc, struct pvscsi_dma *dma,
uint64_t *ppn_list, uint32_t num_pages)
{
int error;
uint32_t i;
uint64_t ppn;
error = pvscsi_dma_alloc(sc, dma, num_pages * PAGE_SIZE, PAGE_SIZE);
if (error) {
device_printf(sc->dev, "Error allocating pages, error %d\n",
error);
return (error);
}
ppn = dma->paddr >> PAGE_SHIFT;
for (i = 0; i < num_pages; i++) {
ppn_list[i] = ppn + i;
}
return (0);
}
static void
pvscsi_dma_free_per_hcb(struct pvscsi_softc *sc, uint32_t hcbs_allocated)
{
int i;
int lock_owned;
struct pvscsi_hcb *hcb;
lock_owned = mtx_owned(&sc->lock);
if (lock_owned) {
mtx_unlock(&sc->lock);
}
for (i = 0; i < hcbs_allocated; ++i) {
hcb = sc->hcbs + i;
callout_drain(&hcb->callout);
};
if (lock_owned) {
mtx_lock(&sc->lock);
}
for (i = 0; i < hcbs_allocated; ++i) {
hcb = sc->hcbs + i;
bus_dmamap_destroy(sc->buffer_dmat, hcb->dma_map);
};
pvscsi_dma_free(sc, &sc->sense_buffer_dma);
pvscsi_dma_free(sc, &sc->sg_list_dma);
}
static int
pvscsi_dma_alloc_per_hcb(struct pvscsi_softc *sc)
{
int i;
int error;
struct pvscsi_hcb *hcb;
i = 0;
error = pvscsi_dma_alloc(sc, &sc->sg_list_dma,
sizeof(struct pvscsi_sg_list) * sc->hcb_cnt, 1);
if (error) {
device_printf(sc->dev,
"Error allocation sg list DMA memory, error %d\n", error);
goto fail;
}
error = pvscsi_dma_alloc(sc, &sc->sense_buffer_dma,
PVSCSI_SENSE_LENGTH * sc->hcb_cnt, 1);
if (error) {
device_printf(sc->dev,
"Error allocation sg list DMA memory, error %d\n", error);
goto fail;
}
for (i = 0; i < sc->hcb_cnt; ++i) {
hcb = sc->hcbs + i;
error = bus_dmamap_create(sc->buffer_dmat, 0, &hcb->dma_map);
if (error) {
device_printf(sc->dev,
"Error creating dma map for hcb %d, error %d\n",
i, error);
goto fail;
}
hcb->sense_buffer =
(void *)((caddr_t)sc->sense_buffer_dma.vaddr +
PVSCSI_SENSE_LENGTH * i);
hcb->sense_buffer_paddr =
sc->sense_buffer_dma.paddr + PVSCSI_SENSE_LENGTH * i;
hcb->sg_list =
(struct pvscsi_sg_list *)((caddr_t)sc->sg_list_dma.vaddr +
sizeof(struct pvscsi_sg_list) * i);
hcb->sg_list_paddr =
sc->sg_list_dma.paddr + sizeof(struct pvscsi_sg_list) * i;
callout_init_mtx(&hcb->callout, &sc->lock, 0);
}
SLIST_INIT(&sc->free_list);
for (i = (sc->hcb_cnt - 1); i >= 0; --i) {
hcb = sc->hcbs + i;
SLIST_INSERT_HEAD(&sc->free_list, hcb, links);
}
fail:
if (error) {
pvscsi_dma_free_per_hcb(sc, i);
}
return (error);
}
static void
pvscsi_free_rings(struct pvscsi_softc *sc)
{
pvscsi_dma_free(sc, &sc->rings_state_dma);
pvscsi_dma_free(sc, &sc->req_ring_dma);
pvscsi_dma_free(sc, &sc->cmp_ring_dma);
if (sc->use_msg) {
pvscsi_dma_free(sc, &sc->msg_ring_dma);
}
}
static int
pvscsi_allocate_rings(struct pvscsi_softc *sc)
{
int error;
error = pvscsi_dma_alloc_ppns(sc, &sc->rings_state_dma,
&sc->rings_state_ppn, 1);
if (error) {
device_printf(sc->dev,
"Error allocating rings state, error = %d\n", error);
goto fail;
}
sc->rings_state = sc->rings_state_dma.vaddr;
error = pvscsi_dma_alloc_ppns(sc, &sc->req_ring_dma, sc->req_ring_ppn,
sc->req_ring_num_pages);
if (error) {
device_printf(sc->dev,
"Error allocating req ring pages, error = %d\n", error);
goto fail;
}
sc->req_ring = sc->req_ring_dma.vaddr;
error = pvscsi_dma_alloc_ppns(sc, &sc->cmp_ring_dma, sc->cmp_ring_ppn,
sc->cmp_ring_num_pages);
if (error) {
device_printf(sc->dev,
"Error allocating cmp ring pages, error = %d\n", error);
goto fail;
}
sc->cmp_ring = sc->cmp_ring_dma.vaddr;
sc->msg_ring = NULL;
if (sc->use_msg) {
error = pvscsi_dma_alloc_ppns(sc, &sc->msg_ring_dma,
sc->msg_ring_ppn, sc->msg_ring_num_pages);
if (error) {
device_printf(sc->dev,
"Error allocating cmp ring pages, error = %d\n",
error);
goto fail;
}
sc->msg_ring = sc->msg_ring_dma.vaddr;
}
DEBUG_PRINTF(1, sc->dev, "rings_state: %p\n", sc->rings_state);
DEBUG_PRINTF(1, sc->dev, "req_ring: %p - %u pages\n", sc->req_ring,
sc->req_ring_num_pages);
DEBUG_PRINTF(1, sc->dev, "cmp_ring: %p - %u pages\n", sc->cmp_ring,
sc->cmp_ring_num_pages);
DEBUG_PRINTF(1, sc->dev, "msg_ring: %p - %u pages\n", sc->msg_ring,
sc->msg_ring_num_pages);
fail:
if (error) {
pvscsi_free_rings(sc);
}
return (error);
}
static void
pvscsi_setup_rings(struct pvscsi_softc *sc)
{
struct pvscsi_cmd_desc_setup_rings cmd;
uint32_t i;
bzero(&cmd, sizeof(cmd));
cmd.rings_state_ppn = sc->rings_state_ppn;
cmd.req_ring_num_pages = sc->req_ring_num_pages;
for (i = 0; i < sc->req_ring_num_pages; ++i) {
cmd.req_ring_ppns[i] = sc->req_ring_ppn[i];
}
cmd.cmp_ring_num_pages = sc->cmp_ring_num_pages;
for (i = 0; i < sc->cmp_ring_num_pages; ++i) {
cmd.cmp_ring_ppns[i] = sc->cmp_ring_ppn[i];
}
pvscsi_write_cmd(sc, PVSCSI_CMD_SETUP_RINGS, &cmd, sizeof(cmd));
}
static int
pvscsi_hw_supports_msg(struct pvscsi_softc *sc)
{
uint32_t status;
pvscsi_reg_write(sc, PVSCSI_REG_OFFSET_COMMAND,
PVSCSI_CMD_SETUP_MSG_RING);
status = pvscsi_reg_read(sc, PVSCSI_REG_OFFSET_COMMAND_STATUS);
return (status != -1);
}
static void
pvscsi_setup_msg_ring(struct pvscsi_softc *sc)
{
struct pvscsi_cmd_desc_setup_msg_ring cmd;
uint32_t i;
KASSERT(sc->use_msg, ("msg is not being used"));
bzero(&cmd, sizeof(cmd));
cmd.num_pages = sc->msg_ring_num_pages;
for (i = 0; i < sc->msg_ring_num_pages; ++i) {
cmd.ring_ppns[i] = sc->msg_ring_ppn[i];
}
pvscsi_write_cmd(sc, PVSCSI_CMD_SETUP_MSG_RING, &cmd, sizeof(cmd));
}
static void
pvscsi_adapter_reset(struct pvscsi_softc *sc)
{
uint32_t val;
device_printf(sc->dev, "Adapter Reset\n");
pvscsi_write_cmd(sc, PVSCSI_CMD_ADAPTER_RESET, NULL, 0);
val = pvscsi_read_intr_status(sc);
DEBUG_PRINTF(2, sc->dev, "adapter reset done: %u\n", val);
}
static void
pvscsi_bus_reset(struct pvscsi_softc *sc)
{
device_printf(sc->dev, "Bus Reset\n");
pvscsi_write_cmd(sc, PVSCSI_CMD_RESET_BUS, NULL, 0);
pvscsi_process_cmp_ring(sc);
DEBUG_PRINTF(2, sc->dev, "bus reset done\n");
}
static void
pvscsi_device_reset(struct pvscsi_softc *sc, uint32_t target)
{
struct pvscsi_cmd_desc_reset_device cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.target = target;
device_printf(sc->dev, "Device reset for target %u\n", target);
pvscsi_write_cmd(sc, PVSCSI_CMD_RESET_DEVICE, &cmd, sizeof cmd);
pvscsi_process_cmp_ring(sc);
DEBUG_PRINTF(2, sc->dev, "device reset done\n");
}
static void
pvscsi_abort(struct pvscsi_softc *sc, uint32_t target, union ccb *ccb)
{
struct pvscsi_cmd_desc_abort_cmd cmd;
struct pvscsi_hcb *hcb;
uint64_t context;
pvscsi_process_cmp_ring(sc);
hcb = ccb->ccb_h.ccb_pvscsi_hcb;
if (hcb != NULL) {
context = pvscsi_hcb_to_context(sc, hcb);
memset(&cmd, 0, sizeof cmd);
cmd.target = target;
cmd.context = context;
device_printf(sc->dev, "Abort for target %u context %llx\n",
target, (unsigned long long)context);
pvscsi_write_cmd(sc, PVSCSI_CMD_ABORT_CMD, &cmd, sizeof(cmd));
pvscsi_process_cmp_ring(sc);
DEBUG_PRINTF(2, sc->dev, "abort done\n");
} else {
DEBUG_PRINTF(1, sc->dev,
"Target %u ccb %p not found for abort\n", target, ccb);
}
}
static int
pvscsi_probe(device_t dev)
{
if (pci_get_vendor(dev) == PCI_VENDOR_ID_VMWARE &&
pci_get_device(dev) == PCI_DEVICE_ID_VMWARE_PVSCSI) {
device_set_desc(dev, "VMware Paravirtual SCSI Controller");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
pvscsi_shutdown(device_t dev)
{
return (0);
}
static void
pvscsi_timeout(void *arg)
{
struct pvscsi_hcb *hcb;
struct pvscsi_softc *sc;
union ccb *ccb;
hcb = arg;
ccb = hcb->ccb;
if (ccb == NULL) {
/* Already completed */
return;
}
sc = ccb->ccb_h.ccb_pvscsi_sc;
mtx_assert(&sc->lock, MA_OWNED);
device_printf(sc->dev, "Command timed out hcb=%p ccb=%p.\n", hcb, ccb);
switch (hcb->recovery) {
case PVSCSI_HCB_NONE:
hcb->recovery = PVSCSI_HCB_ABORT;
pvscsi_abort(sc, ccb->ccb_h.target_id, ccb);
callout_reset_sbt(&hcb->callout, PVSCSI_ABORT_TIMEOUT * SBT_1S,
0, pvscsi_timeout, hcb, 0);
break;
case PVSCSI_HCB_ABORT:
hcb->recovery = PVSCSI_HCB_DEVICE_RESET;
pvscsi_freeze(sc);
pvscsi_device_reset(sc, ccb->ccb_h.target_id);
callout_reset_sbt(&hcb->callout, PVSCSI_RESET_TIMEOUT * SBT_1S,
0, pvscsi_timeout, hcb, 0);
break;
case PVSCSI_HCB_DEVICE_RESET:
hcb->recovery = PVSCSI_HCB_BUS_RESET;
pvscsi_freeze(sc);
pvscsi_bus_reset(sc);
callout_reset_sbt(&hcb->callout, PVSCSI_RESET_TIMEOUT * SBT_1S,
0, pvscsi_timeout, hcb, 0);
break;
case PVSCSI_HCB_BUS_RESET:
pvscsi_freeze(sc);
pvscsi_adapter_reset(sc);
break;
};
}
static void
pvscsi_process_completion(struct pvscsi_softc *sc,
struct pvscsi_ring_cmp_desc *e)
{
struct pvscsi_hcb *hcb;
union ccb *ccb;
uint32_t status;
uint32_t btstat;
uint32_t sdstat;
bus_dmasync_op_t op;
hcb = pvscsi_context_to_hcb(sc, e->context);
callout_stop(&hcb->callout);
ccb = hcb->ccb;
btstat = e->host_status;
sdstat = e->scsi_status;
ccb->csio.scsi_status = sdstat;
ccb->csio.resid = ccb->csio.dxfer_len - e->data_len;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
op = BUS_DMASYNC_POSTREAD;
} else {
op = BUS_DMASYNC_POSTWRITE;
}
bus_dmamap_sync(sc->buffer_dmat, hcb->dma_map, op);
bus_dmamap_unload(sc->buffer_dmat, hcb->dma_map);
}
if (btstat == BTSTAT_SUCCESS && sdstat == SCSI_STATUS_OK) {
DEBUG_PRINTF(3, sc->dev,
"completing command context %llx success\n",
(unsigned long long)e->context);
ccb->csio.resid = 0;
status = CAM_REQ_CMP;
} else {
switch (btstat) {
case BTSTAT_SUCCESS:
case BTSTAT_LINKED_COMMAND_COMPLETED:
case BTSTAT_LINKED_COMMAND_COMPLETED_WITH_FLAG:
switch (sdstat) {
case SCSI_STATUS_OK:
ccb->csio.resid = 0;
status = CAM_REQ_CMP;
break;
case SCSI_STATUS_CHECK_COND:
status = CAM_SCSI_STATUS_ERROR;
if (ccb->csio.sense_len != 0) {
status |= CAM_AUTOSNS_VALID;
memset(&ccb->csio.sense_data, 0,
sizeof(ccb->csio.sense_data));
memcpy(&ccb->csio.sense_data,
hcb->sense_buffer,
MIN(ccb->csio.sense_len,
e->sense_len));
}
break;
case SCSI_STATUS_BUSY:
case SCSI_STATUS_QUEUE_FULL:
status = CAM_REQUEUE_REQ;
break;
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_TASK_ABORTED:
status = CAM_REQ_ABORTED;
break;
default:
DEBUG_PRINTF(1, sc->dev,
"ccb: %p sdstat=0x%x\n", ccb, sdstat);
status = CAM_SCSI_STATUS_ERROR;
break;
}
break;
case BTSTAT_SELTIMEO:
status = CAM_SEL_TIMEOUT;
break;
case BTSTAT_DATARUN:
case BTSTAT_DATA_UNDERRUN:
status = CAM_DATA_RUN_ERR;
break;
case BTSTAT_ABORTQUEUE:
case BTSTAT_HATIMEOUT:
status = CAM_REQUEUE_REQ;
break;
case BTSTAT_NORESPONSE:
case BTSTAT_SENTRST:
case BTSTAT_RECVRST:
case BTSTAT_BUSRESET:
status = CAM_SCSI_BUS_RESET;
break;
case BTSTAT_SCSIPARITY:
status = CAM_UNCOR_PARITY;
break;
case BTSTAT_BUSFREE:
status = CAM_UNEXP_BUSFREE;
break;
case BTSTAT_INVPHASE:
status = CAM_SEQUENCE_FAIL;
break;
case BTSTAT_SENSFAILED:
status = CAM_AUTOSENSE_FAIL;
break;
case BTSTAT_LUNMISMATCH:
case BTSTAT_TAGREJECT:
case BTSTAT_DISCONNECT:
case BTSTAT_BADMSG:
case BTSTAT_INVPARAM:
status = CAM_REQ_CMP_ERR;
break;
case BTSTAT_HASOFTWARE:
case BTSTAT_HAHARDWARE:
status = CAM_NO_HBA;
break;
default:
device_printf(sc->dev, "unknown hba status: 0x%x\n",
btstat);
status = CAM_NO_HBA;
break;
}
DEBUG_PRINTF(3, sc->dev,
"completing command context %llx btstat %x sdstat %x - status %x\n",
(unsigned long long)e->context, btstat, sdstat, status);
}
ccb->ccb_h.ccb_pvscsi_hcb = NULL;
ccb->ccb_h.ccb_pvscsi_sc = NULL;
pvscsi_hcb_put(sc, hcb);
ccb->ccb_h.status =
status | (ccb->ccb_h.status & ~(CAM_STATUS_MASK | CAM_SIM_QUEUED));
if (sc->frozen) {
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
sc->frozen = 0;
}
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
}
xpt_done(ccb);
}
static void
pvscsi_process_cmp_ring(struct pvscsi_softc *sc)
{
struct pvscsi_ring_cmp_desc *ring;
struct pvscsi_rings_state *s;
struct pvscsi_ring_cmp_desc *e;
uint32_t mask;
mtx_assert(&sc->lock, MA_OWNED);
s = sc->rings_state;
ring = sc->cmp_ring;
mask = MASK(s->cmp_num_entries_log2);
while (s->cmp_cons_idx != s->cmp_prod_idx) {
e = ring + (s->cmp_cons_idx & mask);
pvscsi_process_completion(sc, e);
mb();
s->cmp_cons_idx++;
}
}
static void
pvscsi_process_msg(struct pvscsi_softc *sc, struct pvscsi_ring_msg_desc *e)
{
struct pvscsi_ring_msg_dev_status_changed *desc;
union ccb *ccb;
switch (e->type) {
case PVSCSI_MSG_DEV_ADDED:
case PVSCSI_MSG_DEV_REMOVED: {
desc = (struct pvscsi_ring_msg_dev_status_changed *)e;
device_printf(sc->dev, "MSG: device %s at scsi%u:%u:%u\n",
desc->type == PVSCSI_MSG_DEV_ADDED ? "addition" : "removal",
desc->bus, desc->target, desc->lun[1]);
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
device_printf(sc->dev,
"Error allocating CCB for dev change.\n");
break;
}
if (xpt_create_path(&ccb->ccb_h.path, NULL,
cam_sim_path(sc->sim), desc->target, desc->lun[1])
!= CAM_REQ_CMP) {
device_printf(sc->dev,
"Error creating path for dev change.\n");
xpt_free_ccb(ccb);
break;
}
xpt_rescan(ccb);
} break;
default:
device_printf(sc->dev, "Unknown msg type 0x%x\n", e->type);
};
}
static void
pvscsi_process_msg_ring(struct pvscsi_softc *sc)
{
struct pvscsi_ring_msg_desc *ring;
struct pvscsi_rings_state *s;
struct pvscsi_ring_msg_desc *e;
uint32_t mask;
mtx_assert(&sc->lock, MA_OWNED);
s = sc->rings_state;
ring = sc->msg_ring;
mask = MASK(s->msg_num_entries_log2);
while (s->msg_cons_idx != s->msg_prod_idx) {
e = ring + (s->msg_cons_idx & mask);
pvscsi_process_msg(sc, e);
mb();
s->msg_cons_idx++;
}
}
static void
pvscsi_intr_locked(struct pvscsi_softc *sc)
{
uint32_t val;
mtx_assert(&sc->lock, MA_OWNED);
val = pvscsi_read_intr_status(sc);
if ((val & PVSCSI_INTR_ALL_SUPPORTED) != 0) {
pvscsi_write_intr_status(sc, val & PVSCSI_INTR_ALL_SUPPORTED);
pvscsi_process_cmp_ring(sc);
if (sc->use_msg) {
pvscsi_process_msg_ring(sc);
}
}
}
static void
pvscsi_intr(void *xsc)
{
struct pvscsi_softc *sc;
sc = xsc;
mtx_assert(&sc->lock, MA_NOTOWNED);
mtx_lock(&sc->lock);
pvscsi_intr_locked(xsc);
mtx_unlock(&sc->lock);
}
static void
pvscsi_poll(struct cam_sim *sim)
{
struct pvscsi_softc *sc;
sc = cam_sim_softc(sim);
mtx_assert(&sc->lock, MA_OWNED);
pvscsi_intr_locked(sc);
}
static void
pvscsi_execute_ccb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct pvscsi_hcb *hcb;
struct pvscsi_ring_req_desc *e;
union ccb *ccb;
struct pvscsi_softc *sc;
struct pvscsi_rings_state *s;
uint8_t cdb0;
bus_dmasync_op_t op;
hcb = arg;
ccb = hcb->ccb;
e = hcb->e;
sc = ccb->ccb_h.ccb_pvscsi_sc;
s = sc->rings_state;
mtx_assert(&sc->lock, MA_OWNED);
if (error) {
device_printf(sc->dev, "pvscsi_execute_ccb error %d\n", error);
if (error == EFBIG) {
ccb->ccb_h.status = CAM_REQ_TOO_BIG;
} else {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
}
pvscsi_hcb_put(sc, hcb);
xpt_done(ccb);
return;
}
e->flags = 0;
op = 0;
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_NONE:
e->flags |= PVSCSI_FLAG_CMD_DIR_NONE;
break;
case CAM_DIR_IN:
e->flags |= PVSCSI_FLAG_CMD_DIR_TOHOST;
op = BUS_DMASYNC_PREREAD;
break;
case CAM_DIR_OUT:
e->flags |= PVSCSI_FLAG_CMD_DIR_TODEVICE;
op = BUS_DMASYNC_PREWRITE;
break;
case CAM_DIR_BOTH:
/* TODO: does this need handling? */
break;
}
if (nseg != 0) {
if (nseg > 1) {
int i;
struct pvscsi_sg_element *sge;
KASSERT(nseg <= PVSCSI_MAX_SG_ENTRIES_PER_SEGMENT,
("too many sg segments"));
sge = hcb->sg_list->sge;
e->flags |= PVSCSI_FLAG_CMD_WITH_SG_LIST;
for (i = 0; i < nseg; ++i) {
sge[i].addr = segs[i].ds_addr;
sge[i].length = segs[i].ds_len;
sge[i].flags = 0;
}
e->data_addr = hcb->sg_list_paddr;
} else {
e->data_addr = segs->ds_addr;
}
bus_dmamap_sync(sc->buffer_dmat, hcb->dma_map, op);
} else {
e->data_addr = 0;
}
cdb0 = e->cdb[0];
ccb->ccb_h.status |= CAM_SIM_QUEUED;
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
callout_reset_sbt(&hcb->callout, ccb->ccb_h.timeout * SBT_1MS,
0, pvscsi_timeout, hcb, 0);
}
mb();
s->req_prod_idx++;
pvscsi_kick_io(sc, cdb0);
}
static void
pvscsi_action(struct cam_sim *sim, union ccb *ccb)
{
struct pvscsi_softc *sc;
struct ccb_hdr *ccb_h;
sc = cam_sim_softc(sim);
ccb_h = &ccb->ccb_h;
mtx_assert(&sc->lock, MA_OWNED);
switch (ccb_h->func_code) {
case XPT_SCSI_IO:
{
struct ccb_scsiio *csio;
uint32_t req_num_entries_log2;
struct pvscsi_ring_req_desc *ring;
struct pvscsi_ring_req_desc *e;
struct pvscsi_rings_state *s;
struct pvscsi_hcb *hcb;
csio = &ccb->csio;
ring = sc->req_ring;
s = sc->rings_state;
hcb = NULL;
/*
* Check if it was completed already (such as aborted
* by upper layers)
*/
if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
xpt_done(ccb);
return;
}
req_num_entries_log2 = s->req_num_entries_log2;
if (s->req_prod_idx - s->cmp_cons_idx >=
(1 << req_num_entries_log2)) {
device_printf(sc->dev,
"Not enough room on completion ring.\n");
pvscsi_freeze(sc);
ccb_h->status = CAM_REQUEUE_REQ;
goto finish_ccb;
}
hcb = pvscsi_hcb_get(sc);
if (hcb == NULL) {
device_printf(sc->dev, "No free hcbs.\n");
pvscsi_freeze(sc);
ccb_h->status = CAM_REQUEUE_REQ;
goto finish_ccb;
}
hcb->ccb = ccb;
ccb_h->ccb_pvscsi_hcb = hcb;
ccb_h->ccb_pvscsi_sc = sc;
if (csio->cdb_len > sizeof(e->cdb)) {
DEBUG_PRINTF(2, sc->dev, "cdb length %u too large\n",
csio->cdb_len);
ccb_h->status = CAM_REQ_INVALID;
goto finish_ccb;
}
if (ccb_h->flags & CAM_CDB_PHYS) {
DEBUG_PRINTF(2, sc->dev,
"CAM_CDB_PHYS not implemented\n");
ccb_h->status = CAM_REQ_INVALID;
goto finish_ccb;
}
e = ring + (s->req_prod_idx & MASK(req_num_entries_log2));
e->bus = cam_sim_bus(sim);
e->target = ccb_h->target_id;
memset(e->lun, 0, sizeof(e->lun));
e->lun[1] = ccb_h->target_lun;
e->data_addr = 0;
e->data_len = csio->dxfer_len;
e->vcpu_hint = curcpu;
e->cdb_len = csio->cdb_len;
memcpy(e->cdb, scsiio_cdb_ptr(csio), csio->cdb_len);
e->sense_addr = 0;
e->sense_len = csio->sense_len;
if (e->sense_len > 0) {
e->sense_addr = hcb->sense_buffer_paddr;
}
e->tag = MSG_SIMPLE_Q_TAG;
if (ccb_h->flags & CAM_TAG_ACTION_VALID) {
e->tag = csio->tag_action;
}
e->context = pvscsi_hcb_to_context(sc, hcb);
hcb->e = e;
DEBUG_PRINTF(3, sc->dev,
" queuing command %02x context %llx\n", e->cdb[0],
(unsigned long long)e->context);
bus_dmamap_load_ccb(sc->buffer_dmat, hcb->dma_map, ccb,
pvscsi_execute_ccb, hcb, 0);
break;
finish_ccb:
if (hcb != NULL) {
pvscsi_hcb_put(sc, hcb);
}
xpt_done(ccb);
} break;
case XPT_ABORT:
{
struct pvscsi_hcb *abort_hcb;
union ccb *abort_ccb;
abort_ccb = ccb->cab.abort_ccb;
abort_hcb = abort_ccb->ccb_h.ccb_pvscsi_hcb;
if (abort_hcb->ccb != NULL && abort_hcb->ccb == abort_ccb) {
if (abort_ccb->ccb_h.func_code == XPT_SCSI_IO) {
pvscsi_abort(sc, ccb_h->target_id, abort_ccb);
ccb_h->status = CAM_REQ_CMP;
} else {
ccb_h->status = CAM_UA_ABORT;
}
} else {
device_printf(sc->dev,
"Could not find hcb for ccb %p (tgt %u)\n",
ccb, ccb_h->target_id);
ccb_h->status = CAM_REQ_CMP;
}
xpt_done(ccb);
} break;
case XPT_RESET_DEV:
{
pvscsi_device_reset(sc, ccb_h->target_id);
ccb_h->status = CAM_REQ_CMP;
xpt_done(ccb);
} break;
case XPT_RESET_BUS:
{
pvscsi_bus_reset(sc);
ccb_h->status = CAM_REQ_CMP;
xpt_done(ccb);
} break;
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi;
cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED;
cpi->hba_eng_cnt = 0;
/* cpi->vuhba_flags = 0; */
cpi->max_target = sc->max_targets;
cpi->max_lun = 0;
cpi->async_flags = 0;
cpi->hpath_id = 0;
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->initiator_id = 7;
cpi->base_transfer_speed = 750000;
strlcpy(cpi->sim_vid, "VMware", SIM_IDLEN);
strlcpy(cpi->hba_vid, "VMware", HBA_IDLEN);
strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->maxio = PVSCSI_MAX_SG_ENTRIES_PER_SEGMENT * PAGE_SIZE;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_SPC2;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
ccb_h->status = CAM_REQ_CMP;
xpt_done(ccb);
} break;
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts;
cts = &ccb->cts;
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_SPC2;
cts->transport = XPORT_SAS;
cts->transport_version = 0;
cts->proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
cts->proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
ccb_h->status = CAM_REQ_CMP;
xpt_done(ccb);
} break;
case XPT_CALC_GEOMETRY:
{
cam_calc_geometry(&ccb->ccg, 1);
xpt_done(ccb);
} break;
default:
ccb_h->status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
pvscsi_free_interrupts(struct pvscsi_softc *sc)
{
if (sc->irq_handler != NULL) {
bus_teardown_intr(sc->dev, sc->irq_res, sc->irq_handler);
}
if (sc->irq_res != NULL) {
bus_release_resource(sc->dev, SYS_RES_IRQ, sc->irq_id,
sc->irq_res);
}
if (sc->use_msi_or_msix) {
pci_release_msi(sc->dev);
}
}
static int
pvscsi_setup_interrupts(struct pvscsi_softc *sc)
{
int error;
int flags;
int use_msix;
int use_msi;
int count;
sc->use_msi_or_msix = 0;
use_msix = pvscsi_get_tunable(sc, "use_msix", pvscsi_use_msix);
use_msi = pvscsi_get_tunable(sc, "use_msi", pvscsi_use_msi);
if (use_msix && pci_msix_count(sc->dev) > 0) {
count = 1;
if (pci_alloc_msix(sc->dev, &count) == 0 && count == 1) {
sc->use_msi_or_msix = 1;
device_printf(sc->dev, "Interrupt: MSI-X\n");
} else {
pci_release_msi(sc->dev);
}
}
if (sc->use_msi_or_msix == 0 && use_msi && pci_msi_count(sc->dev) > 0) {
count = 1;
if (pci_alloc_msi(sc->dev, &count) == 0 && count == 1) {
sc->use_msi_or_msix = 1;
device_printf(sc->dev, "Interrupt: MSI\n");
} else {
pci_release_msi(sc->dev);
}
}
flags = RF_ACTIVE;
if (sc->use_msi_or_msix) {
sc->irq_id = 1;
} else {
device_printf(sc->dev, "Interrupt: INT\n");
sc->irq_id = 0;
flags |= RF_SHAREABLE;
}
sc->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &sc->irq_id,
flags);
if (sc->irq_res == NULL) {
device_printf(sc->dev, "IRQ allocation failed\n");
if (sc->use_msi_or_msix) {
pci_release_msi(sc->dev);
}
return (ENXIO);
}
error = bus_setup_intr(sc->dev, sc->irq_res,
INTR_TYPE_CAM | INTR_MPSAFE, NULL, pvscsi_intr, sc,
&sc->irq_handler);
if (error) {
device_printf(sc->dev, "IRQ handler setup failed\n");
pvscsi_free_interrupts(sc);
return (error);
}
return (0);
}
static void
pvscsi_free_all(struct pvscsi_softc *sc)
{
if (sc->sim) {
int32_t status;
if (sc->bus_path) {
xpt_free_path(sc->bus_path);
}
status = xpt_bus_deregister(cam_sim_path(sc->sim));
if (status != CAM_REQ_CMP) {
device_printf(sc->dev,
"Error deregistering bus, status=%d\n", status);
}
cam_sim_free(sc->sim, TRUE);
}
pvscsi_dma_free_per_hcb(sc, sc->hcb_cnt);
if (sc->hcbs) {
free(sc->hcbs, M_PVSCSI);
}
pvscsi_free_rings(sc);
pvscsi_free_interrupts(sc);
if (sc->buffer_dmat != NULL) {
bus_dma_tag_destroy(sc->buffer_dmat);
}
if (sc->parent_dmat != NULL) {
bus_dma_tag_destroy(sc->parent_dmat);
}
if (sc->mm_res != NULL) {
bus_release_resource(sc->dev, SYS_RES_MEMORY, sc->mm_rid,
sc->mm_res);
}
}
static int
pvscsi_attach(device_t dev)
{
struct pvscsi_softc *sc;
int rid;
int barid;
int error;
int max_queue_depth;
int adapter_queue_size;
struct cam_devq *devq;
sc = device_get_softc(dev);
sc->dev = dev;
mtx_init(&sc->lock, "pvscsi", NULL, MTX_DEF);
pci_enable_busmaster(dev);
sc->mm_rid = -1;
for (barid = 0; barid <= PCIR_MAX_BAR_0; ++barid) {
rid = PCIR_BAR(barid);
sc->mm_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mm_res != NULL) {
sc->mm_rid = rid;
break;
}
}
if (sc->mm_res == NULL) {
device_printf(dev, "could not map device memory\n");
return (ENXIO);
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
&sc->parent_dmat);
if (error) {
device_printf(dev, "parent dma tag create failure, error %d\n",
error);
pvscsi_free_all(sc);
return (ENXIO);
}
error = bus_dma_tag_create(sc->parent_dmat, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
PVSCSI_MAX_SG_ENTRIES_PER_SEGMENT * PAGE_SIZE,
PVSCSI_MAX_SG_ENTRIES_PER_SEGMENT, PAGE_SIZE, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->buffer_dmat);
if (error) {
device_printf(dev, "parent dma tag create failure, error %d\n",
error);
pvscsi_free_all(sc);
return (ENXIO);
}
error = pvscsi_setup_interrupts(sc);
if (error) {
device_printf(dev, "Interrupt setup failed\n");
pvscsi_free_all(sc);
return (error);
}
sc->max_targets = pvscsi_get_max_targets(sc);
sc->use_msg = pvscsi_get_tunable(sc, "use_msg", pvscsi_use_msg) &&
pvscsi_hw_supports_msg(sc);
sc->msg_ring_num_pages = sc->use_msg ? 1 : 0;
sc->req_ring_num_pages = pvscsi_get_tunable(sc, "request_ring_pages",
pvscsi_request_ring_pages);
if (sc->req_ring_num_pages <= 0) {
if (sc->max_targets <= 16) {
sc->req_ring_num_pages =
PVSCSI_DEFAULT_NUM_PAGES_REQ_RING;
} else {
sc->req_ring_num_pages = PVSCSI_MAX_NUM_PAGES_REQ_RING;
}
} else if (sc->req_ring_num_pages > PVSCSI_MAX_NUM_PAGES_REQ_RING) {
sc->req_ring_num_pages = PVSCSI_MAX_NUM_PAGES_REQ_RING;
}
sc->cmp_ring_num_pages = sc->req_ring_num_pages;
max_queue_depth = pvscsi_get_tunable(sc, "max_queue_depth",
pvscsi_max_queue_depth);
adapter_queue_size = (sc->req_ring_num_pages * PAGE_SIZE) /
sizeof(struct pvscsi_ring_req_desc);
if (max_queue_depth > 0) {
adapter_queue_size = MIN(adapter_queue_size, max_queue_depth);
}
adapter_queue_size = MIN(adapter_queue_size,
PVSCSI_MAX_REQ_QUEUE_DEPTH);
device_printf(sc->dev, "Use Msg: %d\n", sc->use_msg);
device_printf(sc->dev, "REQ num pages: %d\n", sc->req_ring_num_pages);
device_printf(sc->dev, "CMP num pages: %d\n", sc->cmp_ring_num_pages);
device_printf(sc->dev, "MSG num pages: %d\n", sc->msg_ring_num_pages);
device_printf(sc->dev, "Queue size: %d\n", adapter_queue_size);
if (pvscsi_allocate_rings(sc)) {
device_printf(dev, "ring allocation failed\n");
pvscsi_free_all(sc);
return (ENXIO);
}
sc->hcb_cnt = adapter_queue_size;
sc->hcbs = malloc(sc->hcb_cnt * sizeof(*sc->hcbs), M_PVSCSI,
M_NOWAIT | M_ZERO);
if (sc->hcbs == NULL) {
device_printf(dev, "error allocating hcb array\n");
pvscsi_free_all(sc);
return (ENXIO);
}
if (pvscsi_dma_alloc_per_hcb(sc)) {
device_printf(dev, "error allocating per hcb dma memory\n");
pvscsi_free_all(sc);
return (ENXIO);
}
pvscsi_adapter_reset(sc);
devq = cam_simq_alloc(adapter_queue_size);
if (devq == NULL) {
device_printf(dev, "cam devq alloc failed\n");
pvscsi_free_all(sc);
return (ENXIO);
}
sc->sim = cam_sim_alloc(pvscsi_action, pvscsi_poll, "pvscsi", sc,
device_get_unit(dev), &sc->lock, 1, adapter_queue_size, devq);
if (sc->sim == NULL) {
device_printf(dev, "cam sim alloc failed\n");
cam_simq_free(devq);
pvscsi_free_all(sc);
return (ENXIO);
}
mtx_lock(&sc->lock);
if (xpt_bus_register(sc->sim, dev, 0) != CAM_SUCCESS) {
device_printf(dev, "xpt bus register failed\n");
pvscsi_free_all(sc);
mtx_unlock(&sc->lock);
return (ENXIO);
}
if (xpt_create_path(&sc->bus_path, NULL, cam_sim_path(sc->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
device_printf(dev, "xpt create path failed\n");
pvscsi_free_all(sc);
mtx_unlock(&sc->lock);
return (ENXIO);
}
pvscsi_setup_rings(sc);
if (sc->use_msg) {
pvscsi_setup_msg_ring(sc);
}
sc->use_req_call_threshold = pvscsi_setup_req_call(sc, 1);
pvscsi_intr_enable(sc);
mtx_unlock(&sc->lock);
return (0);
}
static int
pvscsi_detach(device_t dev)
{
struct pvscsi_softc *sc;
sc = device_get_softc(dev);
pvscsi_intr_disable(sc);
pvscsi_adapter_reset(sc);
if (sc->irq_handler != NULL) {
bus_teardown_intr(dev, sc->irq_res, sc->irq_handler);
}
mtx_lock(&sc->lock);
pvscsi_free_all(sc);
mtx_unlock(&sc->lock);
mtx_destroy(&sc->lock);
return (0);
}
static device_method_t pvscsi_methods[] = {
DEVMETHOD(device_probe, pvscsi_probe),
DEVMETHOD(device_shutdown, pvscsi_shutdown),
DEVMETHOD(device_attach, pvscsi_attach),
DEVMETHOD(device_detach, pvscsi_detach),
DEVMETHOD_END
};
static driver_t pvscsi_driver = {
"pvscsi", pvscsi_methods, sizeof(struct pvscsi_softc)
};
static devclass_t pvscsi_devclass;
DRIVER_MODULE(pvscsi, pci, pvscsi_driver, pvscsi_devclass, 0, 0);
MODULE_DEPEND(pvscsi, pci, 1, 1, 1);
MODULE_DEPEND(pvscsi, cam, 1, 1, 1);