freebsd-dev/sys/powerpc/mpc85xx/lbc.c
Nathan Whitehorn 5cd2b97cd0 Teach nexus(4) about Open Firmware (e.g. FDT) on ARM and MIPS, retiring
fdtbus in most cases. This brings ARM and MIPS more in line with existing
Open Firmware platforms like sparc64 and powerpc, as well as preventing
double-enumeration of the OF tree on embedded PowerPC (first through nexus,
then through fdtbus).

This change is also designed to simplify resource management on FDT platforms
by letting there exist a platform-defined root bus resource_activate() call
instead of replying on fdtbus to do the right thing through fdt_bs_tag.
The OFW_BUS_MAP_INTR() and OFW_BUS_CONFIG_INTR() kobj methods are also
available to implement for similar purposes.

Discussed on:	-arm, -mips
Tested by:	zbb, brooks, imp, and others
MFC after:	6 weeks
2013-11-05 13:48:34 +00:00

826 lines
20 KiB
C

/*-
* Copyright (c) 2006-2008, Juniper Networks, Inc.
* Copyright (c) 2008 Semihalf, Rafal Czubak
* Copyright (c) 2009 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Semihalf
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ktr.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <powerpc/mpc85xx/mpc85xx.h>
#include "ofw_bus_if.h"
#include "lbc.h"
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
static MALLOC_DEFINE(M_LBC, "localbus", "localbus devices information");
static int lbc_probe(device_t);
static int lbc_attach(device_t);
static int lbc_shutdown(device_t);
static struct resource *lbc_alloc_resource(device_t, device_t, int, int *,
u_long, u_long, u_long, u_int);
static int lbc_print_child(device_t, device_t);
static int lbc_release_resource(device_t, device_t, int, int,
struct resource *);
static const struct ofw_bus_devinfo *lbc_get_devinfo(device_t, device_t);
/*
* Bus interface definition
*/
static device_method_t lbc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, lbc_probe),
DEVMETHOD(device_attach, lbc_attach),
DEVMETHOD(device_shutdown, lbc_shutdown),
/* Bus interface */
DEVMETHOD(bus_print_child, lbc_print_child),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, NULL),
DEVMETHOD(bus_alloc_resource, lbc_alloc_resource),
DEVMETHOD(bus_release_resource, lbc_release_resource),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
/* OFW bus interface */
DEVMETHOD(ofw_bus_get_devinfo, lbc_get_devinfo),
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
{ 0, 0 }
};
static driver_t lbc_driver = {
"lbc",
lbc_methods,
sizeof(struct lbc_softc)
};
devclass_t lbc_devclass;
DRIVER_MODULE(lbc, nexus, lbc_driver, lbc_devclass, 0, 0);
/*
* Calculate address mask used by OR(n) registers. Use memory region size to
* determine mask value. The size must be a power of two and within the range
* of 32KB - 4GB. Otherwise error code is returned. Value representing
* 4GB size can be passed as 0xffffffff.
*/
static uint32_t
lbc_address_mask(uint32_t size)
{
int n = 15;
if (size == ~0UL)
return (0);
while (n < 32) {
if (size == (1UL << n))
break;
n++;
}
if (n == 32)
return (EINVAL);
return (0xffff8000 << (n - 15));
}
static void
lbc_banks_unmap(struct lbc_softc *sc)
{
int r;
r = 0;
while (r < LBC_DEV_MAX) {
if (sc->sc_range[r].size == 0)
return;
pmap_unmapdev(sc->sc_range[r].kva, sc->sc_range[r].size);
law_disable(OCP85XX_TGTIF_LBC, sc->sc_range[r].addr,
sc->sc_range[r].size);
r++;
}
}
static int
lbc_banks_map(struct lbc_softc *sc)
{
vm_paddr_t end, start;
vm_size_t size;
u_int i, r, ranges, s;
int error;
bzero(sc->sc_range, sizeof(sc->sc_range));
/*
* Determine number of discontiguous address ranges to program.
*/
ranges = 0;
for (i = 0; i < LBC_DEV_MAX; i++) {
size = sc->sc_banks[i].size;
if (size == 0)
continue;
start = sc->sc_banks[i].addr;
for (r = 0; r < ranges; r++) {
/* Avoid wrap-around bugs. */
end = sc->sc_range[r].addr - 1 + sc->sc_range[r].size;
if (start > 0 && end == start - 1) {
sc->sc_range[r].size += size;
break;
}
/* Avoid wrap-around bugs. */
end = start - 1 + size;
if (sc->sc_range[r].addr > 0 &&
end == sc->sc_range[r].addr - 1) {
sc->sc_range[r].addr = start;
sc->sc_range[r].size += size;
break;
}
}
if (r == ranges) {
/* New range; add using insertion sort */
r = 0;
while (r < ranges && sc->sc_range[r].addr < start)
r++;
for (s = ranges; s > r; s--)
sc->sc_range[s] = sc->sc_range[s-1];
sc->sc_range[r].addr = start;
sc->sc_range[r].size = size;
ranges++;
}
}
/*
* Ranges are sorted so quickly go over the list to merge ranges
* that grew toward each other while building the ranges.
*/
r = 0;
while (r < ranges - 1) {
end = sc->sc_range[r].addr + sc->sc_range[r].size;
if (end != sc->sc_range[r+1].addr) {
r++;
continue;
}
sc->sc_range[r].size += sc->sc_range[r+1].size;
for (s = r + 1; s < ranges - 1; s++)
sc->sc_range[s] = sc->sc_range[s+1];
bzero(&sc->sc_range[s], sizeof(sc->sc_range[s]));
ranges--;
}
/*
* Configure LAW for the LBC ranges and map the physical memory
* range into KVA.
*/
for (r = 0; r < ranges; r++) {
start = sc->sc_range[r].addr;
size = sc->sc_range[r].size;
error = law_enable(OCP85XX_TGTIF_LBC, start, size);
if (error)
return (error);
sc->sc_range[r].kva = (vm_offset_t)pmap_mapdev(start, size);
}
/* XXX: need something better here? */
if (ranges == 0)
return (EINVAL);
/* Assign KVA to banks based on the enclosing range. */
for (i = 0; i < LBC_DEV_MAX; i++) {
size = sc->sc_banks[i].size;
if (size == 0)
continue;
start = sc->sc_banks[i].addr;
for (r = 0; r < ranges; r++) {
end = sc->sc_range[r].addr - 1 + sc->sc_range[r].size;
if (start >= sc->sc_range[r].addr &&
start - 1 + size <= end)
break;
}
if (r < ranges) {
sc->sc_banks[i].kva = sc->sc_range[r].kva +
(start - sc->sc_range[r].addr);
}
}
return (0);
}
static int
lbc_banks_enable(struct lbc_softc *sc)
{
u_long size;
uint32_t regval;
int error, i;
for (i = 0; i < LBC_DEV_MAX; i++) {
size = sc->sc_banks[i].size;
if (size == 0)
continue;
/*
* Compute and program BR value.
*/
regval = sc->sc_banks[i].addr;
switch (sc->sc_banks[i].width) {
case 8:
regval |= (1 << 11);
break;
case 16:
regval |= (2 << 11);
break;
case 32:
regval |= (3 << 11);
break;
default:
error = EINVAL;
goto fail;
}
regval |= (sc->sc_banks[i].decc << 9);
regval |= (sc->sc_banks[i].wp << 8);
regval |= (sc->sc_banks[i].msel << 5);
regval |= (sc->sc_banks[i].atom << 2);
regval |= 1;
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
LBC85XX_BR(i), regval);
/*
* Compute and program OR value.
*/
regval = lbc_address_mask(size);
switch (sc->sc_banks[i].msel) {
case LBCRES_MSEL_GPCM:
/* TODO Add flag support for option registers */
regval |= 0x0ff7;
break;
case LBCRES_MSEL_FCM:
/* TODO Add flag support for options register */
regval |= 0x0796;
break;
case LBCRES_MSEL_UPMA:
case LBCRES_MSEL_UPMB:
case LBCRES_MSEL_UPMC:
printf("UPM mode not supported yet!");
error = ENOSYS;
goto fail;
}
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
LBC85XX_OR(i), regval);
}
return (0);
fail:
lbc_banks_unmap(sc);
return (error);
}
static void
fdt_lbc_fixup(phandle_t node, struct lbc_softc *sc, struct lbc_devinfo *di)
{
pcell_t width;
int bank;
if (OF_getprop(node, "bank-width", (void *)&width, sizeof(width)) <= 0)
return;
bank = di->di_bank;
if (sc->sc_banks[bank].size == 0)
return;
/* Express width in bits. */
sc->sc_banks[bank].width = width * 8;
}
static int
fdt_lbc_reg_decode(phandle_t node, struct lbc_softc *sc,
struct lbc_devinfo *di)
{
u_long start, end, count;
pcell_t *reg, *regptr;
pcell_t addr_cells, size_cells;
int tuple_size, tuples;
int i, rv, bank;
if (fdt_addrsize_cells(OF_parent(node), &addr_cells, &size_cells) != 0)
return (ENXIO);
tuple_size = sizeof(pcell_t) * (addr_cells + size_cells);
tuples = OF_getprop_alloc(node, "reg", tuple_size, (void **)&reg);
debugf("addr_cells = %d, size_cells = %d\n", addr_cells, size_cells);
debugf("tuples = %d, tuple size = %d\n", tuples, tuple_size);
if (tuples <= 0)
/* No 'reg' property in this node. */
return (0);
regptr = reg;
for (i = 0; i < tuples; i++) {
bank = fdt_data_get((void *)reg, 1);
di->di_bank = bank;
reg += 1;
/* Get address/size. */
rv = fdt_data_to_res(reg, addr_cells - 1, size_cells, &start,
&count);
if (rv != 0) {
resource_list_free(&di->di_res);
goto out;
}
reg += addr_cells - 1 + size_cells;
/* Calculate address range relative to VA base. */
start = sc->sc_banks[bank].kva + start;
end = start + count - 1;
debugf("reg addr bank = %d, start = %lx, end = %lx, "
"count = %lx\n", bank, start, end, count);
/* Use bank (CS) cell as rid. */
resource_list_add(&di->di_res, SYS_RES_MEMORY, bank, start,
end, count);
}
rv = 0;
out:
free(regptr, M_OFWPROP);
return (rv);
}
static void
lbc_intr(void *arg)
{
struct lbc_softc *sc = arg;
uint32_t ltesr;
ltesr = bus_space_read_4(sc->sc_bst, sc->sc_bsh, LBC85XX_LTESR);
sc->sc_ltesr = ltesr;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, LBC85XX_LTESR, ltesr);
wakeup(sc->sc_dev);
}
static int
lbc_probe(device_t dev)
{
if (!(ofw_bus_is_compatible(dev, "fsl,lbc") ||
ofw_bus_is_compatible(dev, "fsl,elbc")))
return (ENXIO);
device_set_desc(dev, "Freescale Local Bus Controller");
return (BUS_PROBE_DEFAULT);
}
static int
lbc_attach(device_t dev)
{
struct lbc_softc *sc;
struct lbc_devinfo *di;
struct rman *rm;
u_long offset, start, size;
device_t cdev;
phandle_t node, child;
pcell_t *ranges, *rangesptr;
int tuple_size, tuples;
int par_addr_cells;
int bank, error, i;
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_mrid = 0;
sc->sc_mres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_mrid,
RF_ACTIVE);
if (sc->sc_mres == NULL)
return (ENXIO);
sc->sc_bst = rman_get_bustag(sc->sc_mres);
sc->sc_bsh = rman_get_bushandle(sc->sc_mres);
for (bank = 0; bank < LBC_DEV_MAX; bank++) {
bus_space_write_4(sc->sc_bst, sc->sc_bsh, LBC85XX_BR(bank), 0);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, LBC85XX_OR(bank), 0);
}
/*
* Initialize configuration register:
* - enable Local Bus
* - set data buffer control signal function
* - disable parity byte select
* - set ECC parity type
* - set bus monitor timing and timer prescale
*/
bus_space_write_4(sc->sc_bst, sc->sc_bsh, LBC85XX_LBCR, 0);
/*
* Initialize clock ratio register:
* - disable PLL bypass mode
* - configure LCLK delay cycles for the assertion of LALE
* - set system clock divider
*/
bus_space_write_4(sc->sc_bst, sc->sc_bsh, LBC85XX_LCRR, 0x00030008);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, LBC85XX_LTEDR, 0);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, LBC85XX_LTESR, ~0);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, LBC85XX_LTEIR, 0x64080001);
sc->sc_irid = 0;
sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->sc_ires != NULL) {
error = bus_setup_intr(dev, sc->sc_ires,
INTR_TYPE_MISC | INTR_MPSAFE, NULL, lbc_intr, sc,
&sc->sc_icookie);
if (error) {
device_printf(dev, "could not activate interrupt\n");
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
sc->sc_ires);
sc->sc_ires = NULL;
}
}
sc->sc_ltesr = ~0;
rangesptr = NULL;
rm = &sc->sc_rman;
rm->rm_type = RMAN_ARRAY;
rm->rm_descr = "Local Bus Space";
rm->rm_start = 0UL;
rm->rm_end = ~0UL;
error = rman_init(rm);
if (error)
goto fail;
error = rman_manage_region(rm, rm->rm_start, rm->rm_end);
if (error) {
rman_fini(rm);
goto fail;
}
/*
* Process 'ranges' property.
*/
node = ofw_bus_get_node(dev);
if ((fdt_addrsize_cells(node, &sc->sc_addr_cells,
&sc->sc_size_cells)) != 0) {
error = ENXIO;
goto fail;
}
par_addr_cells = fdt_parent_addr_cells(node);
if (par_addr_cells > 2) {
device_printf(dev, "unsupported parent #addr-cells\n");
error = ERANGE;
goto fail;
}
tuple_size = sizeof(pcell_t) * (sc->sc_addr_cells + par_addr_cells +
sc->sc_size_cells);
tuples = OF_getprop_alloc(node, "ranges", tuple_size,
(void **)&ranges);
if (tuples < 0) {
device_printf(dev, "could not retrieve 'ranges' property\n");
error = ENXIO;
goto fail;
}
rangesptr = ranges;
debugf("par addr_cells = %d, addr_cells = %d, size_cells = %d, "
"tuple_size = %d, tuples = %d\n", par_addr_cells,
sc->sc_addr_cells, sc->sc_size_cells, tuple_size, tuples);
start = 0;
size = 0;
for (i = 0; i < tuples; i++) {
/* The first cell is the bank (chip select) number. */
bank = fdt_data_get((void *)ranges, 1);
if (bank < 0 || bank > LBC_DEV_MAX) {
device_printf(dev, "bank out of range: %d\n", bank);
error = ERANGE;
goto fail;
}
ranges += 1;
/*
* Remaining cells of the child address define offset into
* this CS.
*/
offset = fdt_data_get((void *)ranges, sc->sc_addr_cells - 1);
ranges += sc->sc_addr_cells - 1;
/* Parent bus start address of this bank. */
start = fdt_data_get((void *)ranges, par_addr_cells);
ranges += par_addr_cells;
size = fdt_data_get((void *)ranges, sc->sc_size_cells);
ranges += sc->sc_size_cells;
debugf("bank = %d, start = %lx, size = %lx\n", bank,
start, size);
sc->sc_banks[bank].addr = start + offset;
sc->sc_banks[bank].size = size;
/*
* Attributes for the bank.
*
* XXX Note there are no DT bindings defined for them at the
* moment, so we need to provide some defaults.
*/
sc->sc_banks[bank].width = 16;
sc->sc_banks[bank].msel = LBCRES_MSEL_GPCM;
sc->sc_banks[bank].decc = LBCRES_DECC_DISABLED;
sc->sc_banks[bank].atom = LBCRES_ATOM_DISABLED;
sc->sc_banks[bank].wp = 0;
}
/*
* Initialize mem-mappings for the LBC banks (i.e. chip selects).
*/
error = lbc_banks_map(sc);
if (error)
goto fail;
/*
* Walk the localbus and add direct subordinates as our children.
*/
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
di = malloc(sizeof(*di), M_LBC, M_WAITOK | M_ZERO);
if (ofw_bus_gen_setup_devinfo(&di->di_ofw, child) != 0) {
free(di, M_LBC);
device_printf(dev, "could not set up devinfo\n");
continue;
}
resource_list_init(&di->di_res);
if (fdt_lbc_reg_decode(child, sc, di)) {
device_printf(dev, "could not process 'reg' "
"property\n");
ofw_bus_gen_destroy_devinfo(&di->di_ofw);
free(di, M_LBC);
continue;
}
fdt_lbc_fixup(child, sc, di);
/* Add newbus device for this FDT node */
cdev = device_add_child(dev, NULL, -1);
if (cdev == NULL) {
device_printf(dev, "could not add child: %s\n",
di->di_ofw.obd_name);
resource_list_free(&di->di_res);
ofw_bus_gen_destroy_devinfo(&di->di_ofw);
free(di, M_LBC);
continue;
}
debugf("added child name='%s', node=%p\n", di->di_ofw.obd_name,
(void *)child);
device_set_ivars(cdev, di);
}
/*
* Enable the LBC.
*/
lbc_banks_enable(sc);
free(rangesptr, M_OFWPROP);
return (bus_generic_attach(dev));
fail:
free(rangesptr, M_OFWPROP);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mrid, sc->sc_mres);
return (error);
}
static int
lbc_shutdown(device_t dev)
{
/* TODO */
return(0);
}
static struct resource *
lbc_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
struct lbc_softc *sc;
struct lbc_devinfo *di;
struct resource_list_entry *rle;
struct resource *res;
struct rman *rm;
int needactivate;
/* We only support default allocations. */
if (start != 0ul || end != ~0ul)
return (NULL);
sc = device_get_softc(bus);
if (type == SYS_RES_IRQ)
return (bus_alloc_resource(bus, type, rid, start, end, count,
flags));
/*
* Request for the default allocation with a given rid: use resource
* list stored in the local device info.
*/
if ((di = device_get_ivars(child)) == NULL)
return (NULL);
if (type == SYS_RES_IOPORT)
type = SYS_RES_MEMORY;
rid = &di->di_bank;
rle = resource_list_find(&di->di_res, type, *rid);
if (rle == NULL) {
device_printf(bus, "no default resources for "
"rid = %d, type = %d\n", *rid, type);
return (NULL);
}
start = rle->start;
count = rle->count;
end = start + count - 1;
sc = device_get_softc(bus);
needactivate = flags & RF_ACTIVE;
flags &= ~RF_ACTIVE;
rm = &sc->sc_rman;
res = rman_reserve_resource(rm, start, end, count, flags, child);
if (res == NULL) {
device_printf(bus, "failed to reserve resource %#lx - %#lx "
"(%#lx)\n", start, end, count);
return (NULL);
}
rman_set_rid(res, *rid);
rman_set_bustag(res, &bs_be_tag);
rman_set_bushandle(res, rman_get_start(res));
if (needactivate)
if (bus_activate_resource(child, type, *rid, res)) {
device_printf(child, "resource activation failed\n");
rman_release_resource(res);
return (NULL);
}
return (res);
}
static int
lbc_print_child(device_t dev, device_t child)
{
struct lbc_devinfo *di;
struct resource_list *rl;
int rv;
di = device_get_ivars(child);
rl = &di->di_res;
rv = 0;
rv += bus_print_child_header(dev, child);
rv += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#lx");
rv += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld");
rv += bus_print_child_footer(dev, child);
return (rv);
}
static int
lbc_release_resource(device_t dev, device_t child, int type, int rid,
struct resource *res)
{
int err;
if (rman_get_flags(res) & RF_ACTIVE) {
err = bus_deactivate_resource(child, type, rid, res);
if (err)
return (err);
}
return (rman_release_resource(res));
}
static const struct ofw_bus_devinfo *
lbc_get_devinfo(device_t bus, device_t child)
{
struct lbc_devinfo *di;
di = device_get_ivars(child);
return (&di->di_ofw);
}
void
lbc_write_reg(device_t child, u_int off, uint32_t val)
{
device_t dev;
struct lbc_softc *sc;
dev = device_get_parent(child);
if (off >= 0x1000) {
device_printf(dev, "%s(%s): invalid offset %#x\n",
__func__, device_get_nameunit(child), off);
return;
}
sc = device_get_softc(dev);
if (off == LBC85XX_LTESR && sc->sc_ltesr != ~0u) {
sc->sc_ltesr ^= (val & sc->sc_ltesr);
return;
}
if (off == LBC85XX_LTEATR && (val & 1) == 0)
sc->sc_ltesr = ~0u;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, val);
}
uint32_t
lbc_read_reg(device_t child, u_int off)
{
device_t dev;
struct lbc_softc *sc;
uint32_t val;
dev = device_get_parent(child);
if (off >= 0x1000) {
device_printf(dev, "%s(%s): invalid offset %#x\n",
__func__, device_get_nameunit(child), off);
return (~0U);
}
sc = device_get_softc(dev);
if (off == LBC85XX_LTESR && sc->sc_ltesr != ~0U)
val = sc->sc_ltesr;
else
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
return (val);
}