freebsd-dev/sys/dev/vnic/nicvf_queues.c
Gleb Smirnoff 6c3e93cb5a Use NET_TASK_INIT() and NET_GROUPTASK_INIT() for drivers that process
incoming packets in taskqueue context.

Reviewed by:	hselasky
Differential Revision:	https://reviews.freebsd.org/D23518
2020-02-11 18:57:07 +00:00

2367 lines
59 KiB
C

/*
* Copyright (C) 2015 Cavium Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bitset.h>
#include <sys/bitstring.h>
#include <sys/buf_ring.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/pciio.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/sockio.h>
#include <sys/socket.h>
#include <sys/stdatomic.h>
#include <sys/cpuset.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <sys/taskqueue.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/vmparam.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/ifq.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/sctp.h>
#include <netinet/tcp.h>
#include <netinet/tcp_lro.h>
#include <netinet/udp.h>
#include <netinet6/ip6_var.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include "thunder_bgx.h"
#include "nic_reg.h"
#include "nic.h"
#include "q_struct.h"
#include "nicvf_queues.h"
#define DEBUG
#undef DEBUG
#ifdef DEBUG
#define dprintf(dev, fmt, ...) device_printf(dev, fmt, ##__VA_ARGS__)
#else
#define dprintf(dev, fmt, ...)
#endif
MALLOC_DECLARE(M_NICVF);
static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
static void nicvf_sq_disable(struct nicvf *, int);
static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
static void nicvf_put_sq_desc(struct snd_queue *, int);
static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
boolean_t);
static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
static void nicvf_rbdr_task(void *, int);
static void nicvf_rbdr_task_nowait(void *, int);
struct rbuf_info {
bus_dma_tag_t dmat;
bus_dmamap_t dmap;
struct mbuf * mbuf;
};
#define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
/* Poll a register for a specific value */
static int nicvf_poll_reg(struct nicvf *nic, int qidx,
uint64_t reg, int bit_pos, int bits, int val)
{
uint64_t bit_mask;
uint64_t reg_val;
int timeout = 10;
bit_mask = (1UL << bits) - 1;
bit_mask = (bit_mask << bit_pos);
while (timeout) {
reg_val = nicvf_queue_reg_read(nic, reg, qidx);
if (((reg_val & bit_mask) >> bit_pos) == val)
return (0);
DELAY(1000);
timeout--;
}
device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
return (ETIMEDOUT);
}
/* Callback for bus_dmamap_load() */
static void
nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *paddr;
KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
paddr = arg;
*paddr = segs->ds_addr;
}
/* Allocate memory for a queue's descriptors */
static int
nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
int q_len, int desc_size, int align_bytes)
{
int err, err_dmat;
/* Create DMA tag first */
err = bus_dma_tag_create(
bus_get_dma_tag(nic->dev), /* parent tag */
align_bytes, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
(q_len * desc_size), /* maxsize */
1, /* nsegments */
(q_len * desc_size), /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&dmem->dmat); /* dmat */
if (err != 0) {
device_printf(nic->dev,
"Failed to create busdma tag for descriptors ring\n");
return (err);
}
/* Allocate segment of continuous DMA safe memory */
err = bus_dmamem_alloc(
dmem->dmat, /* DMA tag */
&dmem->base, /* virtual address */
(BUS_DMA_NOWAIT | BUS_DMA_ZERO), /* flags */
&dmem->dmap); /* DMA map */
if (err != 0) {
device_printf(nic->dev, "Failed to allocate DMA safe memory for"
"descriptors ring\n");
goto dmamem_fail;
}
err = bus_dmamap_load(
dmem->dmat,
dmem->dmap,
dmem->base,
(q_len * desc_size), /* allocation size */
nicvf_dmamap_q_cb, /* map to DMA address cb. */
&dmem->phys_base, /* physical address */
BUS_DMA_NOWAIT);
if (err != 0) {
device_printf(nic->dev,
"Cannot load DMA map of descriptors ring\n");
goto dmamap_fail;
}
dmem->q_len = q_len;
dmem->size = (desc_size * q_len);
return (0);
dmamap_fail:
bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
dmem->phys_base = 0;
dmamem_fail:
err_dmat = bus_dma_tag_destroy(dmem->dmat);
dmem->base = NULL;
KASSERT(err_dmat == 0,
("%s: Trying to destroy BUSY DMA tag", __func__));
return (err);
}
/* Free queue's descriptor memory */
static void
nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
{
int err;
if ((dmem == NULL) || (dmem->base == NULL))
return;
/* Unload a map */
bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(dmem->dmat, dmem->dmap);
/* Free DMA memory */
bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
/* Destroy DMA tag */
err = bus_dma_tag_destroy(dmem->dmat);
KASSERT(err == 0,
("%s: Trying to destroy BUSY DMA tag", __func__));
dmem->phys_base = 0;
dmem->base = NULL;
}
/*
* Allocate buffer for packet reception
* HW returns memory address where packet is DMA'ed but not a pointer
* into RBDR ring, so save buffer address at the start of fragment and
* align the start address to a cache aligned address
*/
static __inline int
nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
{
struct mbuf *mbuf;
struct rbuf_info *rinfo;
bus_dma_segment_t segs[1];
int nsegs;
int err;
mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
if (mbuf == NULL)
return (ENOMEM);
/*
* The length is equal to the actual length + one 128b line
* used as a room for rbuf_info structure.
*/
mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
&nsegs, BUS_DMA_NOWAIT);
if (err != 0) {
device_printf(nic->dev,
"Failed to map mbuf into DMA visible memory, err: %d\n",
err);
m_freem(mbuf);
bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
return (err);
}
if (nsegs != 1)
panic("Unexpected number of DMA segments for RB: %d", nsegs);
/*
* Now use the room for rbuf_info structure
* and adjust mbuf data and length.
*/
rinfo = (struct rbuf_info *)mbuf->m_data;
m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
rinfo->dmat = rbdr->rbdr_buff_dmat;
rinfo->dmap = dmap;
rinfo->mbuf = mbuf;
*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
return (0);
}
/* Retrieve mbuf for received packet */
static struct mbuf *
nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
{
struct mbuf *mbuf;
struct rbuf_info *rinfo;
/* Get buffer start address and alignment offset */
rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
/* Now retrieve mbuf to give to stack */
mbuf = rinfo->mbuf;
if (__predict_false(mbuf == NULL)) {
panic("%s: Received packet fragment with NULL mbuf",
device_get_nameunit(nic->dev));
}
/*
* Clear the mbuf in the descriptor to indicate
* that this slot is processed and free to use.
*/
rinfo->mbuf = NULL;
bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
return (mbuf);
}
/* Allocate RBDR ring and populate receive buffers */
static int
nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
int buf_size, int qidx)
{
bus_dmamap_t dmap;
bus_addr_t rbuf;
struct rbdr_entry_t *desc;
int idx;
int err;
/* Allocate rbdr descriptors ring */
err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
if (err != 0) {
device_printf(nic->dev,
"Failed to create RBDR descriptors ring\n");
return (err);
}
rbdr->desc = rbdr->dmem.base;
/*
* Buffer size has to be in multiples of 128 bytes.
* Make room for metadata of size of one line (128 bytes).
*/
rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
rbdr->enable = TRUE;
rbdr->thresh = RBDR_THRESH;
rbdr->nic = nic;
rbdr->idx = qidx;
/*
* Create DMA tag for Rx buffers.
* Each map created using this tag is intended to store Rx payload for
* one fragment and one header structure containing rbuf_info (thus
* additional 128 byte line since RB must be a multiple of 128 byte
* cache line).
*/
if (buf_size > MCLBYTES) {
device_printf(nic->dev,
"Buffer size to large for mbuf cluster\n");
return (EINVAL);
}
err = bus_dma_tag_create(
bus_get_dma_tag(nic->dev), /* parent tag */
NICVF_RCV_BUF_ALIGN_BYTES, /* alignment */
0, /* boundary */
DMAP_MAX_PHYSADDR, /* lowaddr */
DMAP_MIN_PHYSADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
roundup2(buf_size, MCLBYTES), /* maxsize */
1, /* nsegments */
roundup2(buf_size, MCLBYTES), /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&rbdr->rbdr_buff_dmat); /* dmat */
if (err != 0) {
device_printf(nic->dev,
"Failed to create busdma tag for RBDR buffers\n");
return (err);
}
rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
ring_len, M_NICVF, (M_WAITOK | M_ZERO));
for (idx = 0; idx < ring_len; idx++) {
err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
if (err != 0) {
device_printf(nic->dev,
"Failed to create DMA map for RB\n");
return (err);
}
rbdr->rbdr_buff_dmaps[idx] = dmap;
err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
DMA_BUFFER_LEN, &rbuf);
if (err != 0)
return (err);
desc = GET_RBDR_DESC(rbdr, idx);
desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
}
/* Allocate taskqueue */
TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
device_get_nameunit(nic->dev));
return (0);
}
/* Free RBDR ring and its receive buffers */
static void
nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
{
struct mbuf *mbuf;
struct queue_set *qs;
struct rbdr_entry_t *desc;
struct rbuf_info *rinfo;
bus_addr_t buf_addr;
int head, tail, idx;
int err;
qs = nic->qs;
if ((qs == NULL) || (rbdr == NULL))
return;
rbdr->enable = FALSE;
if (rbdr->rbdr_taskq != NULL) {
/* Remove tasks */
while (taskqueue_cancel(rbdr->rbdr_taskq,
&rbdr->rbdr_task_nowait, NULL) != 0) {
/* Finish the nowait task first */
taskqueue_drain(rbdr->rbdr_taskq,
&rbdr->rbdr_task_nowait);
}
taskqueue_free(rbdr->rbdr_taskq);
rbdr->rbdr_taskq = NULL;
while (taskqueue_cancel(taskqueue_thread,
&rbdr->rbdr_task, NULL) != 0) {
/* Now finish the sleepable task */
taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
}
}
/*
* Free all of the memory under the RB descriptors.
* There are assumptions here:
* 1. Corresponding RBDR is disabled
* - it is safe to operate using head and tail indexes
* 2. All bffers that were received are properly freed by
* the receive handler
* - there is no need to unload DMA map and free MBUF for other
* descriptors than unused ones
*/
if (rbdr->rbdr_buff_dmat != NULL) {
head = rbdr->head;
tail = rbdr->tail;
while (head != tail) {
desc = GET_RBDR_DESC(rbdr, head);
buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
mbuf = rinfo->mbuf;
/* This will destroy everything including rinfo! */
m_freem(mbuf);
head++;
head &= (rbdr->dmem.q_len - 1);
}
/* Free tail descriptor */
desc = GET_RBDR_DESC(rbdr, tail);
buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
mbuf = rinfo->mbuf;
/* This will destroy everything including rinfo! */
m_freem(mbuf);
/* Destroy DMA maps */
for (idx = 0; idx < qs->rbdr_len; idx++) {
if (rbdr->rbdr_buff_dmaps[idx] == NULL)
continue;
err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
rbdr->rbdr_buff_dmaps[idx]);
KASSERT(err == 0,
("%s: Could not destroy DMA map for RB, desc: %d",
__func__, idx));
rbdr->rbdr_buff_dmaps[idx] = NULL;
}
/* Now destroy the tag */
err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
KASSERT(err == 0,
("%s: Trying to destroy BUSY DMA tag", __func__));
rbdr->head = 0;
rbdr->tail = 0;
}
/* Free RBDR ring */
nicvf_free_q_desc_mem(nic, &rbdr->dmem);
}
/*
* Refill receive buffer descriptors with new buffers.
*/
static int
nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
{
struct nicvf *nic;
struct queue_set *qs;
int rbdr_idx;
int tail, qcount;
int refill_rb_cnt;
struct rbdr_entry_t *desc;
bus_dmamap_t dmap;
bus_addr_t rbuf;
boolean_t rb_alloc_fail;
int new_rb;
rb_alloc_fail = TRUE;
new_rb = 0;
nic = rbdr->nic;
qs = nic->qs;
rbdr_idx = rbdr->idx;
/* Check if it's enabled */
if (!rbdr->enable)
return (0);
/* Get no of desc's to be refilled */
qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
qcount &= 0x7FFFF;
/* Doorbell can be ringed with a max of ring size minus 1 */
if (qcount >= (qs->rbdr_len - 1)) {
rb_alloc_fail = FALSE;
goto out;
} else
refill_rb_cnt = qs->rbdr_len - qcount - 1;
/* Start filling descs from tail */
tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
while (refill_rb_cnt) {
tail++;
tail &= (rbdr->dmem.q_len - 1);
dmap = rbdr->rbdr_buff_dmaps[tail];
if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
DMA_BUFFER_LEN, &rbuf)) {
/* Something went wrong. Resign */
break;
}
desc = GET_RBDR_DESC(rbdr, tail);
desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
refill_rb_cnt--;
new_rb++;
}
/* make sure all memory stores are done before ringing doorbell */
wmb();
/* Check if buffer allocation failed */
if (refill_rb_cnt == 0)
rb_alloc_fail = FALSE;
/* Notify HW */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
rbdr_idx, new_rb);
out:
if (!rb_alloc_fail) {
/*
* Re-enable RBDR interrupts only
* if buffer allocation is success.
*/
nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
return (0);
}
return (ENOMEM);
}
/* Refill RBs even if sleep is needed to reclaim memory */
static void
nicvf_rbdr_task(void *arg, int pending)
{
struct rbdr *rbdr;
int err;
rbdr = (struct rbdr *)arg;
err = nicvf_refill_rbdr(rbdr, M_WAITOK);
if (__predict_false(err != 0)) {
panic("%s: Failed to refill RBs even when sleep enabled",
__func__);
}
}
/* Refill RBs as soon as possible without waiting */
static void
nicvf_rbdr_task_nowait(void *arg, int pending)
{
struct rbdr *rbdr;
int err;
rbdr = (struct rbdr *)arg;
err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
if (err != 0) {
/*
* Schedule another, sleepable kernel thread
* that will for sure refill the buffers.
*/
taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
}
}
static int
nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
struct cqe_rx_t *cqe_rx, int cqe_type)
{
struct mbuf *mbuf;
struct rcv_queue *rq;
int rq_idx;
int err = 0;
rq_idx = cqe_rx->rq_idx;
rq = &nic->qs->rq[rq_idx];
/* Check for errors */
err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
if (err && !cqe_rx->rb_cnt)
return (0);
mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
if (mbuf == NULL) {
dprintf(nic->dev, "Packet not received\n");
return (0);
}
/* If error packet */
if (err != 0) {
m_freem(mbuf);
return (0);
}
if (rq->lro_enabled &&
((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
(mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
/*
* At this point it is known that there are no errors in the
* packet. Attempt to LRO enqueue. Send to stack if no resources
* or enqueue error.
*/
if ((rq->lro.lro_cnt != 0) &&
(tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
return (0);
}
/*
* Push this packet to the stack later to avoid
* unlocking completion task in the middle of work.
*/
err = buf_ring_enqueue(cq->rx_br, mbuf);
if (err != 0) {
/*
* Failed to enqueue this mbuf.
* We don't drop it, just schedule another task.
*/
return (err);
}
return (0);
}
static void
nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
struct cqe_send_t *cqe_tx, int cqe_type)
{
bus_dmamap_t dmap;
struct mbuf *mbuf;
struct snd_queue *sq;
struct sq_hdr_subdesc *hdr;
mbuf = NULL;
sq = &nic->qs->sq[cqe_tx->sq_idx];
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
return;
dprintf(nic->dev,
"%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
__func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
cqe_tx->sqe_ptr, hdr->subdesc_cnt);
dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
bus_dmamap_unload(sq->snd_buff_dmat, dmap);
mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
if (mbuf != NULL) {
m_freem(mbuf);
sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
}
nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
}
static int
nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
{
struct mbuf *mbuf;
struct ifnet *ifp;
int processed_cqe, work_done = 0, tx_done = 0;
int cqe_count, cqe_head;
struct queue_set *qs = nic->qs;
struct cmp_queue *cq = &qs->cq[cq_idx];
struct snd_queue *sq = &qs->sq[cq_idx];
struct rcv_queue *rq;
struct cqe_rx_t *cq_desc;
struct lro_ctrl *lro;
int rq_idx;
int cmp_err;
NICVF_CMP_LOCK(cq);
cmp_err = 0;
processed_cqe = 0;
/* Get no of valid CQ entries to process */
cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
cqe_count &= CQ_CQE_COUNT;
if (cqe_count == 0)
goto out;
/* Get head of the valid CQ entries */
cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
cqe_head &= 0xFFFF;
dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
__func__, cq_idx, cqe_count, cqe_head);
while (processed_cqe < cqe_count) {
/* Get the CQ descriptor */
cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
cqe_head++;
cqe_head &= (cq->dmem.q_len - 1);
/* Prefetch next CQ descriptor */
__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
cq_desc->cqe_type);
switch (cq_desc->cqe_type) {
case CQE_TYPE_RX:
cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
CQE_TYPE_RX);
if (__predict_false(cmp_err != 0)) {
/*
* Ups. Cannot finish now.
* Let's try again later.
*/
goto done;
}
work_done++;
break;
case CQE_TYPE_SEND:
nicvf_snd_pkt_handler(nic, cq, (void *)cq_desc,
CQE_TYPE_SEND);
tx_done++;
break;
case CQE_TYPE_INVALID:
case CQE_TYPE_RX_SPLIT:
case CQE_TYPE_RX_TCP:
case CQE_TYPE_SEND_PTP:
/* Ignore for now */
break;
}
processed_cqe++;
}
done:
dprintf(nic->dev,
"%s CQ%d processed_cqe %d work_done %d\n",
__func__, cq_idx, processed_cqe, work_done);
/* Ring doorbell to inform H/W to reuse processed CQEs */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
if ((tx_done > 0) &&
((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
/* Reenable TXQ if its stopped earlier due to SQ full */
if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
}
out:
/*
* Flush any outstanding LRO work
*/
rq_idx = cq_idx;
rq = &nic->qs->rq[rq_idx];
lro = &rq->lro;
tcp_lro_flush_all(lro);
NICVF_CMP_UNLOCK(cq);
ifp = nic->ifp;
/* Push received MBUFs to the stack */
while (!buf_ring_empty(cq->rx_br)) {
mbuf = buf_ring_dequeue_mc(cq->rx_br);
if (__predict_true(mbuf != NULL))
(*ifp->if_input)(ifp, mbuf);
}
return (cmp_err);
}
/*
* Qset error interrupt handler
*
* As of now only CQ errors are handled
*/
static void
nicvf_qs_err_task(void *arg, int pending)
{
struct nicvf *nic;
struct queue_set *qs;
int qidx;
uint64_t status;
boolean_t enable = TRUE;
nic = (struct nicvf *)arg;
qs = nic->qs;
/* Deactivate network interface */
if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
/* Check if it is CQ err */
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
qidx);
if ((status & CQ_ERR_MASK) == 0)
continue;
/* Process already queued CQEs and reconfig CQ */
nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
nicvf_sq_disable(nic, qidx);
(void)nicvf_cq_intr_handler(nic, qidx);
nicvf_cmp_queue_config(nic, qs, qidx, enable);
nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
}
if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
/* Re-enable Qset error interrupt */
nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
}
static void
nicvf_cmp_task(void *arg, int pending)
{
struct cmp_queue *cq;
struct nicvf *nic;
int cmp_err;
cq = (struct cmp_queue *)arg;
nic = cq->nic;
/* Handle CQ descriptors */
cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
if (__predict_false(cmp_err != 0)) {
/*
* Schedule another thread here since we did not
* process the entire CQ due to Tx or Rx CQ parse error.
*/
taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
}
nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
}
/* Initialize completion queue */
static int
nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
int qidx)
{
int err;
/* Initizalize lock */
snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
device_get_nameunit(nic->dev), qidx);
mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
NICVF_CQ_BASE_ALIGN_BYTES);
if (err != 0) {
device_printf(nic->dev,
"Could not allocate DMA memory for CQ\n");
return (err);
}
cq->desc = cq->dmem.base;
cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
cq->nic = nic;
cq->idx = qidx;
nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
&cq->mtx);
/* Allocate taskqueue */
NET_TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
taskqueue_thread_enqueue, &cq->cmp_taskq);
taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
device_get_nameunit(nic->dev), qidx);
return (0);
}
static void
nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
{
if (cq == NULL)
return;
/*
* The completion queue itself should be disabled by now
* (ref. nicvf_snd_queue_config()).
* Ensure that it is safe to disable it or panic.
*/
if (cq->enable)
panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
if (cq->cmp_taskq != NULL) {
/* Remove task */
while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
taskqueue_free(cq->cmp_taskq);
cq->cmp_taskq = NULL;
}
/*
* Completion interrupt will possibly enable interrupts again
* so disable interrupting now after we finished processing
* completion task. It is safe to do so since the corresponding CQ
* was already disabled.
*/
nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
NICVF_CMP_LOCK(cq);
nicvf_free_q_desc_mem(nic, &cq->dmem);
drbr_free(cq->rx_br, M_DEVBUF);
NICVF_CMP_UNLOCK(cq);
mtx_destroy(&cq->mtx);
memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
}
int
nicvf_xmit_locked(struct snd_queue *sq)
{
struct nicvf *nic;
struct ifnet *ifp;
struct mbuf *next;
int err;
NICVF_TX_LOCK_ASSERT(sq);
nic = sq->nic;
ifp = nic->ifp;
err = 0;
while ((next = drbr_peek(ifp, sq->br)) != NULL) {
/* Send a copy of the frame to the BPF listener */
ETHER_BPF_MTAP(ifp, next);
err = nicvf_tx_mbuf_locked(sq, &next);
if (err != 0) {
if (next == NULL)
drbr_advance(ifp, sq->br);
else
drbr_putback(ifp, sq->br, next);
break;
}
drbr_advance(ifp, sq->br);
}
return (err);
}
static void
nicvf_snd_task(void *arg, int pending)
{
struct snd_queue *sq = (struct snd_queue *)arg;
struct nicvf *nic;
struct ifnet *ifp;
int err;
nic = sq->nic;
ifp = nic->ifp;
/*
* Skip sending anything if the driver is not running,
* SQ full or link is down.
*/
if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) || !nic->link_up)
return;
NICVF_TX_LOCK(sq);
err = nicvf_xmit_locked(sq);
NICVF_TX_UNLOCK(sq);
/* Try again */
if (err != 0)
taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
}
/* Initialize transmit queue */
static int
nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
int qidx)
{
size_t i;
int err;
/* Initizalize TX lock for this queue */
snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
device_get_nameunit(nic->dev), qidx);
mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
NICVF_TX_LOCK(sq);
/* Allocate buffer ring */
sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
M_NOWAIT, &sq->mtx);
if (sq->br == NULL) {
device_printf(nic->dev,
"ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
err = ENOMEM;
goto error;
}
/* Allocate DMA memory for Tx descriptors */
err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
NICVF_SQ_BASE_ALIGN_BYTES);
if (err != 0) {
device_printf(nic->dev,
"Could not allocate DMA memory for SQ\n");
goto error;
}
sq->desc = sq->dmem.base;
sq->head = sq->tail = 0;
atomic_store_rel_int(&sq->free_cnt, q_len - 1);
sq->thresh = SND_QUEUE_THRESH;
sq->idx = qidx;
sq->nic = nic;
/*
* Allocate DMA maps for Tx buffers
*/
/* Create DMA tag first */
err = bus_dma_tag_create(
bus_get_dma_tag(nic->dev), /* parent tag */
1, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
NICVF_TSO_MAXSIZE, /* maxsize */
NICVF_TSO_NSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sq->snd_buff_dmat); /* dmat */
if (err != 0) {
device_printf(nic->dev,
"Failed to create busdma tag for Tx buffers\n");
goto error;
}
/* Allocate send buffers array */
sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
(M_NOWAIT | M_ZERO));
if (sq->snd_buff == NULL) {
device_printf(nic->dev,
"Could not allocate memory for Tx buffers array\n");
err = ENOMEM;
goto error;
}
/* Now populate maps */
for (i = 0; i < q_len; i++) {
err = bus_dmamap_create(sq->snd_buff_dmat, 0,
&sq->snd_buff[i].dmap);
if (err != 0) {
device_printf(nic->dev,
"Failed to create DMA maps for Tx buffers\n");
goto error;
}
}
NICVF_TX_UNLOCK(sq);
/* Allocate taskqueue */
TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sq->snd_taskq);
taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
device_get_nameunit(nic->dev), qidx);
return (0);
error:
NICVF_TX_UNLOCK(sq);
return (err);
}
static void
nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
{
struct queue_set *qs = nic->qs;
size_t i;
int err;
if (sq == NULL)
return;
if (sq->snd_taskq != NULL) {
/* Remove task */
while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
taskqueue_drain(sq->snd_taskq, &sq->snd_task);
taskqueue_free(sq->snd_taskq);
sq->snd_taskq = NULL;
}
NICVF_TX_LOCK(sq);
if (sq->snd_buff_dmat != NULL) {
if (sq->snd_buff != NULL) {
for (i = 0; i < qs->sq_len; i++) {
m_freem(sq->snd_buff[i].mbuf);
sq->snd_buff[i].mbuf = NULL;
bus_dmamap_unload(sq->snd_buff_dmat,
sq->snd_buff[i].dmap);
err = bus_dmamap_destroy(sq->snd_buff_dmat,
sq->snd_buff[i].dmap);
/*
* If bus_dmamap_destroy fails it can cause
* random panic later if the tag is also
* destroyed in the process.
*/
KASSERT(err == 0,
("%s: Could not destroy DMA map for SQ",
__func__));
}
}
free(sq->snd_buff, M_NICVF);
err = bus_dma_tag_destroy(sq->snd_buff_dmat);
KASSERT(err == 0,
("%s: Trying to destroy BUSY DMA tag", __func__));
}
/* Free private driver ring for this send queue */
if (sq->br != NULL)
drbr_free(sq->br, M_DEVBUF);
if (sq->dmem.base != NULL)
nicvf_free_q_desc_mem(nic, &sq->dmem);
NICVF_TX_UNLOCK(sq);
/* Destroy Tx lock */
mtx_destroy(&sq->mtx);
memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
}
static void
nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
{
/* Disable send queue */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
/* Check if SQ is stopped */
if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
return;
/* Reset send queue */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
}
static void
nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
{
union nic_mbx mbx = {};
/* Make sure all packets in the pipeline are written back into mem */
mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
nicvf_send_msg_to_pf(nic, &mbx);
}
static void
nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
{
/* Disable timer threshold (doesn't get reset upon CQ reset */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
/* Disable completion queue */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
/* Reset completion queue */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
}
static void
nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
{
uint64_t tmp, fifo_state;
int timeout = 10;
/* Save head and tail pointers for feeing up buffers */
rbdr->head =
nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
rbdr->tail =
nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
/*
* If RBDR FIFO is in 'FAIL' state then do a reset first
* before relaiming.
*/
fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
if (((fifo_state >> 62) & 0x03) == 0x3) {
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
qidx, NICVF_RBDR_RESET);
}
/* Disable RBDR */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
return;
while (1) {
tmp = nicvf_queue_reg_read(nic,
NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
break;
DELAY(1000);
timeout--;
if (!timeout) {
device_printf(nic->dev,
"Failed polling on prefetch status\n");
return;
}
}
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
NICVF_RBDR_RESET);
if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
return;
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
return;
}
/* Configures receive queue */
static void
nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
int qidx, bool enable)
{
union nic_mbx mbx = {};
struct rcv_queue *rq;
struct rq_cfg rq_cfg;
struct ifnet *ifp;
struct lro_ctrl *lro;
ifp = nic->ifp;
rq = &qs->rq[qidx];
rq->enable = enable;
lro = &rq->lro;
/* Disable receive queue */
nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
if (!rq->enable) {
nicvf_reclaim_rcv_queue(nic, qs, qidx);
/* Free LRO memory */
tcp_lro_free(lro);
rq->lro_enabled = FALSE;
return;
}
/* Configure LRO if enabled */
rq->lro_enabled = FALSE;
if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
if (tcp_lro_init(lro) != 0) {
device_printf(nic->dev,
"Failed to initialize LRO for RXQ%d\n", qidx);
} else {
rq->lro_enabled = TRUE;
lro->ifp = nic->ifp;
}
}
rq->cq_qs = qs->vnic_id;
rq->cq_idx = qidx;
rq->start_rbdr_qs = qs->vnic_id;
rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
rq->cont_rbdr_qs = qs->vnic_id;
rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
/* all writes of RBDR data to be loaded into L2 Cache as well*/
rq->caching = 1;
/* Send a mailbox msg to PF to config RQ */
mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
mbx.rq.qs_num = qs->vnic_id;
mbx.rq.rq_num = qidx;
mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
(rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
(rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
(rq->start_qs_rbdr_idx);
nicvf_send_msg_to_pf(nic, &mbx);
mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
nicvf_send_msg_to_pf(nic, &mbx);
/*
* RQ drop config
* Enable CQ drop to reserve sufficient CQEs for all tx packets
*/
mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
nicvf_send_msg_to_pf(nic, &mbx);
nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
/* Enable Receive queue */
rq_cfg.ena = 1;
rq_cfg.tcp_ena = 0;
nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
*(uint64_t *)&rq_cfg);
}
/* Configures completion queue */
static void
nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
int qidx, boolean_t enable)
{
struct cmp_queue *cq;
struct cq_cfg cq_cfg;
cq = &qs->cq[qidx];
cq->enable = enable;
if (!cq->enable) {
nicvf_reclaim_cmp_queue(nic, qs, qidx);
return;
}
/* Reset completion queue */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
/* Set completion queue base address */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
(uint64_t)(cq->dmem.phys_base));
/* Enable Completion queue */
cq_cfg.ena = 1;
cq_cfg.reset = 0;
cq_cfg.caching = 0;
cq_cfg.qsize = CMP_QSIZE;
cq_cfg.avg_con = 0;
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
/* Set threshold value for interrupt generation */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
nic->cq_coalesce_usecs);
}
/* Configures transmit queue */
static void
nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
boolean_t enable)
{
union nic_mbx mbx = {};
struct snd_queue *sq;
struct sq_cfg sq_cfg;
sq = &qs->sq[qidx];
sq->enable = enable;
if (!sq->enable) {
nicvf_reclaim_snd_queue(nic, qs, qidx);
return;
}
/* Reset send queue */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
sq->cq_qs = qs->vnic_id;
sq->cq_idx = qidx;
/* Send a mailbox msg to PF to config SQ */
mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
mbx.sq.qs_num = qs->vnic_id;
mbx.sq.sq_num = qidx;
mbx.sq.sqs_mode = nic->sqs_mode;
mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
nicvf_send_msg_to_pf(nic, &mbx);
/* Set queue base address */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
(uint64_t)(sq->dmem.phys_base));
/* Enable send queue & set queue size */
sq_cfg.ena = 1;
sq_cfg.reset = 0;
sq_cfg.ldwb = 0;
sq_cfg.qsize = SND_QSIZE;
sq_cfg.tstmp_bgx_intf = 0;
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
/* Set threshold value for interrupt generation */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
}
/* Configures receive buffer descriptor ring */
static void
nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
boolean_t enable)
{
struct rbdr *rbdr;
struct rbdr_cfg rbdr_cfg;
rbdr = &qs->rbdr[qidx];
nicvf_reclaim_rbdr(nic, rbdr, qidx);
if (!enable)
return;
/* Set descriptor base address */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
(uint64_t)(rbdr->dmem.phys_base));
/* Enable RBDR & set queue size */
/* Buffer size should be in multiples of 128 bytes */
rbdr_cfg.ena = 1;
rbdr_cfg.reset = 0;
rbdr_cfg.ldwb = 0;
rbdr_cfg.qsize = RBDR_SIZE;
rbdr_cfg.avg_con = 0;
rbdr_cfg.lines = rbdr->dma_size / 128;
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
*(uint64_t *)&rbdr_cfg);
/* Notify HW */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
qs->rbdr_len - 1);
/* Set threshold value for interrupt generation */
nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
rbdr->thresh - 1);
}
/* Requests PF to assign and enable Qset */
void
nicvf_qset_config(struct nicvf *nic, boolean_t enable)
{
union nic_mbx mbx = {};
struct queue_set *qs;
struct qs_cfg *qs_cfg;
qs = nic->qs;
if (qs == NULL) {
device_printf(nic->dev,
"Qset is still not allocated, don't init queues\n");
return;
}
qs->enable = enable;
qs->vnic_id = nic->vf_id;
/* Send a mailbox msg to PF to config Qset */
mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
mbx.qs.num = qs->vnic_id;
mbx.qs.cfg = 0;
qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
if (qs->enable) {
qs_cfg->ena = 1;
qs_cfg->vnic = qs->vnic_id;
}
nicvf_send_msg_to_pf(nic, &mbx);
}
static void
nicvf_free_resources(struct nicvf *nic)
{
int qidx;
struct queue_set *qs;
qs = nic->qs;
/*
* Remove QS error task first since it has to be dead
* to safely free completion queue tasks.
*/
if (qs->qs_err_taskq != NULL) {
/* Shut down QS error tasks */
while (taskqueue_cancel(qs->qs_err_taskq,
&qs->qs_err_task, NULL) != 0) {
taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
}
taskqueue_free(qs->qs_err_taskq);
qs->qs_err_taskq = NULL;
}
/* Free receive buffer descriptor ring */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
/* Free completion queue */
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
/* Free send queue */
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_free_snd_queue(nic, &qs->sq[qidx]);
}
static int
nicvf_alloc_resources(struct nicvf *nic)
{
struct queue_set *qs = nic->qs;
int qidx;
/* Alloc receive buffer descriptor ring */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
DMA_BUFFER_LEN, qidx))
goto alloc_fail;
}
/* Alloc send queue */
for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
goto alloc_fail;
}
/* Alloc completion queue */
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
goto alloc_fail;
}
/* Allocate QS error taskqueue */
NET_TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
taskqueue_thread_enqueue, &qs->qs_err_taskq);
taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
device_get_nameunit(nic->dev));
return (0);
alloc_fail:
nicvf_free_resources(nic);
return (ENOMEM);
}
int
nicvf_set_qset_resources(struct nicvf *nic)
{
struct queue_set *qs;
qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
nic->qs = qs;
/* Set count of each queue */
qs->rbdr_cnt = RBDR_CNT;
qs->rq_cnt = RCV_QUEUE_CNT;
qs->sq_cnt = SND_QUEUE_CNT;
qs->cq_cnt = CMP_QUEUE_CNT;
/* Set queue lengths */
qs->rbdr_len = RCV_BUF_COUNT;
qs->sq_len = SND_QUEUE_LEN;
qs->cq_len = CMP_QUEUE_LEN;
nic->rx_queues = qs->rq_cnt;
nic->tx_queues = qs->sq_cnt;
return (0);
}
int
nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
{
boolean_t disable = FALSE;
struct queue_set *qs;
int qidx;
qs = nic->qs;
if (qs == NULL)
return (0);
if (enable) {
if (nicvf_alloc_resources(nic) != 0)
return (ENOMEM);
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_snd_queue_config(nic, qs, qidx, enable);
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_cmp_queue_config(nic, qs, qidx, enable);
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_rbdr_config(nic, qs, qidx, enable);
for (qidx = 0; qidx < qs->rq_cnt; qidx++)
nicvf_rcv_queue_config(nic, qs, qidx, enable);
} else {
for (qidx = 0; qidx < qs->rq_cnt; qidx++)
nicvf_rcv_queue_config(nic, qs, qidx, disable);
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_rbdr_config(nic, qs, qidx, disable);
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_snd_queue_config(nic, qs, qidx, disable);
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_cmp_queue_config(nic, qs, qidx, disable);
nicvf_free_resources(nic);
}
return (0);
}
/*
* Get a free desc from SQ
* returns descriptor ponter & descriptor number
*/
static __inline int
nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
{
int qentry;
qentry = sq->tail;
atomic_subtract_int(&sq->free_cnt, desc_cnt);
sq->tail += desc_cnt;
sq->tail &= (sq->dmem.q_len - 1);
return (qentry);
}
/* Free descriptor back to SQ for future use */
static void
nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
{
atomic_add_int(&sq->free_cnt, desc_cnt);
sq->head += desc_cnt;
sq->head &= (sq->dmem.q_len - 1);
}
static __inline int
nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
{
qentry++;
qentry &= (sq->dmem.q_len - 1);
return (qentry);
}
static void
nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
{
uint64_t sq_cfg;
sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
sq_cfg |= NICVF_SQ_EN;
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
/* Ring doorbell so that H/W restarts processing SQEs */
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
}
static void
nicvf_sq_disable(struct nicvf *nic, int qidx)
{
uint64_t sq_cfg;
sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
sq_cfg &= ~NICVF_SQ_EN;
nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
}
static void
nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
{
uint64_t head;
struct snd_buff *snd_buff;
struct sq_hdr_subdesc *hdr;
NICVF_TX_LOCK(sq);
head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
while (sq->head != head) {
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
nicvf_put_sq_desc(sq, 1);
continue;
}
snd_buff = &sq->snd_buff[sq->head];
if (snd_buff->mbuf != NULL) {
bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
m_freem(snd_buff->mbuf);
sq->snd_buff[sq->head].mbuf = NULL;
}
nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
}
NICVF_TX_UNLOCK(sq);
}
/*
* Add SQ HEADER subdescriptor.
* First subdescriptor for every send descriptor.
*/
static __inline int
nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
int subdesc_cnt, struct mbuf *mbuf, int len)
{
struct nicvf *nic;
struct sq_hdr_subdesc *hdr;
struct ether_vlan_header *eh;
#ifdef INET
struct ip *ip;
struct tcphdr *th;
#endif
uint16_t etype;
int ehdrlen, iphlen, poff, proto;
nic = sq->nic;
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
sq->snd_buff[qentry].mbuf = mbuf;
memset(hdr, 0, SND_QUEUE_DESC_SIZE);
hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
/* Enable notification via CQE after processing SQE */
hdr->post_cqe = 1;
/* No of subdescriptors following this */
hdr->subdesc_cnt = subdesc_cnt;
hdr->tot_len = len;
eh = mtod(mbuf, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
etype = ntohs(eh->evl_proto);
} else {
ehdrlen = ETHER_HDR_LEN;
etype = ntohs(eh->evl_encap_proto);
}
poff = proto = -1;
switch (etype) {
#ifdef INET6
case ETHERTYPE_IPV6:
if (mbuf->m_len < ehdrlen + sizeof(struct ip6_hdr)) {
mbuf = m_pullup(mbuf, ehdrlen +sizeof(struct ip6_hdr));
sq->snd_buff[qentry].mbuf = NULL;
if (mbuf == NULL)
return (ENOBUFS);
}
poff = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &proto);
if (poff < 0)
return (ENOBUFS);
poff += ehdrlen;
break;
#endif
#ifdef INET
case ETHERTYPE_IP:
if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
sq->snd_buff[qentry].mbuf = mbuf;
if (mbuf == NULL)
return (ENOBUFS);
}
if (mbuf->m_pkthdr.csum_flags & CSUM_IP)
hdr->csum_l3 = 1; /* Enable IP csum calculation */
ip = (struct ip *)(mbuf->m_data + ehdrlen);
iphlen = ip->ip_hl << 2;
poff = ehdrlen + iphlen;
proto = ip->ip_p;
break;
#endif
}
#if defined(INET6) || defined(INET)
if (poff > 0 && mbuf->m_pkthdr.csum_flags != 0) {
switch (proto) {
case IPPROTO_TCP:
if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
break;
if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
sq->snd_buff[qentry].mbuf = mbuf;
if (mbuf == NULL)
return (ENOBUFS);
}
hdr->csum_l4 = SEND_L4_CSUM_TCP;
break;
case IPPROTO_UDP:
if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
break;
if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
sq->snd_buff[qentry].mbuf = mbuf;
if (mbuf == NULL)
return (ENOBUFS);
}
hdr->csum_l4 = SEND_L4_CSUM_UDP;
break;
case IPPROTO_SCTP:
if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
break;
if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
sq->snd_buff[qentry].mbuf = mbuf;
if (mbuf == NULL)
return (ENOBUFS);
}
hdr->csum_l4 = SEND_L4_CSUM_SCTP;
break;
default:
break;
}
hdr->l3_offset = ehdrlen;
hdr->l4_offset = poff;
}
if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
th = (struct tcphdr *)((caddr_t)(mbuf->m_data + poff));
hdr->tso = 1;
hdr->tso_start = poff + (th->th_off * 4);
hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
hdr->inner_l3_offset = ehdrlen - 2;
nic->drv_stats.tx_tso++;
}
#endif
return (0);
}
/*
* SQ GATHER subdescriptor
* Must follow HDR descriptor
*/
static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
int size, uint64_t data)
{
struct sq_gather_subdesc *gather;
qentry &= (sq->dmem.q_len - 1);
gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
memset(gather, 0, SND_QUEUE_DESC_SIZE);
gather->subdesc_type = SQ_DESC_TYPE_GATHER;
gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
gather->size = size;
gather->addr = data;
}
/* Put an mbuf to a SQ for packet transfer. */
static int
nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
{
bus_dma_segment_t segs[256];
struct snd_buff *snd_buff;
size_t seg;
int nsegs, qentry;
int subdesc_cnt;
int err;
NICVF_TX_LOCK_ASSERT(sq);
if (sq->free_cnt == 0)
return (ENOBUFS);
snd_buff = &sq->snd_buff[sq->tail];
err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
*mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(err != 0)) {
/* ARM64TODO: Add mbuf defragmenting if we lack maps */
m_freem(*mbufp);
*mbufp = NULL;
return (err);
}
/* Set how many subdescriptors is required */
subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
if (subdesc_cnt > sq->free_cnt) {
/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
return (ENOBUFS);
}
qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
/* Add SQ header subdesc */
err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
(*mbufp)->m_pkthdr.len);
if (err != 0) {
nicvf_put_sq_desc(sq, subdesc_cnt);
bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
if (err == ENOBUFS) {
m_freem(*mbufp);
*mbufp = NULL;
}
return (err);
}
/* Add SQ gather subdescs */
for (seg = 0; seg < nsegs; seg++) {
qentry = nicvf_get_nxt_sqentry(sq, qentry);
nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
segs[seg].ds_addr);
}
/* make sure all memory stores are done before ringing doorbell */
bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
__func__, sq->idx, subdesc_cnt);
/* Inform HW to xmit new packet */
nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
sq->idx, subdesc_cnt);
return (0);
}
static __inline u_int
frag_num(u_int i)
{
#if BYTE_ORDER == BIG_ENDIAN
return ((i & ~3) + 3 - (i & 3));
#else
return (i);
#endif
}
/* Returns MBUF for a received packet */
struct mbuf *
nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
{
int frag;
int payload_len = 0;
struct mbuf *mbuf;
struct mbuf *mbuf_frag;
uint16_t *rb_lens = NULL;
uint64_t *rb_ptrs = NULL;
mbuf = NULL;
rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
__func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
payload_len = rb_lens[frag_num(frag)];
if (frag == 0) {
/* First fragment */
mbuf = nicvf_rb_ptr_to_mbuf(nic,
(*rb_ptrs - cqe_rx->align_pad));
mbuf->m_len = payload_len;
mbuf->m_data += cqe_rx->align_pad;
if_setrcvif(mbuf, nic->ifp);
} else {
/* Add fragments */
mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
m_append(mbuf, payload_len, mbuf_frag->m_data);
m_freem(mbuf_frag);
}
/* Next buffer pointer */
rb_ptrs++;
}
if (__predict_true(mbuf != NULL)) {
m_fixhdr(mbuf);
mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
/*
* HW by default verifies IP & TCP/UDP/SCTP checksums
*/
if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
mbuf->m_pkthdr.csum_flags =
(CSUM_IP_CHECKED | CSUM_IP_VALID);
}
switch (cqe_rx->l4_type) {
case L4TYPE_UDP:
case L4TYPE_TCP: /* fall through */
mbuf->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
mbuf->m_pkthdr.csum_data = 0xffff;
break;
case L4TYPE_SCTP:
mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
break;
default:
break;
}
}
}
return (mbuf);
}
/* Enable interrupt */
void
nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
{
uint64_t reg_val;
reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
switch (int_type) {
case NICVF_INTR_CQ:
reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
break;
case NICVF_INTR_SQ:
reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
break;
case NICVF_INTR_RBDR:
reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
break;
case NICVF_INTR_PKT_DROP:
reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
break;
case NICVF_INTR_TCP_TIMER:
reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
break;
case NICVF_INTR_MBOX:
reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
break;
case NICVF_INTR_QS_ERR:
reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
break;
default:
device_printf(nic->dev,
"Failed to enable interrupt: unknown type\n");
break;
}
nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
}
/* Disable interrupt */
void
nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
{
uint64_t reg_val = 0;
switch (int_type) {
case NICVF_INTR_CQ:
reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
break;
case NICVF_INTR_SQ:
reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
break;
case NICVF_INTR_RBDR:
reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
break;
case NICVF_INTR_PKT_DROP:
reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
break;
case NICVF_INTR_TCP_TIMER:
reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
break;
case NICVF_INTR_MBOX:
reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
break;
case NICVF_INTR_QS_ERR:
reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
break;
default:
device_printf(nic->dev,
"Failed to disable interrupt: unknown type\n");
break;
}
nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
}
/* Clear interrupt */
void
nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
{
uint64_t reg_val = 0;
switch (int_type) {
case NICVF_INTR_CQ:
reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
break;
case NICVF_INTR_SQ:
reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
break;
case NICVF_INTR_RBDR:
reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
break;
case NICVF_INTR_PKT_DROP:
reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
break;
case NICVF_INTR_TCP_TIMER:
reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
break;
case NICVF_INTR_MBOX:
reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
break;
case NICVF_INTR_QS_ERR:
reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
break;
default:
device_printf(nic->dev,
"Failed to clear interrupt: unknown type\n");
break;
}
nicvf_reg_write(nic, NIC_VF_INT, reg_val);
}
/* Check if interrupt is enabled */
int
nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
{
uint64_t reg_val;
uint64_t mask = 0xff;
reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
switch (int_type) {
case NICVF_INTR_CQ:
mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
break;
case NICVF_INTR_SQ:
mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
break;
case NICVF_INTR_RBDR:
mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
break;
case NICVF_INTR_PKT_DROP:
mask = NICVF_INTR_PKT_DROP_MASK;
break;
case NICVF_INTR_TCP_TIMER:
mask = NICVF_INTR_TCP_TIMER_MASK;
break;
case NICVF_INTR_MBOX:
mask = NICVF_INTR_MBOX_MASK;
break;
case NICVF_INTR_QS_ERR:
mask = NICVF_INTR_QS_ERR_MASK;
break;
default:
device_printf(nic->dev,
"Failed to check interrupt enable: unknown type\n");
break;
}
return (reg_val & mask);
}
void
nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
{
struct rcv_queue *rq;
#define GET_RQ_STATS(reg) \
nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
(rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
rq = &nic->qs->rq[rq_idx];
rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
}
void
nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
{
struct snd_queue *sq;
#define GET_SQ_STATS(reg) \
nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
(sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
sq = &nic->qs->sq[sq_idx];
sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
}
/* Check for errors in the receive cmp.queue entry */
int
nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
struct cqe_rx_t *cqe_rx)
{
struct nicvf_hw_stats *stats = &nic->hw_stats;
struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
drv_stats->rx_frames_ok++;
return (0);
}
switch (cqe_rx->err_opcode) {
case CQ_RX_ERROP_RE_PARTIAL:
stats->rx_bgx_truncated_pkts++;
break;
case CQ_RX_ERROP_RE_JABBER:
stats->rx_jabber_errs++;
break;
case CQ_RX_ERROP_RE_FCS:
stats->rx_fcs_errs++;
break;
case CQ_RX_ERROP_RE_RX_CTL:
stats->rx_bgx_errs++;
break;
case CQ_RX_ERROP_PREL2_ERR:
stats->rx_prel2_errs++;
break;
case CQ_RX_ERROP_L2_MAL:
stats->rx_l2_hdr_malformed++;
break;
case CQ_RX_ERROP_L2_OVERSIZE:
stats->rx_oversize++;
break;
case CQ_RX_ERROP_L2_UNDERSIZE:
stats->rx_undersize++;
break;
case CQ_RX_ERROP_L2_LENMISM:
stats->rx_l2_len_mismatch++;
break;
case CQ_RX_ERROP_L2_PCLP:
stats->rx_l2_pclp++;
break;
case CQ_RX_ERROP_IP_NOT:
stats->rx_ip_ver_errs++;
break;
case CQ_RX_ERROP_IP_CSUM_ERR:
stats->rx_ip_csum_errs++;
break;
case CQ_RX_ERROP_IP_MAL:
stats->rx_ip_hdr_malformed++;
break;
case CQ_RX_ERROP_IP_MALD:
stats->rx_ip_payload_malformed++;
break;
case CQ_RX_ERROP_IP_HOP:
stats->rx_ip_ttl_errs++;
break;
case CQ_RX_ERROP_L3_PCLP:
stats->rx_l3_pclp++;
break;
case CQ_RX_ERROP_L4_MAL:
stats->rx_l4_malformed++;
break;
case CQ_RX_ERROP_L4_CHK:
stats->rx_l4_csum_errs++;
break;
case CQ_RX_ERROP_UDP_LEN:
stats->rx_udp_len_errs++;
break;
case CQ_RX_ERROP_L4_PORT:
stats->rx_l4_port_errs++;
break;
case CQ_RX_ERROP_TCP_FLAG:
stats->rx_tcp_flag_errs++;
break;
case CQ_RX_ERROP_TCP_OFFSET:
stats->rx_tcp_offset_errs++;
break;
case CQ_RX_ERROP_L4_PCLP:
stats->rx_l4_pclp++;
break;
case CQ_RX_ERROP_RBDR_TRUNC:
stats->rx_truncated_pkts++;
break;
}
return (1);
}
/* Check for errors in the send cmp.queue entry */
int
nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
struct cqe_send_t *cqe_tx)
{
struct cmp_queue_stats *stats = &cq->stats;
switch (cqe_tx->send_status) {
case CQ_TX_ERROP_GOOD:
stats->tx.good++;
return (0);
case CQ_TX_ERROP_DESC_FAULT:
stats->tx.desc_fault++;
break;
case CQ_TX_ERROP_HDR_CONS_ERR:
stats->tx.hdr_cons_err++;
break;
case CQ_TX_ERROP_SUBDC_ERR:
stats->tx.subdesc_err++;
break;
case CQ_TX_ERROP_IMM_SIZE_OFLOW:
stats->tx.imm_size_oflow++;
break;
case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
stats->tx.data_seq_err++;
break;
case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
stats->tx.mem_seq_err++;
break;
case CQ_TX_ERROP_LOCK_VIOL:
stats->tx.lock_viol++;
break;
case CQ_TX_ERROP_DATA_FAULT:
stats->tx.data_fault++;
break;
case CQ_TX_ERROP_TSTMP_CONFLICT:
stats->tx.tstmp_conflict++;
break;
case CQ_TX_ERROP_TSTMP_TIMEOUT:
stats->tx.tstmp_timeout++;
break;
case CQ_TX_ERROP_MEM_FAULT:
stats->tx.mem_fault++;
break;
case CQ_TX_ERROP_CK_OVERLAP:
stats->tx.csum_overlap++;
break;
case CQ_TX_ERROP_CK_OFLOW:
stats->tx.csum_overflow++;
break;
}
return (1);
}