freebsd-dev/sys/kgssapi/krb5/kcrypto_aes.c
John Baldwin 9c0e3d3a53 Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer.  Using a separate output buffer avoids this copy.

- Create a new 'struct crypto_buffer' describing a crypto buffer
  containing a type and type-specific fields.  crp_ilen is gone,
  instead buffers that use a flat kernel buffer have a cb_buf_len
  field for their length.  The length of other buffer types is
  inferred from the backing store (e.g. uio_resid for a uio).
  Requests now have two such structures: crp_buf for the input buffer,
  and crp_obuf for the output buffer.

- Consumers now use helper functions (crypto_use_*,
  e.g. crypto_use_mbuf()) to configure the input buffer.  If an output
  buffer is not configured, the request still modifies the input
  buffer in-place.  A consumer uses a second set of helper functions
  (crypto_use_output_*) to configure an output buffer.

- Consumers must request support for separate output buffers when
  creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
  only permitted to queue a request with a separate output buffer on
  sessions with this flag set.  Existing drivers already reject
  sessions with unknown flags, so this permits drivers to be modified
  to support this extension without requiring all drivers to change.

- Several data-related functions now have matching versions that
  operate on an explicit buffer (e.g. crypto_apply_buf,
  crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).

- Most of the existing data-related functions operate on the input
  buffer.  However crypto_copyback always writes to the output buffer
  if a request uses a separate output buffer.

- For the regions in input/output buffers, the following conventions
  are followed:
  - AAD and IV are always present in input only and their
    fields are offsets into the input buffer.
  - payload is always present in both buffers.  If a request uses a
    separate output buffer, it must set a new crp_payload_start_output
    field to the offset of the payload in the output buffer.
  - digest is in the input buffer for verify operations, and in the
    output buffer for compute operations.  crp_digest_start is relative
    to the appropriate buffer.

- Add a crypto buffer cursor abstraction.  This is a more general form
  of some bits in the cryptosoft driver that tried to always use uio's.
  However, compared to the original code, this avoids rewalking the uio
  iovec array for requests with multiple vectors.  It also avoids
  allocate an iovec array for mbufs and populating it by instead walking
  the mbuf chain directly.

- Update the cryptosoft(4) driver to support separate output buffers
  making use of the cursor abstraction.

Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00

383 lines
10 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2008 Isilon Inc http://www.isilon.com/
* Authors: Doug Rabson <dfr@rabson.org>
* Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/kobj.h>
#include <sys/mbuf.h>
#include <opencrypto/cryptodev.h>
#include <kgssapi/gssapi.h>
#include <kgssapi/gssapi_impl.h>
#include "kcrypto.h"
struct aes_state {
struct mtx as_lock;
crypto_session_t as_session_aes;
crypto_session_t as_session_sha1;
};
static void
aes_init(struct krb5_key_state *ks)
{
struct aes_state *as;
as = malloc(sizeof(struct aes_state), M_GSSAPI, M_WAITOK|M_ZERO);
mtx_init(&as->as_lock, "gss aes lock", NULL, MTX_DEF);
ks->ks_priv = as;
}
static void
aes_destroy(struct krb5_key_state *ks)
{
struct aes_state *as = ks->ks_priv;
if (as->as_session_aes != 0)
crypto_freesession(as->as_session_aes);
if (as->as_session_sha1 != 0)
crypto_freesession(as->as_session_sha1);
mtx_destroy(&as->as_lock);
free(ks->ks_priv, M_GSSAPI);
}
static void
aes_set_key(struct krb5_key_state *ks, const void *in)
{
void *kp = ks->ks_key;
struct aes_state *as = ks->ks_priv;
struct crypto_session_params csp;
if (kp != in)
bcopy(in, kp, ks->ks_class->ec_keylen);
if (as->as_session_aes != 0)
crypto_freesession(as->as_session_aes);
if (as->as_session_sha1 != 0)
crypto_freesession(as->as_session_sha1);
/*
* We only want the first 96 bits of the HMAC.
*/
memset(&csp, 0, sizeof(csp));
csp.csp_mode = CSP_MODE_DIGEST;
csp.csp_auth_alg = CRYPTO_SHA1_HMAC;
csp.csp_auth_klen = ks->ks_class->ec_keybits / 8;
csp.csp_auth_mlen = 12;
csp.csp_auth_key = ks->ks_key;
crypto_newsession(&as->as_session_sha1, &csp,
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE);
memset(&csp, 0, sizeof(csp));
csp.csp_mode = CSP_MODE_CIPHER;
csp.csp_cipher_alg = CRYPTO_AES_CBC;
csp.csp_cipher_klen = ks->ks_class->ec_keybits / 8;
csp.csp_cipher_key = ks->ks_key;
csp.csp_ivlen = 16;
crypto_newsession(&as->as_session_aes, &csp,
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE);
}
static void
aes_random_to_key(struct krb5_key_state *ks, const void *in)
{
aes_set_key(ks, in);
}
static int
aes_crypto_cb(struct cryptop *crp)
{
int error;
struct aes_state *as = (struct aes_state *) crp->crp_opaque;
if (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)
return (0);
error = crp->crp_etype;
if (error == EAGAIN)
error = crypto_dispatch(crp);
mtx_lock(&as->as_lock);
if (error || (crp->crp_flags & CRYPTO_F_DONE))
wakeup(crp);
mtx_unlock(&as->as_lock);
return (0);
}
static void
aes_encrypt_1(const struct krb5_key_state *ks, int buftype, void *buf,
size_t skip, size_t len, void *ivec, bool encrypt)
{
struct aes_state *as = ks->ks_priv;
struct cryptop *crp;
int error;
crp = crypto_getreq(as->as_session_aes, M_WAITOK);
crp->crp_payload_start = skip;
crp->crp_payload_length = len;
crp->crp_op = encrypt ? CRYPTO_OP_ENCRYPT : CRYPTO_OP_DECRYPT;
crp->crp_flags = CRYPTO_F_CBIFSYNC | CRYPTO_F_IV_SEPARATE;
if (ivec) {
memcpy(crp->crp_iv, ivec, 16);
} else {
memset(crp->crp_iv, 0, 16);
}
if (buftype == CRYPTO_BUF_MBUF)
crypto_use_mbuf(crp, buf);
else
crypto_use_buf(crp, buf, skip + len);
crp->crp_opaque = as;
crp->crp_callback = aes_crypto_cb;
error = crypto_dispatch(crp);
if ((crypto_ses2caps(as->as_session_aes) & CRYPTOCAP_F_SYNC) == 0) {
mtx_lock(&as->as_lock);
if (!error && !(crp->crp_flags & CRYPTO_F_DONE))
error = msleep(crp, &as->as_lock, 0, "gssaes", 0);
mtx_unlock(&as->as_lock);
}
crypto_freereq(crp);
}
static void
aes_encrypt(const struct krb5_key_state *ks, struct mbuf *inout,
size_t skip, size_t len, void *ivec, size_t ivlen)
{
size_t blocklen = 16, plen;
struct {
uint8_t cn_1[16], cn[16];
} last2;
int i, off;
/*
* AES encryption with cyphertext stealing:
*
* CTSencrypt(P[0], ..., P[n], IV, K):
* len = length(P[n])
* (C[0], ..., C[n-2], E[n-1]) =
* CBCencrypt(P[0], ..., P[n-1], IV, K)
* P = pad(P[n], 0, blocksize)
* E[n] = CBCencrypt(P, E[n-1], K);
* C[n-1] = E[n]
* C[n] = E[n-1]{0..len-1}
*/
plen = len % blocklen;
if (len == blocklen) {
/*
* Note: caller will ensure len >= blocklen.
*/
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec,
true);
} else if (plen == 0) {
/*
* This is equivalent to CBC mode followed by swapping
* the last two blocks. We assume that neither of the
* last two blocks cross iov boundaries.
*/
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec,
true);
off = skip + len - 2 * blocklen;
m_copydata(inout, off, 2 * blocklen, (void*) &last2);
m_copyback(inout, off, blocklen, last2.cn);
m_copyback(inout, off + blocklen, blocklen, last2.cn_1);
} else {
/*
* This is the difficult case. We encrypt all but the
* last partial block first. We then create a padded
* copy of the last block and encrypt that using the
* second to last encrypted block as IV. Once we have
* the encrypted versions of the last two blocks, we
* reshuffle to create the final result.
*/
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len - plen,
ivec, true);
/*
* Copy out the last two blocks, pad the last block
* and encrypt it. Rearrange to get the final
* result. The cyphertext for cn_1 is in cn. The
* cyphertext for cn is the first plen bytes of what
* is in cn_1 now.
*/
off = skip + len - blocklen - plen;
m_copydata(inout, off, blocklen + plen, (void*) &last2);
for (i = plen; i < blocklen; i++)
last2.cn[i] = 0;
aes_encrypt_1(ks, CRYPTO_BUF_CONTIG, last2.cn, 0, blocklen,
last2.cn_1, true);
m_copyback(inout, off, blocklen, last2.cn);
m_copyback(inout, off + blocklen, plen, last2.cn_1);
}
}
static void
aes_decrypt(const struct krb5_key_state *ks, struct mbuf *inout,
size_t skip, size_t len, void *ivec, size_t ivlen)
{
size_t blocklen = 16, plen;
struct {
uint8_t cn_1[16], cn[16];
} last2;
int i, off, t;
/*
* AES decryption with cyphertext stealing:
*
* CTSencrypt(C[0], ..., C[n], IV, K):
* len = length(C[n])
* E[n] = C[n-1]
* X = decrypt(E[n], K)
* P[n] = (X ^ C[n]){0..len-1}
* E[n-1] = {C[n,0],...,C[n,len-1],X[len],...,X[blocksize-1]}
* (P[0],...,P[n-1]) = CBCdecrypt(C[0],...,C[n-2],E[n-1], IV, K)
*/
plen = len % blocklen;
if (len == blocklen) {
/*
* Note: caller will ensure len >= blocklen.
*/
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec,
false);
} else if (plen == 0) {
/*
* This is equivalent to CBC mode followed by swapping
* the last two blocks.
*/
off = skip + len - 2 * blocklen;
m_copydata(inout, off, 2 * blocklen, (void*) &last2);
m_copyback(inout, off, blocklen, last2.cn);
m_copyback(inout, off + blocklen, blocklen, last2.cn_1);
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec,
false);
} else {
/*
* This is the difficult case. We first decrypt the
* second to last block with a zero IV to make X. The
* plaintext for the last block is the XOR of X and
* the last cyphertext block.
*
* We derive a new cypher text for the second to last
* block by mixing the unused bytes of X with the last
* cyphertext block. The result of that can be
* decrypted with the rest in CBC mode.
*/
off = skip + len - plen - blocklen;
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, off, blocklen,
NULL, false);
m_copydata(inout, off, blocklen + plen, (void*) &last2);
for (i = 0; i < plen; i++) {
t = last2.cn[i];
last2.cn[i] ^= last2.cn_1[i];
last2.cn_1[i] = t;
}
m_copyback(inout, off, blocklen + plen, (void*) &last2);
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len - plen,
ivec, false);
}
}
static void
aes_checksum(const struct krb5_key_state *ks, int usage,
struct mbuf *inout, size_t skip, size_t inlen, size_t outlen)
{
struct aes_state *as = ks->ks_priv;
struct cryptop *crp;
int error;
crp = crypto_getreq(as->as_session_sha1, M_WAITOK);
crp->crp_payload_start = skip;
crp->crp_payload_length = inlen;
crp->crp_digest_start = skip + inlen;
crp->crp_flags = CRYPTO_F_CBIFSYNC;
crypto_use_mbuf(crp, inout);
crp->crp_opaque = as;
crp->crp_callback = aes_crypto_cb;
error = crypto_dispatch(crp);
if ((crypto_ses2caps(as->as_session_sha1) & CRYPTOCAP_F_SYNC) == 0) {
mtx_lock(&as->as_lock);
if (!error && !(crp->crp_flags & CRYPTO_F_DONE))
error = msleep(crp, &as->as_lock, 0, "gssaes", 0);
mtx_unlock(&as->as_lock);
}
crypto_freereq(crp);
}
struct krb5_encryption_class krb5_aes128_encryption_class = {
"aes128-cts-hmac-sha1-96", /* name */
ETYPE_AES128_CTS_HMAC_SHA1_96, /* etype */
EC_DERIVED_KEYS, /* flags */
16, /* blocklen */
1, /* msgblocklen */
12, /* checksumlen */
128, /* keybits */
16, /* keylen */
aes_init,
aes_destroy,
aes_set_key,
aes_random_to_key,
aes_encrypt,
aes_decrypt,
aes_checksum
};
struct krb5_encryption_class krb5_aes256_encryption_class = {
"aes256-cts-hmac-sha1-96", /* name */
ETYPE_AES256_CTS_HMAC_SHA1_96, /* etype */
EC_DERIVED_KEYS, /* flags */
16, /* blocklen */
1, /* msgblocklen */
12, /* checksumlen */
256, /* keybits */
32, /* keylen */
aes_init,
aes_destroy,
aes_set_key,
aes_random_to_key,
aes_encrypt,
aes_decrypt,
aes_checksum
};