352a2062c9
This redundant call was introduced by mistake in r343772. MFC after: 3 days Sponsored by: Sunny Valley Networks
506 lines
14 KiB
C
506 lines
14 KiB
C
/*
|
|
* Copyright (C) 2014-2018 Vincenzo Maffione, Luigi Rizzo.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <net/netmap.h>
|
|
#include <sys/selinfo.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h> /* vtophys ? */
|
|
#include <dev/netmap/netmap_kern.h>
|
|
|
|
/*
|
|
* Return 1 if the queue identified by 't' and 'idx' is in netmap mode.
|
|
*/
|
|
static int
|
|
vtnet_netmap_queue_on(struct vtnet_softc *sc, enum txrx t, int idx)
|
|
{
|
|
struct netmap_adapter *na = NA(sc->vtnet_ifp);
|
|
|
|
if (!nm_native_on(na))
|
|
return 0;
|
|
|
|
if (t == NR_RX)
|
|
return !!(idx < na->num_rx_rings &&
|
|
na->rx_rings[idx]->nr_mode == NKR_NETMAP_ON);
|
|
|
|
return !!(idx < na->num_tx_rings &&
|
|
na->tx_rings[idx]->nr_mode == NKR_NETMAP_ON);
|
|
}
|
|
|
|
static void
|
|
vtnet_free_used(struct virtqueue *vq, int netmap_bufs, enum txrx t, int idx)
|
|
{
|
|
void *cookie;
|
|
int deq = 0;
|
|
|
|
while ((cookie = virtqueue_dequeue(vq, NULL)) != NULL) {
|
|
if (netmap_bufs) {
|
|
/* These are netmap buffers: there is nothing to do. */
|
|
} else {
|
|
/* These are mbufs that we need to free. */
|
|
struct mbuf *m;
|
|
|
|
if (t == NR_TX) {
|
|
struct vtnet_tx_header *txhdr = cookie;
|
|
m = txhdr->vth_mbuf;
|
|
m_freem(m);
|
|
uma_zfree(vtnet_tx_header_zone, txhdr);
|
|
} else {
|
|
m = cookie;
|
|
m_freem(m);
|
|
}
|
|
}
|
|
deq++;
|
|
}
|
|
|
|
if (deq)
|
|
nm_prinf("%d sgs dequeued from %s-%d (netmap=%d)",
|
|
deq, nm_txrx2str(t), idx, netmap_bufs);
|
|
}
|
|
|
|
/* Register and unregister. */
|
|
static int
|
|
vtnet_netmap_reg(struct netmap_adapter *na, int state)
|
|
{
|
|
struct ifnet *ifp = na->ifp;
|
|
struct vtnet_softc *sc = ifp->if_softc;
|
|
int success;
|
|
int i;
|
|
|
|
/* Drain the taskqueues to make sure that there are no worker threads
|
|
* accessing the virtqueues. */
|
|
vtnet_drain_taskqueues(sc);
|
|
|
|
VTNET_CORE_LOCK(sc);
|
|
|
|
/* We need nm_netmap_on() to return true when called by
|
|
* vtnet_init_locked() below. */
|
|
if (state)
|
|
nm_set_native_flags(na);
|
|
|
|
/* We need to trigger a device reset in order to unexpose guest buffers
|
|
* published to the host. */
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
/* Get pending used buffers. The way they are freed depends on whether
|
|
* they are netmap buffer or they are mbufs. We can tell apart the two
|
|
* cases by looking at kring->nr_mode, before this is possibly updated
|
|
* in the loop below. */
|
|
for (i = 0; i < sc->vtnet_act_vq_pairs; i++) {
|
|
struct vtnet_txq *txq = &sc->vtnet_txqs[i];
|
|
struct vtnet_rxq *rxq = &sc->vtnet_rxqs[i];
|
|
struct netmap_kring *kring;
|
|
|
|
VTNET_TXQ_LOCK(txq);
|
|
kring = NMR(na, NR_TX)[i];
|
|
vtnet_free_used(txq->vtntx_vq,
|
|
kring->nr_mode == NKR_NETMAP_ON, NR_TX, i);
|
|
VTNET_TXQ_UNLOCK(txq);
|
|
|
|
VTNET_RXQ_LOCK(rxq);
|
|
kring = NMR(na, NR_RX)[i];
|
|
vtnet_free_used(rxq->vtnrx_vq,
|
|
kring->nr_mode == NKR_NETMAP_ON, NR_RX, i);
|
|
VTNET_RXQ_UNLOCK(rxq);
|
|
}
|
|
vtnet_init_locked(sc);
|
|
success = (ifp->if_drv_flags & IFF_DRV_RUNNING) ? 0 : ENXIO;
|
|
|
|
if (state) {
|
|
netmap_krings_mode_commit(na, state);
|
|
} else {
|
|
nm_clear_native_flags(na);
|
|
netmap_krings_mode_commit(na, state);
|
|
}
|
|
|
|
VTNET_CORE_UNLOCK(sc);
|
|
|
|
return success;
|
|
}
|
|
|
|
|
|
/* Reconcile kernel and user view of the transmit ring. */
|
|
static int
|
|
vtnet_netmap_txsync(struct netmap_kring *kring, int flags)
|
|
{
|
|
struct netmap_adapter *na = kring->na;
|
|
struct ifnet *ifp = na->ifp;
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int ring_nr = kring->ring_id;
|
|
u_int nm_i; /* index into the netmap ring */
|
|
u_int const lim = kring->nkr_num_slots - 1;
|
|
u_int const head = kring->rhead;
|
|
|
|
/* device-specific */
|
|
struct vtnet_softc *sc = ifp->if_softc;
|
|
struct vtnet_txq *txq = &sc->vtnet_txqs[ring_nr];
|
|
struct virtqueue *vq = txq->vtntx_vq;
|
|
int interrupts = !(kring->nr_kflags & NKR_NOINTR);
|
|
u_int n;
|
|
|
|
/*
|
|
* First part: process new packets to send.
|
|
*/
|
|
rmb();
|
|
|
|
nm_i = kring->nr_hwcur;
|
|
if (nm_i != head) { /* we have new packets to send */
|
|
struct sglist *sg = txq->vtntx_sg;
|
|
|
|
for (; nm_i != head; nm_i = nm_next(nm_i, lim)) {
|
|
/* we use an empty header here */
|
|
struct netmap_slot *slot = &ring->slot[nm_i];
|
|
u_int len = slot->len;
|
|
uint64_t paddr;
|
|
void *addr = PNMB(na, slot, &paddr);
|
|
int err;
|
|
|
|
NM_CHECK_ADDR_LEN(na, addr, len);
|
|
|
|
slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
|
|
/* Initialize the scatterlist, expose it to the hypervisor,
|
|
* and kick the hypervisor (if necessary).
|
|
*/
|
|
sglist_reset(sg); // cheap
|
|
err = sglist_append(sg, &txq->vtntx_shrhdr, sc->vtnet_hdr_size);
|
|
err |= sglist_append_phys(sg, paddr, len);
|
|
KASSERT(err == 0, ("%s: cannot append to sglist %d",
|
|
__func__, err));
|
|
err = virtqueue_enqueue(vq, /*cookie=*/txq, sg,
|
|
/*readable=*/sg->sg_nseg,
|
|
/*writeable=*/0);
|
|
if (unlikely(err)) {
|
|
if (err != ENOSPC)
|
|
nm_prerr("virtqueue_enqueue(%s) failed: %d",
|
|
kring->name, err);
|
|
break;
|
|
}
|
|
}
|
|
|
|
virtqueue_notify(vq);
|
|
|
|
/* Update hwcur depending on where we stopped. */
|
|
kring->nr_hwcur = nm_i; /* note we migth break early */
|
|
}
|
|
|
|
/* Free used slots. We only consider our own used buffers, recognized
|
|
* by the token we passed to virtqueue_enqueue.
|
|
*/
|
|
n = 0;
|
|
for (;;) {
|
|
void *token = virtqueue_dequeue(vq, NULL);
|
|
if (token == NULL)
|
|
break;
|
|
if (unlikely(token != (void *)txq))
|
|
nm_prerr("BUG: TX token mismatch");
|
|
else
|
|
n++;
|
|
}
|
|
if (n > 0) {
|
|
kring->nr_hwtail += n;
|
|
if (kring->nr_hwtail > lim)
|
|
kring->nr_hwtail -= lim + 1;
|
|
}
|
|
|
|
if (interrupts && virtqueue_nfree(vq) < 32)
|
|
virtqueue_postpone_intr(vq, VQ_POSTPONE_LONG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vtnet_netmap_kring_refill(struct netmap_kring *kring, u_int nm_i, u_int head)
|
|
{
|
|
struct netmap_adapter *na = kring->na;
|
|
struct ifnet *ifp = na->ifp;
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int ring_nr = kring->ring_id;
|
|
u_int const lim = kring->nkr_num_slots - 1;
|
|
|
|
/* device-specific */
|
|
struct vtnet_softc *sc = ifp->if_softc;
|
|
struct vtnet_rxq *rxq = &sc->vtnet_rxqs[ring_nr];
|
|
struct virtqueue *vq = rxq->vtnrx_vq;
|
|
|
|
/* use a local sglist, default might be short */
|
|
struct sglist_seg ss[2];
|
|
struct sglist sg = { ss, 0, 0, 2 };
|
|
|
|
for (; nm_i != head; nm_i = nm_next(nm_i, lim)) {
|
|
struct netmap_slot *slot = &ring->slot[nm_i];
|
|
uint64_t paddr;
|
|
void *addr = PNMB(na, slot, &paddr);
|
|
int err;
|
|
|
|
if (addr == NETMAP_BUF_BASE(na)) { /* bad buf */
|
|
if (netmap_ring_reinit(kring))
|
|
return -1;
|
|
}
|
|
|
|
slot->flags &= ~NS_BUF_CHANGED;
|
|
sglist_reset(&sg);
|
|
err = sglist_append(&sg, &rxq->vtnrx_shrhdr, sc->vtnet_hdr_size);
|
|
err |= sglist_append_phys(&sg, paddr, NETMAP_BUF_SIZE(na));
|
|
KASSERT(err == 0, ("%s: cannot append to sglist %d",
|
|
__func__, err));
|
|
/* writable for the host */
|
|
err = virtqueue_enqueue(vq, /*cookie=*/rxq, &sg,
|
|
/*readable=*/0, /*writeable=*/sg.sg_nseg);
|
|
if (unlikely(err)) {
|
|
if (err != ENOSPC)
|
|
nm_prerr("virtqueue_enqueue(%s) failed: %d",
|
|
kring->name, err);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return nm_i;
|
|
}
|
|
|
|
/*
|
|
* Publish netmap buffers on a RX virtqueue.
|
|
* Returns -1 if this virtqueue is not being opened in netmap mode.
|
|
* If the virtqueue is being opened in netmap mode, return 0 on success and
|
|
* a positive error code on failure.
|
|
*/
|
|
static int
|
|
vtnet_netmap_rxq_populate(struct vtnet_rxq *rxq)
|
|
{
|
|
struct netmap_adapter *na = NA(rxq->vtnrx_sc->vtnet_ifp);
|
|
struct netmap_kring *kring;
|
|
int error;
|
|
|
|
if (!nm_native_on(na) || rxq->vtnrx_id >= na->num_rx_rings)
|
|
return -1;
|
|
|
|
kring = na->rx_rings[rxq->vtnrx_id];
|
|
if (!(nm_kring_pending_on(kring) ||
|
|
kring->nr_pending_mode == NKR_NETMAP_ON))
|
|
return -1;
|
|
|
|
/* Expose all the RX netmap buffers. Note that the number of
|
|
* netmap slots in the RX ring matches the maximum number of
|
|
* 2-elements sglist that the RX virtqueue can accommodate. */
|
|
error = vtnet_netmap_kring_refill(kring, 0, na->num_rx_desc);
|
|
virtqueue_notify(rxq->vtnrx_vq);
|
|
|
|
return error < 0 ? ENXIO : 0;
|
|
}
|
|
|
|
/* Reconcile kernel and user view of the receive ring. */
|
|
static int
|
|
vtnet_netmap_rxsync(struct netmap_kring *kring, int flags)
|
|
{
|
|
struct netmap_adapter *na = kring->na;
|
|
struct ifnet *ifp = na->ifp;
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int ring_nr = kring->ring_id;
|
|
u_int nm_i; /* index into the netmap ring */
|
|
u_int const lim = kring->nkr_num_slots - 1;
|
|
u_int const head = kring->rhead;
|
|
int force_update = (flags & NAF_FORCE_READ) ||
|
|
(kring->nr_kflags & NKR_PENDINTR);
|
|
int interrupts = !(kring->nr_kflags & NKR_NOINTR);
|
|
|
|
/* device-specific */
|
|
struct vtnet_softc *sc = ifp->if_softc;
|
|
struct vtnet_rxq *rxq = &sc->vtnet_rxqs[ring_nr];
|
|
struct virtqueue *vq = rxq->vtnrx_vq;
|
|
|
|
rmb();
|
|
/*
|
|
* First part: import newly received packets.
|
|
* Only accept our own buffers (matching the token). We should only get
|
|
* matching buffers. We may need to stop early to avoid hwtail to overrun
|
|
* hwcur.
|
|
*/
|
|
if (netmap_no_pendintr || force_update) {
|
|
uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim);
|
|
void *token;
|
|
|
|
vtnet_rxq_disable_intr(rxq);
|
|
|
|
nm_i = kring->nr_hwtail;
|
|
while (nm_i != hwtail_lim) {
|
|
int len;
|
|
token = virtqueue_dequeue(vq, &len);
|
|
if (token == NULL) {
|
|
if (interrupts && vtnet_rxq_enable_intr(rxq)) {
|
|
vtnet_rxq_disable_intr(rxq);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
if (unlikely(token != (void *)rxq)) {
|
|
nm_prerr("BUG: RX token mismatch");
|
|
} else {
|
|
/* Skip the virtio-net header. */
|
|
len -= sc->vtnet_hdr_size;
|
|
if (unlikely(len < 0)) {
|
|
nm_prlim(1, "Truncated virtio-net-header, "
|
|
"missing %d bytes", -len);
|
|
len = 0;
|
|
}
|
|
ring->slot[nm_i].len = len;
|
|
ring->slot[nm_i].flags = 0;
|
|
nm_i = nm_next(nm_i, lim);
|
|
}
|
|
}
|
|
kring->nr_hwtail = nm_i;
|
|
kring->nr_kflags &= ~NKR_PENDINTR;
|
|
}
|
|
nm_prdis("[B] h %d c %d hwcur %d hwtail %d", ring->head, ring->cur,
|
|
kring->nr_hwcur, kring->nr_hwtail);
|
|
|
|
/*
|
|
* Second part: skip past packets that userspace has released.
|
|
*/
|
|
nm_i = kring->nr_hwcur; /* netmap ring index */
|
|
if (nm_i != head) {
|
|
int nm_j = vtnet_netmap_kring_refill(kring, nm_i, head);
|
|
if (nm_j < 0)
|
|
return nm_j;
|
|
kring->nr_hwcur = nm_j;
|
|
virtqueue_notify(vq);
|
|
}
|
|
|
|
nm_prdis("[C] h %d c %d t %d hwcur %d hwtail %d", ring->head, ring->cur,
|
|
ring->tail, kring->nr_hwcur, kring->nr_hwtail);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Enable/disable interrupts on all virtqueues. */
|
|
static void
|
|
vtnet_netmap_intr(struct netmap_adapter *na, int state)
|
|
{
|
|
struct vtnet_softc *sc = na->ifp->if_softc;
|
|
int i;
|
|
|
|
for (i = 0; i < sc->vtnet_max_vq_pairs; i++) {
|
|
struct vtnet_rxq *rxq = &sc->vtnet_rxqs[i];
|
|
struct vtnet_txq *txq = &sc->vtnet_txqs[i];
|
|
struct virtqueue *txvq = txq->vtntx_vq;
|
|
|
|
if (state) {
|
|
vtnet_rxq_enable_intr(rxq);
|
|
virtqueue_enable_intr(txvq);
|
|
} else {
|
|
vtnet_rxq_disable_intr(rxq);
|
|
virtqueue_disable_intr(txvq);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
vtnet_netmap_tx_slots(struct vtnet_softc *sc)
|
|
{
|
|
int div;
|
|
|
|
/* We need to prepend a virtio-net header to each netmap buffer to be
|
|
* transmitted, therefore calling virtqueue_enqueue() passing sglist
|
|
* with 2 elements.
|
|
* TX virtqueues use indirect descriptors if the feature was negotiated
|
|
* with the host, and if sc->vtnet_tx_nsegs > 1. With indirect
|
|
* descriptors, a single virtio descriptor is sufficient to reference
|
|
* each TX sglist. Without them, we need two separate virtio descriptors
|
|
* for each TX sglist. We therefore compute the number of netmap TX
|
|
* slots according to these assumptions.
|
|
*/
|
|
if ((sc->vtnet_flags & VTNET_FLAG_INDIRECT) && sc->vtnet_tx_nsegs > 1)
|
|
div = 1;
|
|
else
|
|
div = 2;
|
|
|
|
return virtqueue_size(sc->vtnet_txqs[0].vtntx_vq) / div;
|
|
}
|
|
|
|
static int
|
|
vtnet_netmap_rx_slots(struct vtnet_softc *sc)
|
|
{
|
|
int div;
|
|
|
|
/* We need to prepend a virtio-net header to each netmap buffer to be
|
|
* received, therefore calling virtqueue_enqueue() passing sglist
|
|
* with 2 elements.
|
|
* RX virtqueues use indirect descriptors if the feature was negotiated
|
|
* with the host, and if sc->vtnet_rx_nsegs > 1. With indirect
|
|
* descriptors, a single virtio descriptor is sufficient to reference
|
|
* each RX sglist. Without them, we need two separate virtio descriptors
|
|
* for each RX sglist. We therefore compute the number of netmap RX
|
|
* slots according to these assumptions.
|
|
*/
|
|
if ((sc->vtnet_flags & VTNET_FLAG_INDIRECT) && sc->vtnet_rx_nsegs > 1)
|
|
div = 1;
|
|
else
|
|
div = 2;
|
|
|
|
return virtqueue_size(sc->vtnet_rxqs[0].vtnrx_vq) / div;
|
|
}
|
|
|
|
static int
|
|
vtnet_netmap_config(struct netmap_adapter *na, struct nm_config_info *info)
|
|
{
|
|
struct vtnet_softc *sc = na->ifp->if_softc;
|
|
|
|
info->num_tx_rings = sc->vtnet_act_vq_pairs;
|
|
info->num_rx_rings = sc->vtnet_act_vq_pairs;
|
|
info->num_tx_descs = vtnet_netmap_tx_slots(sc);
|
|
info->num_rx_descs = vtnet_netmap_rx_slots(sc);
|
|
info->rx_buf_maxsize = NETMAP_BUF_SIZE(na);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
vtnet_netmap_attach(struct vtnet_softc *sc)
|
|
{
|
|
struct netmap_adapter na;
|
|
|
|
bzero(&na, sizeof(na));
|
|
|
|
na.ifp = sc->vtnet_ifp;
|
|
na.na_flags = 0;
|
|
na.num_tx_desc = vtnet_netmap_tx_slots(sc);
|
|
na.num_rx_desc = vtnet_netmap_rx_slots(sc);
|
|
na.num_tx_rings = na.num_rx_rings = sc->vtnet_max_vq_pairs;
|
|
na.rx_buf_maxsize = 0;
|
|
na.nm_register = vtnet_netmap_reg;
|
|
na.nm_txsync = vtnet_netmap_txsync;
|
|
na.nm_rxsync = vtnet_netmap_rxsync;
|
|
na.nm_intr = vtnet_netmap_intr;
|
|
na.nm_config = vtnet_netmap_config;
|
|
|
|
netmap_attach(&na);
|
|
|
|
nm_prinf("vtnet attached txq=%d, txd=%d rxq=%d, rxd=%d",
|
|
na.num_tx_rings, na.num_tx_desc,
|
|
na.num_tx_rings, na.num_rx_desc);
|
|
}
|
|
/* end of file */
|