freebsd-dev/sys/ofed/drivers/infiniband/core/addr.c
Hans Petter Selasky 44d8a0fc60 Ticks are 32-bit in FreeBSD.
MFC after:	3 days
Sponsored by:	Mellanox Technologies
2017-08-03 09:18:25 +00:00

687 lines
16 KiB
C

/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <net/route.h>
#include <net/netevent.h>
#include <rdma/ib_addr.h>
#include <netinet/if_ether.h>
#include <netinet6/scope6_var.h>
MODULE_AUTHOR("Sean Hefty");
MODULE_DESCRIPTION("IB Address Translation");
MODULE_LICENSE("Dual BSD/GPL");
struct addr_req {
struct list_head list;
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
struct rdma_dev_addr *addr;
struct rdma_addr_client *client;
void *context;
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context);
unsigned long timeout;
int status;
};
static void process_req(struct work_struct *work);
static DEFINE_MUTEX(lock);
static LIST_HEAD(req_list);
static struct delayed_work work;
static struct workqueue_struct *addr_wq;
static struct rdma_addr_client self;
void rdma_addr_register_client(struct rdma_addr_client *client)
{
atomic_set(&client->refcount, 1);
init_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_register_client);
static inline void put_client(struct rdma_addr_client *client)
{
if (atomic_dec_and_test(&client->refcount))
complete(&client->comp);
}
void rdma_addr_unregister_client(struct rdma_addr_client *client)
{
put_client(client);
wait_for_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_unregister_client);
int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct ifnet *dev,
const unsigned char *dst_dev_addr)
{
if (dev->if_type == IFT_INFINIBAND)
dev_addr->dev_type = ARPHRD_INFINIBAND;
else if (dev->if_type == IFT_ETHER)
dev_addr->dev_type = ARPHRD_ETHER;
else
dev_addr->dev_type = 0;
memcpy(dev_addr->src_dev_addr, IF_LLADDR(dev), dev->if_addrlen);
memcpy(dev_addr->broadcast, __DECONST(char *, dev->if_broadcastaddr),
dev->if_addrlen);
if (dst_dev_addr)
memcpy(dev_addr->dst_dev_addr, dst_dev_addr, dev->if_addrlen);
dev_addr->bound_dev_if = dev->if_index;
return 0;
}
EXPORT_SYMBOL(rdma_copy_addr);
#define SCOPE_ID_CACHE(_scope_id, _addr6) do { \
(_addr6)->sin6_addr.s6_addr[3] = (_scope_id); \
(_addr6)->sin6_scope_id = 0; } while (0)
#define SCOPE_ID_RESTORE(_scope_id, _addr6) do { \
(_addr6)->sin6_scope_id = (_scope_id); \
(_addr6)->sin6_addr.s6_addr[3] = 0; } while (0)
int rdma_translate_ip(struct sockaddr *addr, struct rdma_dev_addr *dev_addr,
u16 *vlan_id)
{
struct net_device *dev;
int ret = -EADDRNOTAVAIL;
if (dev_addr->bound_dev_if) {
dev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
if (!dev)
return -ENODEV;
ret = rdma_copy_addr(dev_addr, dev, NULL);
dev_put(dev);
return ret;
}
switch (addr->sa_family) {
case AF_INET:
dev = ip_dev_find(&init_net,
((struct sockaddr_in *) addr)->sin_addr.s_addr);
if (!dev)
return ret;
ret = rdma_copy_addr(dev_addr, dev, NULL);
if (vlan_id)
*vlan_id = rdma_vlan_dev_vlan_id(dev);
dev_put(dev);
break;
#if defined(INET6)
case AF_INET6:
{
struct sockaddr_in6 *sin6;
struct ifaddr *ifa;
in_port_t port;
uint32_t scope_id;
sin6 = (struct sockaddr_in6 *)addr;
port = sin6->sin6_port;
sin6->sin6_port = 0;
scope_id = sin6->sin6_scope_id;
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr))
SCOPE_ID_CACHE(scope_id, sin6);
CURVNET_SET_QUIET(&init_net);
ifa = ifa_ifwithaddr(addr);
CURVNET_RESTORE();
sin6->sin6_port = port;
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr))
SCOPE_ID_RESTORE(scope_id, sin6);
if (ifa == NULL) {
ret = -ENODEV;
break;
}
ret = rdma_copy_addr(dev_addr, ifa->ifa_ifp, NULL);
if (vlan_id)
*vlan_id = rdma_vlan_dev_vlan_id(ifa->ifa_ifp);
ifa_free(ifa);
break;
}
#endif
default:
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_translate_ip);
static void set_timeout(unsigned long time)
{
int delay; /* under FreeBSD ticks are 32-bit */
delay = time - jiffies;
if (delay <= 0)
delay = 1;
mod_delayed_work(addr_wq, &work, delay);
}
static void queue_req(struct addr_req *req)
{
struct addr_req *temp_req;
mutex_lock(&lock);
list_for_each_entry_reverse(temp_req, &req_list, list) {
if (time_after_eq(req->timeout, temp_req->timeout))
break;
}
list_add(&req->list, &temp_req->list);
if (req_list.next == &req->list)
set_timeout(req->timeout);
mutex_unlock(&lock);
}
static int addr_resolve(struct sockaddr *src_in,
struct sockaddr *dst_in,
struct rdma_dev_addr *addr)
{
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
struct ifaddr *ifa;
struct ifnet *ifp;
struct rtentry *rte;
#if defined(INET) || defined(INET6)
in_port_t port;
#endif
#ifdef INET6
uint32_t scope_id;
#endif
u_char edst[MAX_ADDR_LEN];
int multi;
int bcast;
int is_gw = 0;
int error = 0;
CURVNET_SET_QUIET(&init_net);
/*
* Determine whether the address is unicast, multicast, or broadcast
* and whether the source interface is valid.
*/
multi = 0;
bcast = 0;
sin = NULL;
sin6 = NULL;
ifp = NULL;
rte = NULL;
ifa = NULL;
ifp = NULL;
memset(edst, 0, sizeof(edst));
#ifdef INET6
scope_id = -1U;
#endif
switch (dst_in->sa_family) {
#ifdef INET
case AF_INET:
sin = (struct sockaddr_in *)dst_in;
if (sin->sin_addr.s_addr == INADDR_BROADCAST)
bcast = 1;
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
multi = 1;
sin = (struct sockaddr_in *)src_in;
if (sin->sin_addr.s_addr != INADDR_ANY) {
/*
* Address comparison fails if the port is set
* cache it here to be restored later.
*/
port = sin->sin_port;
sin->sin_port = 0;
memset(&sin->sin_zero, 0, sizeof(sin->sin_zero));
/*
* If we have a source address to use look it
* up first and verify that it is a local
* interface:
*/
CURVNET_SET_QUIET(&init_net);
ifa = ifa_ifwithaddr(src_in);
CURVNET_RESTORE();
sin->sin_port = port;
if (ifa == NULL) {
error = ENETUNREACH;
goto done;
}
ifp = ifa->ifa_ifp;
ifa_free(ifa);
if (bcast || multi)
goto mcast;
}
break;
#endif
#ifdef INET6
case AF_INET6:
sin6 = (struct sockaddr_in6 *)dst_in;
if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
multi = 1;
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
/*
* The IB address comparison fails if the
* scope ID is set and not part of the addr:
*/
scope_id = sin6->sin6_scope_id;
if (scope_id < 256)
SCOPE_ID_CACHE(scope_id, sin6);
}
sin6 = (struct sockaddr_in6 *)src_in;
if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
port = sin6->sin6_port;
sin6->sin6_port = 0;
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
if (scope_id < 256)
SCOPE_ID_CACHE(scope_id, sin6);
}
/*
* If we have a source address to use look it
* up first and verify that it is a local
* interface:
*/
CURVNET_SET_QUIET(&init_net);
ifa = ifa_ifwithaddr(src_in);
CURVNET_RESTORE();
sin6->sin6_port = port;
if (ifa == NULL) {
error = ENETUNREACH;
goto done;
}
ifp = ifa->ifa_ifp;
ifa_free(ifa);
if (bcast || multi)
goto mcast;
}
break;
#endif
default:
error = EINVAL;
goto done;
}
/*
* Make sure the route exists and has a valid link.
*/
rte = rtalloc1(dst_in, 1, 0);
if (rte == NULL || rte->rt_ifp == NULL || !RT_LINK_IS_UP(rte->rt_ifp)) {
if (rte)
RTFREE_LOCKED(rte);
error = EHOSTUNREACH;
goto done;
}
if (rte->rt_flags & RTF_GATEWAY)
is_gw = 1;
/*
* If it's not multicast or broadcast and the route doesn't match the
* requested interface return unreachable. Otherwise fetch the
* correct interface pointer and unlock the route.
*/
if (multi || bcast) {
if (ifp == NULL) {
ifp = rte->rt_ifp;
/* rt_ifa holds the route answer source address */
ifa = rte->rt_ifa;
}
RTFREE_LOCKED(rte);
} else if (ifp && ifp != rte->rt_ifp) {
RTFREE_LOCKED(rte);
error = ENETUNREACH;
goto done;
} else {
if (ifp == NULL) {
ifp = rte->rt_ifp;
ifa = rte->rt_ifa;
}
RT_UNLOCK(rte);
}
#if defined(INET) || defined(INET6)
mcast:
#endif
if (bcast) {
memcpy(edst, ifp->if_broadcastaddr, ifp->if_addrlen);
goto done;
} else if (multi) {
struct sockaddr *llsa;
struct sockaddr_dl sdl;
sdl.sdl_len = sizeof(sdl);
llsa = (struct sockaddr *)&sdl;
if (ifp->if_resolvemulti == NULL) {
error = EOPNOTSUPP;
goto done;
}
error = ifp->if_resolvemulti(ifp, &llsa, dst_in);
if (error == 0) {
memcpy(edst, LLADDR((struct sockaddr_dl *)llsa),
ifp->if_addrlen);
}
goto done;
}
/*
* Resolve the link local address.
*/
switch (dst_in->sa_family) {
#ifdef INET
case AF_INET:
error = arpresolve(ifp, is_gw, NULL,
is_gw ? rte->rt_gateway : dst_in, edst, NULL, NULL);
break;
#endif
#ifdef INET6
case AF_INET6:
error = nd6_resolve(ifp, is_gw, NULL,
is_gw ? rte->rt_gateway : dst_in, edst, NULL, NULL);
break;
#endif
default:
KASSERT(0, ("rdma_addr_resolve: Unreachable"));
error = EINVAL;
break;
}
RTFREE(rte);
done:
if (error == 0)
error = -rdma_copy_addr(addr, ifp, edst);
if (error == 0)
memcpy(src_in, ifa->ifa_addr, ip_addr_size(ifa->ifa_addr));
#ifdef INET6
if (scope_id < 256) {
sin6 = (struct sockaddr_in6 *)src_in;
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr))
SCOPE_ID_RESTORE(scope_id, sin6);
sin6 = (struct sockaddr_in6 *)dst_in;
SCOPE_ID_RESTORE(scope_id, sin6);
}
#endif
if (error == EWOULDBLOCK)
error = ENODATA;
CURVNET_RESTORE();
return -error;
}
static void process_req(struct work_struct *work)
{
struct addr_req *req, *temp_req;
struct sockaddr *src_in, *dst_in;
struct list_head done_list;
INIT_LIST_HEAD(&done_list);
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->status == -ENODATA) {
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
req->status = addr_resolve(src_in, dst_in, req->addr);
if (req->status && time_after_eq(jiffies, req->timeout))
req->status = -ETIMEDOUT;
else if (req->status == -ENODATA)
continue;
}
list_move_tail(&req->list, &done_list);
}
if (!list_empty(&req_list)) {
req = list_entry(req_list.next, struct addr_req, list);
set_timeout(req->timeout);
}
mutex_unlock(&lock);
list_for_each_entry_safe(req, temp_req, &done_list, list) {
list_del(&req->list);
req->callback(req->status, (struct sockaddr *) &req->src_addr,
req->addr, req->context);
put_client(req->client);
kfree(req);
}
}
int rdma_resolve_ip(struct rdma_addr_client *client,
struct sockaddr *src_addr, struct sockaddr *dst_addr,
struct rdma_dev_addr *addr, int timeout_ms,
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context),
void *context)
{
struct sockaddr *src_in, *dst_in;
struct addr_req *req;
int ret = 0;
req = kzalloc(sizeof *req, GFP_KERNEL);
if (!req)
return -ENOMEM;
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family) {
ret = -EINVAL;
goto err;
}
memcpy(src_in, src_addr, ip_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
memcpy(dst_in, dst_addr, ip_addr_size(dst_addr));
req->addr = addr;
req->callback = callback;
req->context = context;
req->client = client;
atomic_inc(&client->refcount);
req->status = addr_resolve(src_in, dst_in, addr);
switch (req->status) {
case 0:
req->timeout = jiffies;
queue_req(req);
break;
case -ENODATA:
req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
queue_req(req);
break;
default:
ret = req->status;
atomic_dec(&client->refcount);
goto err;
}
return ret;
err:
kfree(req);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_ip);
void rdma_addr_cancel(struct rdma_dev_addr *addr)
{
struct addr_req *req, *temp_req;
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->addr == addr) {
req->status = -ECANCELED;
req->timeout = jiffies;
list_move(&req->list, &req_list);
set_timeout(req->timeout);
break;
}
}
mutex_unlock(&lock);
}
EXPORT_SYMBOL(rdma_addr_cancel);
struct resolve_cb_context {
struct rdma_dev_addr *addr;
struct completion comp;
};
static void resolve_cb(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context)
{
memcpy(((struct resolve_cb_context *)context)->addr, addr, sizeof(struct
rdma_dev_addr));
complete(&((struct resolve_cb_context *)context)->comp);
}
int rdma_addr_find_dmac_by_grh(union ib_gid *sgid, union ib_gid *dgid, u8 *dmac,
u16 *vlan_id, u32 scope_id)
{
int ret = 0;
struct rdma_dev_addr dev_addr;
struct resolve_cb_context ctx;
struct net_device *dev;
union {
struct sockaddr _sockaddr;
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} sgid_addr, dgid_addr;
ret = rdma_gid2ip(&sgid_addr._sockaddr, sgid, scope_id);
if (ret)
return ret;
ret = rdma_gid2ip(&dgid_addr._sockaddr, dgid, scope_id);
if (ret)
return ret;
memset(&dev_addr, 0, sizeof(dev_addr));
ctx.addr = &dev_addr;
init_completion(&ctx.comp);
ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
&dev_addr, 1000, resolve_cb, &ctx);
if (ret)
return ret;
wait_for_completion(&ctx.comp);
memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
if (!dev)
return -ENODEV;
if (vlan_id)
*vlan_id = rdma_vlan_dev_vlan_id(dev);
dev_put(dev);
return ret;
}
EXPORT_SYMBOL(rdma_addr_find_dmac_by_grh);
u32 rdma_get_ipv6_scope_id(struct ib_device *ib, u8 port_num)
{
#ifdef INET6
struct ifnet *ifp;
if (ib->get_netdev == NULL)
return (-1U);
ifp = ib->get_netdev(ib, port_num);
if (ifp == NULL)
return (-1U);
return (in6_getscopezone(ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
#else
return (-1U);
#endif
}
int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id,
u32 scope_id)
{
int ret = 0;
struct rdma_dev_addr dev_addr;
union {
struct sockaddr _sockaddr;
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} gid_addr;
ret = rdma_gid2ip(&gid_addr._sockaddr, sgid, scope_id);
if (ret)
return ret;
memset(&dev_addr, 0, sizeof(dev_addr));
ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
if (ret)
return ret;
memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
return ret;
}
EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
static int netevent_callback(struct notifier_block *self, unsigned long event,
void *ctx)
{
if (event == NETEVENT_NEIGH_UPDATE) {
set_timeout(jiffies);
}
return 0;
}
static struct notifier_block nb = {
.notifier_call = netevent_callback
};
static int __init addr_init(void)
{
INIT_DELAYED_WORK(&work, process_req);
addr_wq = create_singlethread_workqueue("ib_addr");
if (!addr_wq)
return -ENOMEM;
register_netevent_notifier(&nb);
rdma_addr_register_client(&self);
return 0;
}
static void __exit addr_cleanup(void)
{
rdma_addr_unregister_client(&self);
unregister_netevent_notifier(&nb);
destroy_workqueue(addr_wq);
}
module_init(addr_init);
module_exit(addr_cleanup);