freebsd-dev/sys/geom/raid3/g_raid3.c
Konstantin Belousov 4e2732b550 Removal of Giant droping wrappers for GEOM classes.
Sponsored by:	The FreeBSD Foundation
2016-05-20 08:25:37 +00:00

3585 lines
96 KiB
C

/*-
* Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/bio.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/eventhandler.h>
#include <vm/uma.h>
#include <geom/geom.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <sys/sched.h>
#include <geom/raid3/g_raid3.h>
FEATURE(geom_raid3, "GEOM RAID-3 functionality");
static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
SYSCTL_DECL(_kern_geom);
static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0,
"GEOM_RAID3 stuff");
u_int g_raid3_debug = 0;
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid3_debug, 0,
"Debug level");
static u_int g_raid3_timeout = 4;
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RWTUN, &g_raid3_timeout,
0, "Time to wait on all raid3 components");
static u_int g_raid3_idletime = 5;
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RWTUN,
&g_raid3_idletime, 0, "Mark components as clean when idling");
static u_int g_raid3_disconnect_on_failure = 1;
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
&g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
static u_int g_raid3_syncreqs = 2;
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
&g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
static u_int g_raid3_use_malloc = 0;
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
&g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
static u_int g_raid3_n64k = 50;
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RDTUN, &g_raid3_n64k, 0,
"Maximum number of 64kB allocations");
static u_int g_raid3_n16k = 200;
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RDTUN, &g_raid3_n16k, 0,
"Maximum number of 16kB allocations");
static u_int g_raid3_n4k = 1200;
SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RDTUN, &g_raid3_n4k, 0,
"Maximum number of 4kB allocations");
static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
"GEOM_RAID3 statistics");
static u_int g_raid3_parity_mismatch = 0;
SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
&g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
#define MSLEEP(ident, mtx, priority, wmesg, timeout) do { \
G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \
msleep((ident), (mtx), (priority), (wmesg), (timeout)); \
G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \
} while (0)
static eventhandler_tag g_raid3_post_sync = NULL;
static int g_raid3_shutdown = 0;
static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
struct g_geom *gp);
static g_taste_t g_raid3_taste;
static void g_raid3_init(struct g_class *mp);
static void g_raid3_fini(struct g_class *mp);
struct g_class g_raid3_class = {
.name = G_RAID3_CLASS_NAME,
.version = G_VERSION,
.ctlreq = g_raid3_config,
.taste = g_raid3_taste,
.destroy_geom = g_raid3_destroy_geom,
.init = g_raid3_init,
.fini = g_raid3_fini
};
static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
static int g_raid3_register_request(struct bio *pbp);
static void g_raid3_sync_release(struct g_raid3_softc *sc);
static const char *
g_raid3_disk_state2str(int state)
{
switch (state) {
case G_RAID3_DISK_STATE_NODISK:
return ("NODISK");
case G_RAID3_DISK_STATE_NONE:
return ("NONE");
case G_RAID3_DISK_STATE_NEW:
return ("NEW");
case G_RAID3_DISK_STATE_ACTIVE:
return ("ACTIVE");
case G_RAID3_DISK_STATE_STALE:
return ("STALE");
case G_RAID3_DISK_STATE_SYNCHRONIZING:
return ("SYNCHRONIZING");
case G_RAID3_DISK_STATE_DISCONNECTED:
return ("DISCONNECTED");
default:
return ("INVALID");
}
}
static const char *
g_raid3_device_state2str(int state)
{
switch (state) {
case G_RAID3_DEVICE_STATE_STARTING:
return ("STARTING");
case G_RAID3_DEVICE_STATE_DEGRADED:
return ("DEGRADED");
case G_RAID3_DEVICE_STATE_COMPLETE:
return ("COMPLETE");
default:
return ("INVALID");
}
}
const char *
g_raid3_get_diskname(struct g_raid3_disk *disk)
{
if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
return ("[unknown]");
return (disk->d_name);
}
static void *
g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
{
void *ptr;
enum g_raid3_zones zone;
if (g_raid3_use_malloc ||
(zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
ptr = malloc(size, M_RAID3, flags);
else {
ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
&sc->sc_zones[zone], flags);
sc->sc_zones[zone].sz_requested++;
if (ptr == NULL)
sc->sc_zones[zone].sz_failed++;
}
return (ptr);
}
static void
g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
{
enum g_raid3_zones zone;
if (g_raid3_use_malloc ||
(zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
free(ptr, M_RAID3);
else {
uma_zfree_arg(sc->sc_zones[zone].sz_zone,
ptr, &sc->sc_zones[zone]);
}
}
static int
g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
{
struct g_raid3_zone *sz = arg;
if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
return (ENOMEM);
sz->sz_inuse++;
return (0);
}
static void
g_raid3_uma_dtor(void *mem, int size, void *arg)
{
struct g_raid3_zone *sz = arg;
sz->sz_inuse--;
}
#define g_raid3_xor(src, dst, size) \
_g_raid3_xor((uint64_t *)(src), \
(uint64_t *)(dst), (size_t)size)
static void
_g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
{
KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
for (; size > 0; size -= 128) {
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
*dst++ ^= (*src++);
}
}
static int
g_raid3_is_zero(struct bio *bp)
{
static const uint64_t zeros[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
u_char *addr;
ssize_t size;
size = bp->bio_length;
addr = (u_char *)bp->bio_data;
for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
if (bcmp(addr, zeros, sizeof(zeros)) != 0)
return (0);
}
return (1);
}
/*
* --- Events handling functions ---
* Events in geom_raid3 are used to maintain disks and device status
* from one thread to simplify locking.
*/
static void
g_raid3_event_free(struct g_raid3_event *ep)
{
free(ep, M_RAID3);
}
int
g_raid3_event_send(void *arg, int state, int flags)
{
struct g_raid3_softc *sc;
struct g_raid3_disk *disk;
struct g_raid3_event *ep;
int error;
ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
disk = NULL;
sc = arg;
} else {
disk = arg;
sc = disk->d_softc;
}
ep->e_disk = disk;
ep->e_state = state;
ep->e_flags = flags;
ep->e_error = 0;
mtx_lock(&sc->sc_events_mtx);
TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
mtx_unlock(&sc->sc_events_mtx);
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
mtx_lock(&sc->sc_queue_mtx);
wakeup(sc);
wakeup(&sc->sc_queue);
mtx_unlock(&sc->sc_queue_mtx);
if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
return (0);
sx_assert(&sc->sc_lock, SX_XLOCKED);
G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
sx_xunlock(&sc->sc_lock);
while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
mtx_lock(&sc->sc_events_mtx);
MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
hz * 5);
}
error = ep->e_error;
g_raid3_event_free(ep);
sx_xlock(&sc->sc_lock);
return (error);
}
static struct g_raid3_event *
g_raid3_event_get(struct g_raid3_softc *sc)
{
struct g_raid3_event *ep;
mtx_lock(&sc->sc_events_mtx);
ep = TAILQ_FIRST(&sc->sc_events);
mtx_unlock(&sc->sc_events_mtx);
return (ep);
}
static void
g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
{
mtx_lock(&sc->sc_events_mtx);
TAILQ_REMOVE(&sc->sc_events, ep, e_next);
mtx_unlock(&sc->sc_events_mtx);
}
static void
g_raid3_event_cancel(struct g_raid3_disk *disk)
{
struct g_raid3_softc *sc;
struct g_raid3_event *ep, *tmpep;
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
mtx_lock(&sc->sc_events_mtx);
TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
continue;
if (ep->e_disk != disk)
continue;
TAILQ_REMOVE(&sc->sc_events, ep, e_next);
if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
g_raid3_event_free(ep);
else {
ep->e_error = ECANCELED;
wakeup(ep);
}
}
mtx_unlock(&sc->sc_events_mtx);
}
/*
* Return the number of disks in the given state.
* If state is equal to -1, count all connected disks.
*/
u_int
g_raid3_ndisks(struct g_raid3_softc *sc, int state)
{
struct g_raid3_disk *disk;
u_int n, ndisks;
sx_assert(&sc->sc_lock, SX_LOCKED);
for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
continue;
if (state == -1 || disk->d_state == state)
ndisks++;
}
return (ndisks);
}
static u_int
g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
{
struct bio *bp;
u_int nreqs = 0;
mtx_lock(&sc->sc_queue_mtx);
TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
if (bp->bio_from == cp)
nreqs++;
}
mtx_unlock(&sc->sc_queue_mtx);
return (nreqs);
}
static int
g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
{
if (cp->index > 0) {
G_RAID3_DEBUG(2,
"I/O requests for %s exist, can't destroy it now.",
cp->provider->name);
return (1);
}
if (g_raid3_nrequests(sc, cp) > 0) {
G_RAID3_DEBUG(2,
"I/O requests for %s in queue, can't destroy it now.",
cp->provider->name);
return (1);
}
return (0);
}
static void
g_raid3_destroy_consumer(void *arg, int flags __unused)
{
struct g_consumer *cp;
g_topology_assert();
cp = arg;
G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
g_detach(cp);
g_destroy_consumer(cp);
}
static void
g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
{
struct g_provider *pp;
int retaste_wait;
g_topology_assert();
cp->private = NULL;
if (g_raid3_is_busy(sc, cp))
return;
G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
pp = cp->provider;
retaste_wait = 0;
if (cp->acw == 1) {
if ((pp->geom->flags & G_GEOM_WITHER) == 0)
retaste_wait = 1;
}
G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
-cp->acw, -cp->ace, 0);
if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
g_access(cp, -cp->acr, -cp->acw, -cp->ace);
if (retaste_wait) {
/*
* After retaste event was send (inside g_access()), we can send
* event to detach and destroy consumer.
* A class, which has consumer to the given provider connected
* will not receive retaste event for the provider.
* This is the way how I ignore retaste events when I close
* consumers opened for write: I detach and destroy consumer
* after retaste event is sent.
*/
g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
return;
}
G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
g_detach(cp);
g_destroy_consumer(cp);
}
static int
g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
{
struct g_consumer *cp;
int error;
g_topology_assert_not();
KASSERT(disk->d_consumer == NULL,
("Disk already connected (device %s).", disk->d_softc->sc_name));
g_topology_lock();
cp = g_new_consumer(disk->d_softc->sc_geom);
error = g_attach(cp, pp);
if (error != 0) {
g_destroy_consumer(cp);
g_topology_unlock();
return (error);
}
error = g_access(cp, 1, 1, 1);
g_topology_unlock();
if (error != 0) {
g_detach(cp);
g_destroy_consumer(cp);
G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
pp->name, error);
return (error);
}
disk->d_consumer = cp;
disk->d_consumer->private = disk;
disk->d_consumer->index = 0;
G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
return (0);
}
static void
g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
{
g_topology_assert();
if (cp == NULL)
return;
if (cp->provider != NULL)
g_raid3_kill_consumer(sc, cp);
else
g_destroy_consumer(cp);
}
/*
* Initialize disk. This means allocate memory, create consumer, attach it
* to the provider and open access (r1w1e1) to it.
*/
static struct g_raid3_disk *
g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
struct g_raid3_metadata *md, int *errorp)
{
struct g_raid3_disk *disk;
int error;
disk = &sc->sc_disks[md->md_no];
error = g_raid3_connect_disk(disk, pp);
if (error != 0) {
if (errorp != NULL)
*errorp = error;
return (NULL);
}
disk->d_state = G_RAID3_DISK_STATE_NONE;
disk->d_flags = md->md_dflags;
if (md->md_provider[0] != '\0')
disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
disk->d_sync.ds_consumer = NULL;
disk->d_sync.ds_offset = md->md_sync_offset;
disk->d_sync.ds_offset_done = md->md_sync_offset;
disk->d_genid = md->md_genid;
disk->d_sync.ds_syncid = md->md_syncid;
if (errorp != NULL)
*errorp = 0;
return (disk);
}
static void
g_raid3_destroy_disk(struct g_raid3_disk *disk)
{
struct g_raid3_softc *sc;
g_topology_assert_not();
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
return;
g_raid3_event_cancel(disk);
switch (disk->d_state) {
case G_RAID3_DISK_STATE_SYNCHRONIZING:
if (sc->sc_syncdisk != NULL)
g_raid3_sync_stop(sc, 1);
/* FALLTHROUGH */
case G_RAID3_DISK_STATE_NEW:
case G_RAID3_DISK_STATE_STALE:
case G_RAID3_DISK_STATE_ACTIVE:
g_topology_lock();
g_raid3_disconnect_consumer(sc, disk->d_consumer);
g_topology_unlock();
disk->d_consumer = NULL;
break;
default:
KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
}
disk->d_state = G_RAID3_DISK_STATE_NODISK;
}
static void
g_raid3_destroy_device(struct g_raid3_softc *sc)
{
struct g_raid3_event *ep;
struct g_raid3_disk *disk;
struct g_geom *gp;
struct g_consumer *cp;
u_int n;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
gp = sc->sc_geom;
if (sc->sc_provider != NULL)
g_raid3_destroy_provider(sc);
for (n = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
g_raid3_update_metadata(disk);
g_raid3_destroy_disk(disk);
}
}
while ((ep = g_raid3_event_get(sc)) != NULL) {
g_raid3_event_remove(sc, ep);
if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
g_raid3_event_free(ep);
else {
ep->e_error = ECANCELED;
ep->e_flags |= G_RAID3_EVENT_DONE;
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
mtx_lock(&sc->sc_events_mtx);
wakeup(ep);
mtx_unlock(&sc->sc_events_mtx);
}
}
callout_drain(&sc->sc_callout);
cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
g_topology_lock();
if (cp != NULL)
g_raid3_disconnect_consumer(sc, cp);
g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
g_wither_geom(gp, ENXIO);
g_topology_unlock();
if (!g_raid3_use_malloc) {
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
}
mtx_destroy(&sc->sc_queue_mtx);
mtx_destroy(&sc->sc_events_mtx);
sx_xunlock(&sc->sc_lock);
sx_destroy(&sc->sc_lock);
}
static void
g_raid3_orphan(struct g_consumer *cp)
{
struct g_raid3_disk *disk;
g_topology_assert();
disk = cp->private;
if (disk == NULL)
return;
disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
G_RAID3_EVENT_DONTWAIT);
}
static int
g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
{
struct g_raid3_softc *sc;
struct g_consumer *cp;
off_t offset, length;
u_char *sector;
int error = 0;
g_topology_assert_not();
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
cp = disk->d_consumer;
KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
cp->acw, cp->ace));
length = cp->provider->sectorsize;
offset = cp->provider->mediasize - length;
sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
if (md != NULL)
raid3_metadata_encode(md, sector);
error = g_write_data(cp, offset, sector, length);
free(sector, M_RAID3);
if (error != 0) {
if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
G_RAID3_DEBUG(0, "Cannot write metadata on %s "
"(device=%s, error=%d).",
g_raid3_get_diskname(disk), sc->sc_name, error);
disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
} else {
G_RAID3_DEBUG(1, "Cannot write metadata on %s "
"(device=%s, error=%d).",
g_raid3_get_diskname(disk), sc->sc_name, error);
}
if (g_raid3_disconnect_on_failure &&
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
sc->sc_bump_id |= G_RAID3_BUMP_GENID;
g_raid3_event_send(disk,
G_RAID3_DISK_STATE_DISCONNECTED,
G_RAID3_EVENT_DONTWAIT);
}
}
return (error);
}
int
g_raid3_clear_metadata(struct g_raid3_disk *disk)
{
int error;
g_topology_assert_not();
sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
error = g_raid3_write_metadata(disk, NULL);
if (error == 0) {
G_RAID3_DEBUG(2, "Metadata on %s cleared.",
g_raid3_get_diskname(disk));
} else {
G_RAID3_DEBUG(0,
"Cannot clear metadata on disk %s (error=%d).",
g_raid3_get_diskname(disk), error);
}
return (error);
}
void
g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
{
struct g_raid3_softc *sc;
struct g_provider *pp;
sc = disk->d_softc;
strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
md->md_version = G_RAID3_VERSION;
strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
md->md_id = sc->sc_id;
md->md_all = sc->sc_ndisks;
md->md_genid = sc->sc_genid;
md->md_mediasize = sc->sc_mediasize;
md->md_sectorsize = sc->sc_sectorsize;
md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
md->md_no = disk->d_no;
md->md_syncid = disk->d_sync.ds_syncid;
md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
md->md_sync_offset = 0;
else {
md->md_sync_offset =
disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
}
if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
pp = disk->d_consumer->provider;
else
pp = NULL;
if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
else
bzero(md->md_provider, sizeof(md->md_provider));
if (pp != NULL)
md->md_provsize = pp->mediasize;
else
md->md_provsize = 0;
}
void
g_raid3_update_metadata(struct g_raid3_disk *disk)
{
struct g_raid3_softc *sc;
struct g_raid3_metadata md;
int error;
g_topology_assert_not();
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_LOCKED);
g_raid3_fill_metadata(disk, &md);
error = g_raid3_write_metadata(disk, &md);
if (error == 0) {
G_RAID3_DEBUG(2, "Metadata on %s updated.",
g_raid3_get_diskname(disk));
} else {
G_RAID3_DEBUG(0,
"Cannot update metadata on disk %s (error=%d).",
g_raid3_get_diskname(disk), error);
}
}
static void
g_raid3_bump_syncid(struct g_raid3_softc *sc)
{
struct g_raid3_disk *disk;
u_int n;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
("%s called with no active disks (device=%s).", __func__,
sc->sc_name));
sc->sc_syncid++;
G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
sc->sc_syncid);
for (n = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
disk->d_sync.ds_syncid = sc->sc_syncid;
g_raid3_update_metadata(disk);
}
}
}
static void
g_raid3_bump_genid(struct g_raid3_softc *sc)
{
struct g_raid3_disk *disk;
u_int n;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
("%s called with no active disks (device=%s).", __func__,
sc->sc_name));
sc->sc_genid++;
G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
sc->sc_genid);
for (n = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
disk->d_genid = sc->sc_genid;
g_raid3_update_metadata(disk);
}
}
}
static int
g_raid3_idle(struct g_raid3_softc *sc, int acw)
{
struct g_raid3_disk *disk;
u_int i;
int timeout;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
if (sc->sc_provider == NULL)
return (0);
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
return (0);
if (sc->sc_idle)
return (0);
if (sc->sc_writes > 0)
return (0);
if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
if (!g_raid3_shutdown && timeout > 0)
return (timeout);
}
sc->sc_idle = 1;
for (i = 0; i < sc->sc_ndisks; i++) {
disk = &sc->sc_disks[i];
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
continue;
G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
g_raid3_get_diskname(disk), sc->sc_name);
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
g_raid3_update_metadata(disk);
}
return (0);
}
static void
g_raid3_unidle(struct g_raid3_softc *sc)
{
struct g_raid3_disk *disk;
u_int i;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
return;
sc->sc_idle = 0;
sc->sc_last_write = time_uptime;
for (i = 0; i < sc->sc_ndisks; i++) {
disk = &sc->sc_disks[i];
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
continue;
G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
g_raid3_get_diskname(disk), sc->sc_name);
disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
g_raid3_update_metadata(disk);
}
}
/*
* Treat bio_driver1 field in parent bio as list head and field bio_caller1
* in child bio as pointer to the next element on the list.
*/
#define G_RAID3_HEAD_BIO(pbp) (pbp)->bio_driver1
#define G_RAID3_NEXT_BIO(cbp) (cbp)->bio_caller1
#define G_RAID3_FOREACH_BIO(pbp, bp) \
for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL; \
(bp) = G_RAID3_NEXT_BIO(bp))
#define G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp) \
for ((bp) = G_RAID3_HEAD_BIO(pbp); \
(bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1); \
(bp) = (tmpbp))
static void
g_raid3_init_bio(struct bio *pbp)
{
G_RAID3_HEAD_BIO(pbp) = NULL;
}
static void
g_raid3_remove_bio(struct bio *cbp)
{
struct bio *pbp, *bp;
pbp = cbp->bio_parent;
if (G_RAID3_HEAD_BIO(pbp) == cbp)
G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
else {
G_RAID3_FOREACH_BIO(pbp, bp) {
if (G_RAID3_NEXT_BIO(bp) == cbp) {
G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
break;
}
}
}
G_RAID3_NEXT_BIO(cbp) = NULL;
}
static void
g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
{
struct bio *pbp, *bp;
g_raid3_remove_bio(sbp);
pbp = dbp->bio_parent;
G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
if (G_RAID3_HEAD_BIO(pbp) == dbp)
G_RAID3_HEAD_BIO(pbp) = sbp;
else {
G_RAID3_FOREACH_BIO(pbp, bp) {
if (G_RAID3_NEXT_BIO(bp) == dbp) {
G_RAID3_NEXT_BIO(bp) = sbp;
break;
}
}
}
G_RAID3_NEXT_BIO(dbp) = NULL;
}
static void
g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
{
struct bio *bp, *pbp;
size_t size;
pbp = cbp->bio_parent;
pbp->bio_children--;
KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
size = pbp->bio_length / (sc->sc_ndisks - 1);
g_raid3_free(sc, cbp->bio_data, size);
if (G_RAID3_HEAD_BIO(pbp) == cbp) {
G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
G_RAID3_NEXT_BIO(cbp) = NULL;
g_destroy_bio(cbp);
} else {
G_RAID3_FOREACH_BIO(pbp, bp) {
if (G_RAID3_NEXT_BIO(bp) == cbp)
break;
}
if (bp != NULL) {
KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
("NULL bp->bio_driver1"));
G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
G_RAID3_NEXT_BIO(cbp) = NULL;
}
g_destroy_bio(cbp);
}
}
static struct bio *
g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
{
struct bio *bp, *cbp;
size_t size;
int memflag;
cbp = g_clone_bio(pbp);
if (cbp == NULL)
return (NULL);
size = pbp->bio_length / (sc->sc_ndisks - 1);
if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
memflag = M_WAITOK;
else
memflag = M_NOWAIT;
cbp->bio_data = g_raid3_alloc(sc, size, memflag);
if (cbp->bio_data == NULL) {
pbp->bio_children--;
g_destroy_bio(cbp);
return (NULL);
}
G_RAID3_NEXT_BIO(cbp) = NULL;
if (G_RAID3_HEAD_BIO(pbp) == NULL)
G_RAID3_HEAD_BIO(pbp) = cbp;
else {
G_RAID3_FOREACH_BIO(pbp, bp) {
if (G_RAID3_NEXT_BIO(bp) == NULL) {
G_RAID3_NEXT_BIO(bp) = cbp;
break;
}
}
}
return (cbp);
}
static void
g_raid3_scatter(struct bio *pbp)
{
struct g_raid3_softc *sc;
struct g_raid3_disk *disk;
struct bio *bp, *cbp, *tmpbp;
off_t atom, cadd, padd, left;
int first;
sc = pbp->bio_to->geom->softc;
bp = NULL;
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
/*
* Find bio for which we should calculate data.
*/
G_RAID3_FOREACH_BIO(pbp, cbp) {
if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
bp = cbp;
break;
}
}
KASSERT(bp != NULL, ("NULL parity bio."));
}
atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
cadd = padd = 0;
for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
G_RAID3_FOREACH_BIO(pbp, cbp) {
if (cbp == bp)
continue;
bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
padd += atom;
}
cadd += atom;
}
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
/*
* Calculate parity.
*/
first = 1;
G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
if (cbp == bp)
continue;
if (first) {
bcopy(cbp->bio_data, bp->bio_data,
bp->bio_length);
first = 0;
} else {
g_raid3_xor(cbp->bio_data, bp->bio_data,
bp->bio_length);
}
if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
g_raid3_destroy_bio(sc, cbp);
}
}
G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
struct g_consumer *cp;
disk = cbp->bio_caller2;
cp = disk->d_consumer;
cbp->bio_to = cp->provider;
G_RAID3_LOGREQ(3, cbp, "Sending request.");
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
cp->acr, cp->acw, cp->ace));
cp->index++;
sc->sc_writes++;
g_io_request(cbp, cp);
}
}
static void
g_raid3_gather(struct bio *pbp)
{
struct g_raid3_softc *sc;
struct g_raid3_disk *disk;
struct bio *xbp, *fbp, *cbp;
off_t atom, cadd, padd, left;
sc = pbp->bio_to->geom->softc;
/*
* Find bio for which we have to calculate data.
* While going through this path, check if all requests
* succeeded, if not, deny whole request.
* If we're in COMPLETE mode, we allow one request to fail,
* so if we find one, we're sending it to the parity consumer.
* If there are more failed requests, we deny whole request.
*/
xbp = fbp = NULL;
G_RAID3_FOREACH_BIO(pbp, cbp) {
if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
KASSERT(xbp == NULL, ("More than one parity bio."));
xbp = cbp;
}
if (cbp->bio_error == 0)
continue;
/*
* Found failed request.
*/
if (fbp == NULL) {
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
/*
* We are already in degraded mode, so we can't
* accept any failures.
*/
if (pbp->bio_error == 0)
pbp->bio_error = cbp->bio_error;
} else {
fbp = cbp;
}
} else {
/*
* Next failed request, that's too many.
*/
if (pbp->bio_error == 0)
pbp->bio_error = fbp->bio_error;
}
disk = cbp->bio_caller2;
if (disk == NULL)
continue;
if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
cbp->bio_error);
} else {
G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
cbp->bio_error);
}
if (g_raid3_disconnect_on_failure &&
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
sc->sc_bump_id |= G_RAID3_BUMP_GENID;
g_raid3_event_send(disk,
G_RAID3_DISK_STATE_DISCONNECTED,
G_RAID3_EVENT_DONTWAIT);
}
}
if (pbp->bio_error != 0)
goto finish;
if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
if (xbp != fbp)
g_raid3_replace_bio(xbp, fbp);
g_raid3_destroy_bio(sc, fbp);
} else if (fbp != NULL) {
struct g_consumer *cp;
/*
* One request failed, so send the same request to
* the parity consumer.
*/
disk = pbp->bio_driver2;
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
pbp->bio_error = fbp->bio_error;
goto finish;
}
pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
pbp->bio_inbed--;
fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
if (disk->d_no == sc->sc_ndisks - 1)
fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
fbp->bio_error = 0;
fbp->bio_completed = 0;
fbp->bio_children = 0;
fbp->bio_inbed = 0;
cp = disk->d_consumer;
fbp->bio_caller2 = disk;
fbp->bio_to = cp->provider;
G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
cp->acr, cp->acw, cp->ace));
cp->index++;
g_io_request(fbp, cp);
return;
}
if (xbp != NULL) {
/*
* Calculate parity.
*/
G_RAID3_FOREACH_BIO(pbp, cbp) {
if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
continue;
g_raid3_xor(cbp->bio_data, xbp->bio_data,
xbp->bio_length);
}
xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
if (!g_raid3_is_zero(xbp)) {
g_raid3_parity_mismatch++;
pbp->bio_error = EIO;
goto finish;
}
g_raid3_destroy_bio(sc, xbp);
}
}
atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
cadd = padd = 0;
for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
G_RAID3_FOREACH_BIO(pbp, cbp) {
bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
pbp->bio_completed += atom;
padd += atom;
}
cadd += atom;
}
finish:
if (pbp->bio_error == 0)
G_RAID3_LOGREQ(3, pbp, "Request finished.");
else {
if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
G_RAID3_LOGREQ(1, pbp, "Verification error.");
else
G_RAID3_LOGREQ(0, pbp, "Request failed.");
}
pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
g_raid3_destroy_bio(sc, cbp);
g_io_deliver(pbp, pbp->bio_error);
}
static void
g_raid3_done(struct bio *bp)
{
struct g_raid3_softc *sc;
sc = bp->bio_from->geom->softc;
bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
mtx_lock(&sc->sc_queue_mtx);
bioq_insert_head(&sc->sc_queue, bp);
mtx_unlock(&sc->sc_queue_mtx);
wakeup(sc);
wakeup(&sc->sc_queue);
}
static void
g_raid3_regular_request(struct bio *cbp)
{
struct g_raid3_softc *sc;
struct g_raid3_disk *disk;
struct bio *pbp;
g_topology_assert_not();
pbp = cbp->bio_parent;
sc = pbp->bio_to->geom->softc;
cbp->bio_from->index--;
if (cbp->bio_cmd == BIO_WRITE)
sc->sc_writes--;
disk = cbp->bio_from->private;
if (disk == NULL) {
g_topology_lock();
g_raid3_kill_consumer(sc, cbp->bio_from);
g_topology_unlock();
}
G_RAID3_LOGREQ(3, cbp, "Request finished.");
pbp->bio_inbed++;
KASSERT(pbp->bio_inbed <= pbp->bio_children,
("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
pbp->bio_children));
if (pbp->bio_inbed != pbp->bio_children)
return;
switch (pbp->bio_cmd) {
case BIO_READ:
g_raid3_gather(pbp);
break;
case BIO_WRITE:
case BIO_DELETE:
{
int error = 0;
pbp->bio_completed = pbp->bio_length;
while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
if (cbp->bio_error == 0) {
g_raid3_destroy_bio(sc, cbp);
continue;
}
if (error == 0)
error = cbp->bio_error;
else if (pbp->bio_error == 0) {
/*
* Next failed request, that's too many.
*/
pbp->bio_error = error;
}
disk = cbp->bio_caller2;
if (disk == NULL) {
g_raid3_destroy_bio(sc, cbp);
continue;
}
if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
G_RAID3_LOGREQ(0, cbp,
"Request failed (error=%d).",
cbp->bio_error);
} else {
G_RAID3_LOGREQ(1, cbp,
"Request failed (error=%d).",
cbp->bio_error);
}
if (g_raid3_disconnect_on_failure &&
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
sc->sc_bump_id |= G_RAID3_BUMP_GENID;
g_raid3_event_send(disk,
G_RAID3_DISK_STATE_DISCONNECTED,
G_RAID3_EVENT_DONTWAIT);
}
g_raid3_destroy_bio(sc, cbp);
}
if (pbp->bio_error == 0)
G_RAID3_LOGREQ(3, pbp, "Request finished.");
else
G_RAID3_LOGREQ(0, pbp, "Request failed.");
pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
bioq_remove(&sc->sc_inflight, pbp);
/* Release delayed sync requests if possible. */
g_raid3_sync_release(sc);
g_io_deliver(pbp, pbp->bio_error);
break;
}
}
}
static void
g_raid3_sync_done(struct bio *bp)
{
struct g_raid3_softc *sc;
G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
sc = bp->bio_from->geom->softc;
bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
mtx_lock(&sc->sc_queue_mtx);
bioq_insert_head(&sc->sc_queue, bp);
mtx_unlock(&sc->sc_queue_mtx);
wakeup(sc);
wakeup(&sc->sc_queue);
}
static void
g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
{
struct bio_queue_head queue;
struct g_raid3_disk *disk;
struct g_consumer *cp;
struct bio *cbp;
u_int i;
bioq_init(&queue);
for (i = 0; i < sc->sc_ndisks; i++) {
disk = &sc->sc_disks[i];
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
continue;
cbp = g_clone_bio(bp);
if (cbp == NULL) {
for (cbp = bioq_first(&queue); cbp != NULL;
cbp = bioq_first(&queue)) {
bioq_remove(&queue, cbp);
g_destroy_bio(cbp);
}
if (bp->bio_error == 0)
bp->bio_error = ENOMEM;
g_io_deliver(bp, bp->bio_error);
return;
}
bioq_insert_tail(&queue, cbp);
cbp->bio_done = g_std_done;
cbp->bio_caller1 = disk;
cbp->bio_to = disk->d_consumer->provider;
}
for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
bioq_remove(&queue, cbp);
G_RAID3_LOGREQ(3, cbp, "Sending request.");
disk = cbp->bio_caller1;
cbp->bio_caller1 = NULL;
cp = disk->d_consumer;
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
cp->acr, cp->acw, cp->ace));
g_io_request(cbp, disk->d_consumer);
}
}
static void
g_raid3_start(struct bio *bp)
{
struct g_raid3_softc *sc;
sc = bp->bio_to->geom->softc;
/*
* If sc == NULL or there are no valid disks, provider's error
* should be set and g_raid3_start() should not be called at all.
*/
KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
("Provider's error should be set (error=%d)(device=%s).",
bp->bio_to->error, bp->bio_to->name));
G_RAID3_LOGREQ(3, bp, "Request received.");
switch (bp->bio_cmd) {
case BIO_READ:
case BIO_WRITE:
case BIO_DELETE:
break;
case BIO_FLUSH:
g_raid3_flush(sc, bp);
return;
case BIO_GETATTR:
default:
g_io_deliver(bp, EOPNOTSUPP);
return;
}
mtx_lock(&sc->sc_queue_mtx);
bioq_insert_tail(&sc->sc_queue, bp);
mtx_unlock(&sc->sc_queue_mtx);
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
wakeup(sc);
}
/*
* Return TRUE if the given request is colliding with a in-progress
* synchronization request.
*/
static int
g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
{
struct g_raid3_disk *disk;
struct bio *sbp;
off_t rstart, rend, sstart, send;
int i;
disk = sc->sc_syncdisk;
if (disk == NULL)
return (0);
rstart = bp->bio_offset;
rend = bp->bio_offset + bp->bio_length;
for (i = 0; i < g_raid3_syncreqs; i++) {
sbp = disk->d_sync.ds_bios[i];
if (sbp == NULL)
continue;
sstart = sbp->bio_offset;
send = sbp->bio_length;
if (sbp->bio_cmd == BIO_WRITE) {
sstart *= sc->sc_ndisks - 1;
send *= sc->sc_ndisks - 1;
}
send += sstart;
if (rend > sstart && rstart < send)
return (1);
}
return (0);
}
/*
* Return TRUE if the given sync request is colliding with a in-progress regular
* request.
*/
static int
g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
{
off_t rstart, rend, sstart, send;
struct bio *bp;
if (sc->sc_syncdisk == NULL)
return (0);
sstart = sbp->bio_offset;
send = sstart + sbp->bio_length;
TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
rstart = bp->bio_offset;
rend = bp->bio_offset + bp->bio_length;
if (rend > sstart && rstart < send)
return (1);
}
return (0);
}
/*
* Puts request onto delayed queue.
*/
static void
g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
{
G_RAID3_LOGREQ(2, bp, "Delaying request.");
bioq_insert_head(&sc->sc_regular_delayed, bp);
}
/*
* Puts synchronization request onto delayed queue.
*/
static void
g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
{
G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
bioq_insert_tail(&sc->sc_sync_delayed, bp);
}
/*
* Releases delayed regular requests which don't collide anymore with sync
* requests.
*/
static void
g_raid3_regular_release(struct g_raid3_softc *sc)
{
struct bio *bp, *bp2;
TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
if (g_raid3_sync_collision(sc, bp))
continue;
bioq_remove(&sc->sc_regular_delayed, bp);
G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
mtx_lock(&sc->sc_queue_mtx);
bioq_insert_head(&sc->sc_queue, bp);
#if 0
/*
* wakeup() is not needed, because this function is called from
* the worker thread.
*/
wakeup(&sc->sc_queue);
#endif
mtx_unlock(&sc->sc_queue_mtx);
}
}
/*
* Releases delayed sync requests which don't collide anymore with regular
* requests.
*/
static void
g_raid3_sync_release(struct g_raid3_softc *sc)
{
struct bio *bp, *bp2;
TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
if (g_raid3_regular_collision(sc, bp))
continue;
bioq_remove(&sc->sc_sync_delayed, bp);
G_RAID3_LOGREQ(2, bp,
"Releasing delayed synchronization request.");
g_io_request(bp, bp->bio_from);
}
}
/*
* Handle synchronization requests.
* Every synchronization request is two-steps process: first, READ request is
* send to active provider and then WRITE request (with read data) to the provider
* being synchronized. When WRITE is finished, new synchronization request is
* send.
*/
static void
g_raid3_sync_request(struct bio *bp)
{
struct g_raid3_softc *sc;
struct g_raid3_disk *disk;
bp->bio_from->index--;
sc = bp->bio_from->geom->softc;
disk = bp->bio_from->private;
if (disk == NULL) {
sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
g_topology_lock();
g_raid3_kill_consumer(sc, bp->bio_from);
g_topology_unlock();
free(bp->bio_data, M_RAID3);
g_destroy_bio(bp);
sx_xlock(&sc->sc_lock);
return;
}
/*
* Synchronization request.
*/
switch (bp->bio_cmd) {
case BIO_READ:
{
struct g_consumer *cp;
u_char *dst, *src;
off_t left;
u_int atom;
if (bp->bio_error != 0) {
G_RAID3_LOGREQ(0, bp,
"Synchronization request failed (error=%d).",
bp->bio_error);
g_destroy_bio(bp);
return;
}
G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
dst = src = bp->bio_data;
if (disk->d_no == sc->sc_ndisks - 1) {
u_int n;
/* Parity component. */
for (left = bp->bio_length; left > 0;
left -= sc->sc_sectorsize) {
bcopy(src, dst, atom);
src += atom;
for (n = 1; n < sc->sc_ndisks - 1; n++) {
g_raid3_xor(src, dst, atom);
src += atom;
}
dst += atom;
}
} else {
/* Regular component. */
src += atom * disk->d_no;
for (left = bp->bio_length; left > 0;
left -= sc->sc_sectorsize) {
bcopy(src, dst, atom);
src += sc->sc_sectorsize;
dst += atom;
}
}
bp->bio_driver1 = bp->bio_driver2 = NULL;
bp->bio_pflags = 0;
bp->bio_offset /= sc->sc_ndisks - 1;
bp->bio_length /= sc->sc_ndisks - 1;
bp->bio_cmd = BIO_WRITE;
bp->bio_cflags = 0;
bp->bio_children = bp->bio_inbed = 0;
cp = disk->d_consumer;
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
cp->acr, cp->acw, cp->ace));
cp->index++;
g_io_request(bp, cp);
return;
}
case BIO_WRITE:
{
struct g_raid3_disk_sync *sync;
off_t boffset, moffset;
void *data;
int i;
if (bp->bio_error != 0) {
G_RAID3_LOGREQ(0, bp,
"Synchronization request failed (error=%d).",
bp->bio_error);
g_destroy_bio(bp);
sc->sc_bump_id |= G_RAID3_BUMP_GENID;
g_raid3_event_send(disk,
G_RAID3_DISK_STATE_DISCONNECTED,
G_RAID3_EVENT_DONTWAIT);
return;
}
G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
sync = &disk->d_sync;
if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
sync->ds_consumer == NULL ||
(sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
/* Don't send more synchronization requests. */
sync->ds_inflight--;
if (sync->ds_bios != NULL) {
i = (int)(uintptr_t)bp->bio_caller1;
sync->ds_bios[i] = NULL;
}
free(bp->bio_data, M_RAID3);
g_destroy_bio(bp);
if (sync->ds_inflight > 0)
return;
if (sync->ds_consumer == NULL ||
(sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
return;
}
/*
* Disk up-to-date, activate it.
*/
g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
G_RAID3_EVENT_DONTWAIT);
return;
}
/* Send next synchronization request. */
data = bp->bio_data;
g_reset_bio(bp);
bp->bio_cmd = BIO_READ;
bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
bp->bio_done = g_raid3_sync_done;
bp->bio_data = data;
bp->bio_from = sync->ds_consumer;
bp->bio_to = sc->sc_provider;
G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
sync->ds_consumer->index++;
/*
* Delay the request if it is colliding with a regular request.
*/
if (g_raid3_regular_collision(sc, bp))
g_raid3_sync_delay(sc, bp);
else
g_io_request(bp, sync->ds_consumer);
/* Release delayed requests if possible. */
g_raid3_regular_release(sc);
/* Find the smallest offset. */
moffset = sc->sc_mediasize;
for (i = 0; i < g_raid3_syncreqs; i++) {
bp = sync->ds_bios[i];
boffset = bp->bio_offset;
if (bp->bio_cmd == BIO_WRITE)
boffset *= sc->sc_ndisks - 1;
if (boffset < moffset)
moffset = boffset;
}
if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
/* Update offset_done on every 100 blocks. */
sync->ds_offset_done = moffset;
g_raid3_update_metadata(disk);
}
return;
}
default:
KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
bp->bio_cmd, sc->sc_name));
break;
}
}
static int
g_raid3_register_request(struct bio *pbp)
{
struct g_raid3_softc *sc;
struct g_raid3_disk *disk;
struct g_consumer *cp;
struct bio *cbp, *tmpbp;
off_t offset, length;
u_int n, ndisks;
int round_robin, verify;
ndisks = 0;
sc = pbp->bio_to->geom->softc;
if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
sc->sc_syncdisk == NULL) {
g_io_deliver(pbp, EIO);
return (0);
}
g_raid3_init_bio(pbp);
length = pbp->bio_length / (sc->sc_ndisks - 1);
offset = pbp->bio_offset / (sc->sc_ndisks - 1);
round_robin = verify = 0;
switch (pbp->bio_cmd) {
case BIO_READ:
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
verify = 1;
ndisks = sc->sc_ndisks;
} else {
verify = 0;
ndisks = sc->sc_ndisks - 1;
}
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
round_robin = 1;
} else {
round_robin = 0;
}
KASSERT(!round_robin || !verify,
("ROUND-ROBIN and VERIFY are mutually exclusive."));
pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
break;
case BIO_WRITE:
case BIO_DELETE:
/*
* Delay the request if it is colliding with a synchronization
* request.
*/
if (g_raid3_sync_collision(sc, pbp)) {
g_raid3_regular_delay(sc, pbp);
return (0);
}
if (sc->sc_idle)
g_raid3_unidle(sc);
else
sc->sc_last_write = time_uptime;
ndisks = sc->sc_ndisks;
break;
}
for (n = 0; n < ndisks; n++) {
disk = &sc->sc_disks[n];
cbp = g_raid3_clone_bio(sc, pbp);
if (cbp == NULL) {
while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
g_raid3_destroy_bio(sc, cbp);
/*
* To prevent deadlock, we must run back up
* with the ENOMEM for failed requests of any
* of our consumers. Our own sync requests
* can stick around, as they are finite.
*/
if ((pbp->bio_cflags &
G_RAID3_BIO_CFLAG_REGULAR) != 0) {
g_io_deliver(pbp, ENOMEM);
return (0);
}
return (ENOMEM);
}
cbp->bio_offset = offset;
cbp->bio_length = length;
cbp->bio_done = g_raid3_done;
switch (pbp->bio_cmd) {
case BIO_READ:
if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
/*
* Replace invalid component with the parity
* component.
*/
disk = &sc->sc_disks[sc->sc_ndisks - 1];
cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
} else if (round_robin &&
disk->d_no == sc->sc_round_robin) {
/*
* In round-robin mode skip one data component
* and use parity component when reading.
*/
pbp->bio_driver2 = disk;
disk = &sc->sc_disks[sc->sc_ndisks - 1];
cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
sc->sc_round_robin++;
round_robin = 0;
} else if (verify && disk->d_no == sc->sc_ndisks - 1) {
cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
}
break;
case BIO_WRITE:
case BIO_DELETE:
if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
if (n == ndisks - 1) {
/*
* Active parity component, mark it as such.
*/
cbp->bio_cflags |=
G_RAID3_BIO_CFLAG_PARITY;
}
} else {
pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
if (n == ndisks - 1) {
/*
* Parity component is not connected,
* so destroy its request.
*/
pbp->bio_pflags |=
G_RAID3_BIO_PFLAG_NOPARITY;
g_raid3_destroy_bio(sc, cbp);
cbp = NULL;
} else {
cbp->bio_cflags |=
G_RAID3_BIO_CFLAG_NODISK;
disk = NULL;
}
}
break;
}
if (cbp != NULL)
cbp->bio_caller2 = disk;
}
switch (pbp->bio_cmd) {
case BIO_READ:
if (round_robin) {
/*
* If we are in round-robin mode and 'round_robin' is
* still 1, it means, that we skipped parity component
* for this read and must reset sc_round_robin field.
*/
sc->sc_round_robin = 0;
}
G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
disk = cbp->bio_caller2;
cp = disk->d_consumer;
cbp->bio_to = cp->provider;
G_RAID3_LOGREQ(3, cbp, "Sending request.");
KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
("Consumer %s not opened (r%dw%de%d).",
cp->provider->name, cp->acr, cp->acw, cp->ace));
cp->index++;
g_io_request(cbp, cp);
}
break;
case BIO_WRITE:
case BIO_DELETE:
/*
* Put request onto inflight queue, so we can check if new
* synchronization requests don't collide with it.
*/
bioq_insert_tail(&sc->sc_inflight, pbp);
/*
* Bump syncid on first write.
*/
if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
g_raid3_bump_syncid(sc);
}
g_raid3_scatter(pbp);
break;
}
return (0);
}
static int
g_raid3_can_destroy(struct g_raid3_softc *sc)
{
struct g_geom *gp;
struct g_consumer *cp;
g_topology_assert();
gp = sc->sc_geom;
if (gp->softc == NULL)
return (1);
LIST_FOREACH(cp, &gp->consumer, consumer) {
if (g_raid3_is_busy(sc, cp))
return (0);
}
gp = sc->sc_sync.ds_geom;
LIST_FOREACH(cp, &gp->consumer, consumer) {
if (g_raid3_is_busy(sc, cp))
return (0);
}
G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
sc->sc_name);
return (1);
}
static int
g_raid3_try_destroy(struct g_raid3_softc *sc)
{
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
if (sc->sc_rootmount != NULL) {
G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
sc->sc_rootmount);
root_mount_rel(sc->sc_rootmount);
sc->sc_rootmount = NULL;
}
g_topology_lock();
if (!g_raid3_can_destroy(sc)) {
g_topology_unlock();
return (0);
}
sc->sc_geom->softc = NULL;
sc->sc_sync.ds_geom->softc = NULL;
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
g_topology_unlock();
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
&sc->sc_worker);
/* Unlock sc_lock here, as it can be destroyed after wakeup. */
sx_xunlock(&sc->sc_lock);
wakeup(&sc->sc_worker);
sc->sc_worker = NULL;
} else {
g_topology_unlock();
g_raid3_destroy_device(sc);
free(sc->sc_disks, M_RAID3);
free(sc, M_RAID3);
}
return (1);
}
/*
* Worker thread.
*/
static void
g_raid3_worker(void *arg)
{
struct g_raid3_softc *sc;
struct g_raid3_event *ep;
struct bio *bp;
int timeout;
sc = arg;
thread_lock(curthread);
sched_prio(curthread, PRIBIO);
thread_unlock(curthread);
sx_xlock(&sc->sc_lock);
for (;;) {
G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
/*
* First take a look at events.
* This is important to handle events before any I/O requests.
*/
ep = g_raid3_event_get(sc);
if (ep != NULL) {
g_raid3_event_remove(sc, ep);
if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
/* Update only device status. */
G_RAID3_DEBUG(3,
"Running event for device %s.",
sc->sc_name);
ep->e_error = 0;
g_raid3_update_device(sc, 1);
} else {
/* Update disk status. */
G_RAID3_DEBUG(3, "Running event for disk %s.",
g_raid3_get_diskname(ep->e_disk));
ep->e_error = g_raid3_update_disk(ep->e_disk,
ep->e_state);
if (ep->e_error == 0)
g_raid3_update_device(sc, 0);
}
if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
KASSERT(ep->e_error == 0,
("Error cannot be handled."));
g_raid3_event_free(ep);
} else {
ep->e_flags |= G_RAID3_EVENT_DONE;
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
ep);
mtx_lock(&sc->sc_events_mtx);
wakeup(ep);
mtx_unlock(&sc->sc_events_mtx);
}
if ((sc->sc_flags &
G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
if (g_raid3_try_destroy(sc)) {
curthread->td_pflags &= ~TDP_GEOM;
G_RAID3_DEBUG(1, "Thread exiting.");
kproc_exit(0);
}
}
G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
continue;
}
/*
* Check if we can mark array as CLEAN and if we can't take
* how much seconds should we wait.
*/
timeout = g_raid3_idle(sc, -1);
/*
* Now I/O requests.
*/
/* Get first request from the queue. */
mtx_lock(&sc->sc_queue_mtx);
bp = bioq_first(&sc->sc_queue);
if (bp == NULL) {
if ((sc->sc_flags &
G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
mtx_unlock(&sc->sc_queue_mtx);
if (g_raid3_try_destroy(sc)) {
curthread->td_pflags &= ~TDP_GEOM;
G_RAID3_DEBUG(1, "Thread exiting.");
kproc_exit(0);
}
mtx_lock(&sc->sc_queue_mtx);
}
sx_xunlock(&sc->sc_lock);
/*
* XXX: We can miss an event here, because an event
* can be added without sx-device-lock and without
* mtx-queue-lock. Maybe I should just stop using
* dedicated mutex for events synchronization and
* stick with the queue lock?
* The event will hang here until next I/O request
* or next event is received.
*/
MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
timeout * hz);
sx_xlock(&sc->sc_lock);
G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
continue;
}
process:
bioq_remove(&sc->sc_queue, bp);
mtx_unlock(&sc->sc_queue_mtx);
if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
(bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
g_raid3_sync_request(bp); /* READ */
} else if (bp->bio_to != sc->sc_provider) {
if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
g_raid3_regular_request(bp);
else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
g_raid3_sync_request(bp); /* WRITE */
else {
KASSERT(0,
("Invalid request cflags=0x%hx to=%s.",
bp->bio_cflags, bp->bio_to->name));
}
} else if (g_raid3_register_request(bp) != 0) {
mtx_lock(&sc->sc_queue_mtx);
bioq_insert_head(&sc->sc_queue, bp);
/*
* We are short in memory, let see if there are finished
* request we can free.
*/
TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
goto process;
}
/*
* No finished regular request, so at least keep
* synchronization running.
*/
TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
goto process;
}
sx_xunlock(&sc->sc_lock);
MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
"r3:lowmem", hz / 10);
sx_xlock(&sc->sc_lock);
}
G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
}
}
static void
g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
{
sx_assert(&sc->sc_lock, SX_LOCKED);
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
return;
if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
g_raid3_get_diskname(disk), sc->sc_name);
disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
} else if (sc->sc_idle &&
(disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
g_raid3_get_diskname(disk), sc->sc_name);
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
}
}
static void
g_raid3_sync_start(struct g_raid3_softc *sc)
{
struct g_raid3_disk *disk;
struct g_consumer *cp;
struct bio *bp;
int error;
u_int n;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_XLOCKED);
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
("Device not in DEGRADED state (%s, %u).", sc->sc_name,
sc->sc_state));
KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
sc->sc_name, sc->sc_state));
disk = NULL;
for (n = 0; n < sc->sc_ndisks; n++) {
if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
continue;
disk = &sc->sc_disks[n];
break;
}
if (disk == NULL)
return;
sx_xunlock(&sc->sc_lock);
g_topology_lock();
cp = g_new_consumer(sc->sc_sync.ds_geom);
error = g_attach(cp, sc->sc_provider);
KASSERT(error == 0,
("Cannot attach to %s (error=%d).", sc->sc_name, error));
error = g_access(cp, 1, 0, 0);
KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
g_topology_unlock();
sx_xlock(&sc->sc_lock);
G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
g_raid3_get_diskname(disk));
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
KASSERT(disk->d_sync.ds_consumer == NULL,
("Sync consumer already exists (device=%s, disk=%s).",
sc->sc_name, g_raid3_get_diskname(disk)));
disk->d_sync.ds_consumer = cp;
disk->d_sync.ds_consumer->private = disk;
disk->d_sync.ds_consumer->index = 0;
sc->sc_syncdisk = disk;
/*
* Allocate memory for synchronization bios and initialize them.
*/
disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
M_RAID3, M_WAITOK);
for (n = 0; n < g_raid3_syncreqs; n++) {
bp = g_alloc_bio();
disk->d_sync.ds_bios[n] = bp;
bp->bio_parent = NULL;
bp->bio_cmd = BIO_READ;
bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
bp->bio_cflags = 0;
bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
bp->bio_done = g_raid3_sync_done;
bp->bio_from = disk->d_sync.ds_consumer;
bp->bio_to = sc->sc_provider;
bp->bio_caller1 = (void *)(uintptr_t)n;
}
/* Set the number of in-flight synchronization requests. */
disk->d_sync.ds_inflight = g_raid3_syncreqs;
/*
* Fire off first synchronization requests.
*/
for (n = 0; n < g_raid3_syncreqs; n++) {
bp = disk->d_sync.ds_bios[n];
G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
disk->d_sync.ds_consumer->index++;
/*
* Delay the request if it is colliding with a regular request.
*/
if (g_raid3_regular_collision(sc, bp))
g_raid3_sync_delay(sc, bp);
else
g_io_request(bp, disk->d_sync.ds_consumer);
}
}
/*
* Stop synchronization process.
* type: 0 - synchronization finished
* 1 - synchronization stopped
*/
static void
g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
{
struct g_raid3_disk *disk;
struct g_consumer *cp;
g_topology_assert_not();
sx_assert(&sc->sc_lock, SX_LOCKED);
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
("Device not in DEGRADED state (%s, %u).", sc->sc_name,
sc->sc_state));
disk = sc->sc_syncdisk;
sc->sc_syncdisk = NULL;
KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
if (disk->d_sync.ds_consumer == NULL)
return;
if (type == 0) {
G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
sc->sc_name, g_raid3_get_diskname(disk));
} else /* if (type == 1) */ {
G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
sc->sc_name, g_raid3_get_diskname(disk));
}
free(disk->d_sync.ds_bios, M_RAID3);
disk->d_sync.ds_bios = NULL;
cp = disk->d_sync.ds_consumer;
disk->d_sync.ds_consumer = NULL;
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
g_topology_lock();
g_raid3_kill_consumer(sc, cp);
g_topology_unlock();
sx_xlock(&sc->sc_lock);
}
static void
g_raid3_launch_provider(struct g_raid3_softc *sc)
{
struct g_provider *pp;
struct g_raid3_disk *disk;
int n;
sx_assert(&sc->sc_lock, SX_LOCKED);
g_topology_lock();
pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
pp->mediasize = sc->sc_mediasize;
pp->sectorsize = sc->sc_sectorsize;
pp->stripesize = 0;
pp->stripeoffset = 0;
for (n = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if (disk->d_consumer && disk->d_consumer->provider &&
disk->d_consumer->provider->stripesize > pp->stripesize) {
pp->stripesize = disk->d_consumer->provider->stripesize;
pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
}
}
pp->stripesize *= sc->sc_ndisks - 1;
pp->stripeoffset *= sc->sc_ndisks - 1;
sc->sc_provider = pp;
g_error_provider(pp, 0);
g_topology_unlock();
G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
g_raid3_sync_start(sc);
}
static void
g_raid3_destroy_provider(struct g_raid3_softc *sc)
{
struct bio *bp;
g_topology_assert_not();
KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
sc->sc_name));
g_topology_lock();
g_error_provider(sc->sc_provider, ENXIO);
mtx_lock(&sc->sc_queue_mtx);
while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
bioq_remove(&sc->sc_queue, bp);
g_io_deliver(bp, ENXIO);
}
mtx_unlock(&sc->sc_queue_mtx);
G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
sc->sc_provider->name);
sc->sc_provider->flags |= G_PF_WITHER;
g_orphan_provider(sc->sc_provider, ENXIO);
g_topology_unlock();
sc->sc_provider = NULL;
if (sc->sc_syncdisk != NULL)
g_raid3_sync_stop(sc, 1);
}
static void
g_raid3_go(void *arg)
{
struct g_raid3_softc *sc;
sc = arg;
G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
g_raid3_event_send(sc, 0,
G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
}
static u_int
g_raid3_determine_state(struct g_raid3_disk *disk)
{
struct g_raid3_softc *sc;
u_int state;
sc = disk->d_softc;
if (sc->sc_syncid == disk->d_sync.ds_syncid) {
if ((disk->d_flags &
G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
/* Disk does not need synchronization. */
state = G_RAID3_DISK_STATE_ACTIVE;
} else {
if ((sc->sc_flags &
G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
(disk->d_flags &
G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
/*
* We can start synchronization from
* the stored offset.
*/
state = G_RAID3_DISK_STATE_SYNCHRONIZING;
} else {
state = G_RAID3_DISK_STATE_STALE;
}
}
} else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
/*
* Reset all synchronization data for this disk,
* because if it even was synchronized, it was
* synchronized to disks with different syncid.
*/
disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
disk->d_sync.ds_offset = 0;
disk->d_sync.ds_offset_done = 0;
disk->d_sync.ds_syncid = sc->sc_syncid;
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
(disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
state = G_RAID3_DISK_STATE_SYNCHRONIZING;
} else {
state = G_RAID3_DISK_STATE_STALE;
}
} else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
/*
* Not good, NOT GOOD!
* It means that device was started on stale disks
* and more fresh disk just arrive.
* If there were writes, device is broken, sorry.
* I think the best choice here is don't touch
* this disk and inform the user loudly.
*/
G_RAID3_DEBUG(0, "Device %s was started before the freshest "
"disk (%s) arrives!! It will not be connected to the "
"running device.", sc->sc_name,
g_raid3_get_diskname(disk));
g_raid3_destroy_disk(disk);
state = G_RAID3_DISK_STATE_NONE;
/* Return immediately, because disk was destroyed. */
return (state);
}
G_RAID3_DEBUG(3, "State for %s disk: %s.",
g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
return (state);
}
/*
* Update device state.
*/
static void
g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
{
struct g_raid3_disk *disk;
u_int state;
sx_assert(&sc->sc_lock, SX_XLOCKED);
switch (sc->sc_state) {
case G_RAID3_DEVICE_STATE_STARTING:
{
u_int n, ndirty, ndisks, genid, syncid;
KASSERT(sc->sc_provider == NULL,
("Non-NULL provider in STARTING state (%s).", sc->sc_name));
/*
* Are we ready? We are, if all disks are connected or
* one disk is missing and 'force' is true.
*/
if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
if (!force)
callout_drain(&sc->sc_callout);
} else {
if (force) {
/*
* Timeout expired, so destroy device.
*/
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
__LINE__, sc->sc_rootmount);
root_mount_rel(sc->sc_rootmount);
sc->sc_rootmount = NULL;
}
return;
}
/*
* Find the biggest genid.
*/
genid = 0;
for (n = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
continue;
if (disk->d_genid > genid)
genid = disk->d_genid;
}
sc->sc_genid = genid;
/*
* Remove all disks without the biggest genid.
*/
for (n = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
continue;
if (disk->d_genid < genid) {
G_RAID3_DEBUG(0,
"Component %s (device %s) broken, skipping.",
g_raid3_get_diskname(disk), sc->sc_name);
g_raid3_destroy_disk(disk);
}
}
/*
* There must be at least 'sc->sc_ndisks - 1' components
* with the same syncid and without SYNCHRONIZING flag.
*/
/*
* Find the biggest syncid, number of valid components and
* number of dirty components.
*/
ndirty = ndisks = syncid = 0;
for (n = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
continue;
if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
ndirty++;
if (disk->d_sync.ds_syncid > syncid) {
syncid = disk->d_sync.ds_syncid;
ndisks = 0;
} else if (disk->d_sync.ds_syncid < syncid) {
continue;
}
if ((disk->d_flags &
G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
continue;
}
ndisks++;
}
/*
* Do we have enough valid components?
*/
if (ndisks + 1 < sc->sc_ndisks) {
G_RAID3_DEBUG(0,
"Device %s is broken, too few valid components.",
sc->sc_name);
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
return;
}
/*
* If there is one DIRTY component and all disks are present,
* mark it for synchronization. If there is more than one DIRTY
* component, mark parity component for synchronization.
*/
if (ndisks == sc->sc_ndisks && ndirty == 1) {
for (n = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if ((disk->d_flags &
G_RAID3_DISK_FLAG_DIRTY) == 0) {
continue;
}
disk->d_flags |=
G_RAID3_DISK_FLAG_SYNCHRONIZING;
}
} else if (ndisks == sc->sc_ndisks && ndirty > 1) {
disk = &sc->sc_disks[sc->sc_ndisks - 1];
disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
}
sc->sc_syncid = syncid;
if (force) {
/* Remember to bump syncid on first write. */
sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
}
if (ndisks == sc->sc_ndisks)
state = G_RAID3_DEVICE_STATE_COMPLETE;
else /* if (ndisks == sc->sc_ndisks - 1) */
state = G_RAID3_DEVICE_STATE_DEGRADED;
G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
sc->sc_name, g_raid3_device_state2str(sc->sc_state),
g_raid3_device_state2str(state));
sc->sc_state = state;
for (n = 0; n < sc->sc_ndisks; n++) {
disk = &sc->sc_disks[n];
if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
continue;
state = g_raid3_determine_state(disk);
g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
if (state == G_RAID3_DISK_STATE_STALE)
sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
}
break;
}
case G_RAID3_DEVICE_STATE_DEGRADED:
/*
* Genid need to be bumped immediately, so do it here.
*/
if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
g_raid3_bump_genid(sc);
}
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
return;
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
sc->sc_ndisks - 1) {
if (sc->sc_provider != NULL)
g_raid3_destroy_provider(sc);
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
return;
}
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
sc->sc_ndisks) {
state = G_RAID3_DEVICE_STATE_COMPLETE;
G_RAID3_DEBUG(1,
"Device %s state changed from %s to %s.",
sc->sc_name, g_raid3_device_state2str(sc->sc_state),
g_raid3_device_state2str(state));
sc->sc_state = state;
}
if (sc->sc_provider == NULL)
g_raid3_launch_provider(sc);
if (sc->sc_rootmount != NULL) {
G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
sc->sc_rootmount);
root_mount_rel(sc->sc_rootmount);
sc->sc_rootmount = NULL;
}
break;
case G_RAID3_DEVICE_STATE_COMPLETE:
/*
* Genid need to be bumped immediately, so do it here.
*/
if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
g_raid3_bump_genid(sc);
}
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
return;
KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
sc->sc_ndisks - 1,
("Too few ACTIVE components in COMPLETE state (device %s).",
sc->sc_name));
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
sc->sc_ndisks - 1) {
state = G_RAID3_DEVICE_STATE_DEGRADED;
G_RAID3_DEBUG(1,
"Device %s state changed from %s to %s.",
sc->sc_name, g_raid3_device_state2str(sc->sc_state),
g_raid3_device_state2str(state));
sc->sc_state = state;
}
if (sc->sc_provider == NULL)
g_raid3_launch_provider(sc);
if (sc->sc_rootmount != NULL) {
G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
sc->sc_rootmount);
root_mount_rel(sc->sc_rootmount);
sc->sc_rootmount = NULL;
}
break;
default:
KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
g_raid3_device_state2str(sc->sc_state)));
break;
}
}
/*
* Update disk state and device state if needed.
*/
#define DISK_STATE_CHANGED() G_RAID3_DEBUG(1, \
"Disk %s state changed from %s to %s (device %s).", \
g_raid3_get_diskname(disk), \
g_raid3_disk_state2str(disk->d_state), \
g_raid3_disk_state2str(state), sc->sc_name)
static int
g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
{
struct g_raid3_softc *sc;
sc = disk->d_softc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
again:
G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
g_raid3_disk_state2str(state));
switch (state) {
case G_RAID3_DISK_STATE_NEW:
/*
* Possible scenarios:
* 1. New disk arrive.
*/
/* Previous state should be NONE. */
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
DISK_STATE_CHANGED();
disk->d_state = state;
G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
sc->sc_name, g_raid3_get_diskname(disk));
if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
break;
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_raid3_device_state2str(sc->sc_state),
g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
state = g_raid3_determine_state(disk);
if (state != G_RAID3_DISK_STATE_NONE)
goto again;
break;
case G_RAID3_DISK_STATE_ACTIVE:
/*
* Possible scenarios:
* 1. New disk does not need synchronization.
* 2. Synchronization process finished successfully.
*/
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_raid3_device_state2str(sc->sc_state),
g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
/* Previous state should be NEW or SYNCHRONIZING. */
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
DISK_STATE_CHANGED();
if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
g_raid3_sync_stop(sc, 0);
}
disk->d_state = state;
disk->d_sync.ds_offset = 0;
disk->d_sync.ds_offset_done = 0;
g_raid3_update_idle(sc, disk);
g_raid3_update_metadata(disk);
G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
sc->sc_name, g_raid3_get_diskname(disk));
break;
case G_RAID3_DISK_STATE_STALE:
/*
* Possible scenarios:
* 1. Stale disk was connected.
*/
/* Previous state should be NEW. */
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_raid3_device_state2str(sc->sc_state),
g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
/*
* STALE state is only possible if device is marked
* NOAUTOSYNC.
*/
KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_raid3_device_state2str(sc->sc_state),
g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
DISK_STATE_CHANGED();
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
disk->d_state = state;
g_raid3_update_metadata(disk);
G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
sc->sc_name, g_raid3_get_diskname(disk));
break;
case G_RAID3_DISK_STATE_SYNCHRONIZING:
/*
* Possible scenarios:
* 1. Disk which needs synchronization was connected.
*/
/* Previous state should be NEW. */
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
g_raid3_device_state2str(sc->sc_state),
g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
DISK_STATE_CHANGED();
if (disk->d_state == G_RAID3_DISK_STATE_NEW)
disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
disk->d_state = state;
if (sc->sc_provider != NULL) {
g_raid3_sync_start(sc);
g_raid3_update_metadata(disk);
}
break;
case G_RAID3_DISK_STATE_DISCONNECTED:
/*
* Possible scenarios:
* 1. Device wasn't running yet, but disk disappear.
* 2. Disk was active and disapppear.
* 3. Disk disappear during synchronization process.
*/
if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
/*
* Previous state should be ACTIVE, STALE or
* SYNCHRONIZING.
*/
KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
disk->d_state == G_RAID3_DISK_STATE_STALE ||
disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
("Wrong disk state (%s, %s).",
g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
} else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
/* Previous state should be NEW. */
KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
("Wrong disk state (%s, %s).",
g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
/*
* Reset bumping syncid if disk disappeared in STARTING
* state.
*/
if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
#ifdef INVARIANTS
} else {
KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
sc->sc_name,
g_raid3_device_state2str(sc->sc_state),
g_raid3_get_diskname(disk),
g_raid3_disk_state2str(disk->d_state)));
#endif
}
DISK_STATE_CHANGED();
G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
sc->sc_name, g_raid3_get_diskname(disk));
g_raid3_destroy_disk(disk);
break;
default:
KASSERT(1 == 0, ("Unknown state (%u).", state));
break;
}
return (0);
}
#undef DISK_STATE_CHANGED
int
g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
{
struct g_provider *pp;
u_char *buf;
int error;
g_topology_assert();
error = g_access(cp, 1, 0, 0);
if (error != 0)
return (error);
pp = cp->provider;
g_topology_unlock();
/* Metadata are stored on last sector. */
buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
&error);
g_topology_lock();
g_access(cp, -1, 0, 0);
if (buf == NULL) {
G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
cp->provider->name, error);
return (error);
}
/* Decode metadata. */
error = raid3_metadata_decode(buf, md);
g_free(buf);
if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
return (EINVAL);
if (md->md_version > G_RAID3_VERSION) {
G_RAID3_DEBUG(0,
"Kernel module is too old to handle metadata from %s.",
cp->provider->name);
return (EINVAL);
}
if (error != 0) {
G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
cp->provider->name);
return (error);
}
if (md->md_sectorsize > MAXPHYS) {
G_RAID3_DEBUG(0, "The blocksize is too big.");
return (EINVAL);
}
return (0);
}
static int
g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
struct g_raid3_metadata *md)
{
if (md->md_no >= sc->sc_ndisks) {
G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
pp->name, md->md_no);
return (EINVAL);
}
if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
pp->name, md->md_no);
return (EEXIST);
}
if (md->md_all != sc->sc_ndisks) {
G_RAID3_DEBUG(1,
"Invalid '%s' field on disk %s (device %s), skipping.",
"md_all", pp->name, sc->sc_name);
return (EINVAL);
}
if ((md->md_mediasize % md->md_sectorsize) != 0) {
G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
"0) on disk %s (device %s), skipping.", pp->name,
sc->sc_name);
return (EINVAL);
}
if (md->md_mediasize != sc->sc_mediasize) {
G_RAID3_DEBUG(1,
"Invalid '%s' field on disk %s (device %s), skipping.",
"md_mediasize", pp->name, sc->sc_name);
return (EINVAL);
}
if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
G_RAID3_DEBUG(1,
"Invalid '%s' field on disk %s (device %s), skipping.",
"md_mediasize", pp->name, sc->sc_name);
return (EINVAL);
}
if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
G_RAID3_DEBUG(1,
"Invalid size of disk %s (device %s), skipping.", pp->name,
sc->sc_name);
return (EINVAL);
}
if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
G_RAID3_DEBUG(1,
"Invalid '%s' field on disk %s (device %s), skipping.",
"md_sectorsize", pp->name, sc->sc_name);
return (EINVAL);
}
if (md->md_sectorsize != sc->sc_sectorsize) {
G_RAID3_DEBUG(1,
"Invalid '%s' field on disk %s (device %s), skipping.",
"md_sectorsize", pp->name, sc->sc_name);
return (EINVAL);
}
if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
G_RAID3_DEBUG(1,
"Invalid sector size of disk %s (device %s), skipping.",
pp->name, sc->sc_name);
return (EINVAL);
}
if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
G_RAID3_DEBUG(1,
"Invalid device flags on disk %s (device %s), skipping.",
pp->name, sc->sc_name);
return (EINVAL);
}
if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
(md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
/*
* VERIFY and ROUND-ROBIN options are mutally exclusive.
*/
G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
"disk %s (device %s), skipping.", pp->name, sc->sc_name);
return (EINVAL);
}
if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
G_RAID3_DEBUG(1,
"Invalid disk flags on disk %s (device %s), skipping.",
pp->name, sc->sc_name);
return (EINVAL);
}
return (0);
}
int
g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
struct g_raid3_metadata *md)
{
struct g_raid3_disk *disk;
int error;
g_topology_assert_not();
G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
error = g_raid3_check_metadata(sc, pp, md);
if (error != 0)
return (error);
if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
md->md_genid < sc->sc_genid) {
G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
pp->name, sc->sc_name);
return (EINVAL);
}
disk = g_raid3_init_disk(sc, pp, md, &error);
if (disk == NULL)
return (error);
error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
G_RAID3_EVENT_WAIT);
if (error != 0)
return (error);
if (md->md_version < G_RAID3_VERSION) {
G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
pp->name, md->md_version, G_RAID3_VERSION);
g_raid3_update_metadata(disk);
}
return (0);
}
static void
g_raid3_destroy_delayed(void *arg, int flag)
{
struct g_raid3_softc *sc;
int error;
if (flag == EV_CANCEL) {
G_RAID3_DEBUG(1, "Destroying canceled.");
return;
}
sc = arg;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
("DESTROY flag set on %s.", sc->sc_name));
KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
("DESTROYING flag not set on %s.", sc->sc_name));
G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
if (error != 0) {
G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
sx_xunlock(&sc->sc_lock);
}
g_topology_lock();
}
static int
g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
{
struct g_raid3_softc *sc;
int dcr, dcw, dce, error = 0;
g_topology_assert();
G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
acw, ace);
sc = pp->geom->softc;
if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
return (0);
KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
dcr = pp->acr + acr;
dcw = pp->acw + acw;
dce = pp->ace + ace;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
if (acr > 0 || acw > 0 || ace > 0)
error = ENXIO;
goto end;
}
if (dcw == 0)
g_raid3_idle(sc, dcw);
if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
if (acr > 0 || acw > 0 || ace > 0) {
error = ENXIO;
goto end;
}
if (dcr == 0 && dcw == 0 && dce == 0) {
g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
sc, NULL);
}
}
end:
sx_xunlock(&sc->sc_lock);
g_topology_lock();
return (error);
}
static struct g_geom *
g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
{
struct g_raid3_softc *sc;
struct g_geom *gp;
int error, timeout;
u_int n;
g_topology_assert();
G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
/* One disk is minimum. */
if (md->md_all < 1)
return (NULL);
/*
* Action geom.
*/
gp = g_new_geomf(mp, "%s", md->md_name);
sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
M_WAITOK | M_ZERO);
gp->start = g_raid3_start;
gp->orphan = g_raid3_orphan;
gp->access = g_raid3_access;
gp->dumpconf = g_raid3_dumpconf;
sc->sc_id = md->md_id;
sc->sc_mediasize = md->md_mediasize;
sc->sc_sectorsize = md->md_sectorsize;
sc->sc_ndisks = md->md_all;
sc->sc_round_robin = 0;
sc->sc_flags = md->md_mflags;
sc->sc_bump_id = 0;
sc->sc_idle = 1;
sc->sc_last_write = time_uptime;
sc->sc_writes = 0;
for (n = 0; n < sc->sc_ndisks; n++) {
sc->sc_disks[n].d_softc = sc;
sc->sc_disks[n].d_no = n;
sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
}
sx_init(&sc->sc_lock, "graid3:lock");
bioq_init(&sc->sc_queue);
mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
bioq_init(&sc->sc_regular_delayed);
bioq_init(&sc->sc_inflight);
bioq_init(&sc->sc_sync_delayed);
TAILQ_INIT(&sc->sc_events);
mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
callout_init(&sc->sc_callout, 1);
sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
gp->softc = sc;
sc->sc_geom = gp;
sc->sc_provider = NULL;
/*
* Synchronization geom.
*/
gp = g_new_geomf(mp, "%s.sync", md->md_name);
gp->softc = sc;
gp->orphan = g_raid3_orphan;
sc->sc_sync.ds_geom = gp;
if (!g_raid3_use_malloc) {
sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
UMA_ALIGN_PTR, 0);
sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
UMA_ALIGN_PTR, 0);
sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
UMA_ALIGN_PTR, 0);
sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
}
error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
"g_raid3 %s", md->md_name);
if (error != 0) {
G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
sc->sc_name);
if (!g_raid3_use_malloc) {
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
}
g_destroy_geom(sc->sc_sync.ds_geom);
mtx_destroy(&sc->sc_events_mtx);
mtx_destroy(&sc->sc_queue_mtx);
sx_destroy(&sc->sc_lock);
g_destroy_geom(sc->sc_geom);
free(sc->sc_disks, M_RAID3);
free(sc, M_RAID3);
return (NULL);
}
G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
sc->sc_name, sc->sc_ndisks, sc->sc_id);
sc->sc_rootmount = root_mount_hold("GRAID3");
G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
/*
* Run timeout.
*/
timeout = atomic_load_acq_int(&g_raid3_timeout);
callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
return (sc->sc_geom);
}
int
g_raid3_destroy(struct g_raid3_softc *sc, int how)
{
struct g_provider *pp;
g_topology_assert_not();
if (sc == NULL)
return (ENXIO);
sx_assert(&sc->sc_lock, SX_XLOCKED);
pp = sc->sc_provider;
if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
switch (how) {
case G_RAID3_DESTROY_SOFT:
G_RAID3_DEBUG(1,
"Device %s is still open (r%dw%de%d).", pp->name,
pp->acr, pp->acw, pp->ace);
return (EBUSY);
case G_RAID3_DESTROY_DELAYED:
G_RAID3_DEBUG(1,
"Device %s will be destroyed on last close.",
pp->name);
if (sc->sc_syncdisk != NULL)
g_raid3_sync_stop(sc, 1);
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
return (EBUSY);
case G_RAID3_DESTROY_HARD:
G_RAID3_DEBUG(1, "Device %s is still open, so it "
"can't be definitely removed.", pp->name);
break;
}
}
g_topology_lock();
if (sc->sc_geom->softc == NULL) {
g_topology_unlock();
return (0);
}
sc->sc_geom->softc = NULL;
sc->sc_sync.ds_geom->softc = NULL;
g_topology_unlock();
sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
sx_xunlock(&sc->sc_lock);
mtx_lock(&sc->sc_queue_mtx);
wakeup(sc);
wakeup(&sc->sc_queue);
mtx_unlock(&sc->sc_queue_mtx);
G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
while (sc->sc_worker != NULL)
tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
sx_xlock(&sc->sc_lock);
g_raid3_destroy_device(sc);
free(sc->sc_disks, M_RAID3);
free(sc, M_RAID3);
return (0);
}
static void
g_raid3_taste_orphan(struct g_consumer *cp)
{
KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
cp->provider->name));
}
static struct g_geom *
g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
{
struct g_raid3_metadata md;
struct g_raid3_softc *sc;
struct g_consumer *cp;
struct g_geom *gp;
int error;
g_topology_assert();
g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
gp = g_new_geomf(mp, "raid3:taste");
/* This orphan function should be never called. */
gp->orphan = g_raid3_taste_orphan;
cp = g_new_consumer(gp);
g_attach(cp, pp);
error = g_raid3_read_metadata(cp, &md);
g_detach(cp);
g_destroy_consumer(cp);
g_destroy_geom(gp);
if (error != 0)
return (NULL);
gp = NULL;
if (md.md_provider[0] != '\0' &&
!g_compare_names(md.md_provider, pp->name))
return (NULL);
if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
return (NULL);
if (g_raid3_debug >= 2)
raid3_metadata_dump(&md);
/*
* Let's check if device already exists.
*/
sc = NULL;
LIST_FOREACH(gp, &mp->geom, geom) {
sc = gp->softc;
if (sc == NULL)
continue;
if (sc->sc_sync.ds_geom == gp)
continue;
if (strcmp(md.md_name, sc->sc_name) != 0)
continue;
if (md.md_id != sc->sc_id) {
G_RAID3_DEBUG(0, "Device %s already configured.",
sc->sc_name);
return (NULL);
}
break;
}
if (gp == NULL) {
gp = g_raid3_create(mp, &md);
if (gp == NULL) {
G_RAID3_DEBUG(0, "Cannot create device %s.",
md.md_name);
return (NULL);
}
sc = gp->softc;
}
G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
g_topology_unlock();
sx_xlock(&sc->sc_lock);
error = g_raid3_add_disk(sc, pp, &md);
if (error != 0) {
G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
pp->name, gp->name, error);
if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
sc->sc_ndisks) {
g_cancel_event(sc);
g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
g_topology_lock();
return (NULL);
}
gp = NULL;
}
sx_xunlock(&sc->sc_lock);
g_topology_lock();
return (gp);
}
static int
g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
struct g_geom *gp)
{
struct g_raid3_softc *sc;
int error;
g_topology_unlock();
sc = gp->softc;
sx_xlock(&sc->sc_lock);
g_cancel_event(sc);
error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
if (error != 0)
sx_xunlock(&sc->sc_lock);
g_topology_lock();
return (error);
}
static void
g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
struct g_consumer *cp, struct g_provider *pp)
{
struct g_raid3_softc *sc;
g_topology_assert();
sc = gp->softc;
if (sc == NULL)
return;
/* Skip synchronization geom. */
if (gp == sc->sc_sync.ds_geom)
return;
if (pp != NULL) {
/* Nothing here. */
} else if (cp != NULL) {
struct g_raid3_disk *disk;
disk = cp->private;
if (disk == NULL)
return;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
sbuf_printf(sb, "%s<Type>", indent);
if (disk->d_no == sc->sc_ndisks - 1)
sbuf_printf(sb, "PARITY");
else
sbuf_printf(sb, "DATA");
sbuf_printf(sb, "</Type>\n");
sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
(u_int)disk->d_no);
if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
sbuf_printf(sb, "%s<Synchronized>", indent);
if (disk->d_sync.ds_offset == 0)
sbuf_printf(sb, "0%%");
else {
sbuf_printf(sb, "%u%%",
(u_int)((disk->d_sync.ds_offset * 100) /
(sc->sc_mediasize / (sc->sc_ndisks - 1))));
}
sbuf_printf(sb, "</Synchronized>\n");
if (disk->d_sync.ds_offset > 0) {
sbuf_printf(sb, "%s<BytesSynced>%jd"
"</BytesSynced>\n", indent,
(intmax_t)disk->d_sync.ds_offset);
}
}
sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
disk->d_sync.ds_syncid);
sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
sbuf_printf(sb, "%s<Flags>", indent);
if (disk->d_flags == 0)
sbuf_printf(sb, "NONE");
else {
int first = 1;
#define ADD_FLAG(flag, name) do { \
if ((disk->d_flags & (flag)) != 0) { \
if (!first) \
sbuf_printf(sb, ", "); \
else \
first = 0; \
sbuf_printf(sb, name); \
} \
} while (0)
ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
"SYNCHRONIZING");
ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
#undef ADD_FLAG
}
sbuf_printf(sb, "</Flags>\n");
sbuf_printf(sb, "%s<State>%s</State>\n", indent,
g_raid3_disk_state2str(disk->d_state));
sx_xunlock(&sc->sc_lock);
g_topology_lock();
} else {
g_topology_unlock();
sx_xlock(&sc->sc_lock);
if (!g_raid3_use_malloc) {
sbuf_printf(sb,
"%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
sbuf_printf(sb,
"%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
sbuf_printf(sb,
"%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
sbuf_printf(sb,
"%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
sbuf_printf(sb,
"%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
sbuf_printf(sb,
"%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
}
sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
sbuf_printf(sb, "%s<Flags>", indent);
if (sc->sc_flags == 0)
sbuf_printf(sb, "NONE");
else {
int first = 1;
#define ADD_FLAG(flag, name) do { \
if ((sc->sc_flags & (flag)) != 0) { \
if (!first) \
sbuf_printf(sb, ", "); \
else \
first = 0; \
sbuf_printf(sb, name); \
} \
} while (0)
ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
"ROUND-ROBIN");
ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
#undef ADD_FLAG
}
sbuf_printf(sb, "</Flags>\n");
sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
sc->sc_ndisks);
sbuf_printf(sb, "%s<State>%s</State>\n", indent,
g_raid3_device_state2str(sc->sc_state));
sx_xunlock(&sc->sc_lock);
g_topology_lock();
}
}
static void
g_raid3_shutdown_post_sync(void *arg, int howto)
{
struct g_class *mp;
struct g_geom *gp, *gp2;
struct g_raid3_softc *sc;
int error;
mp = arg;
g_topology_lock();
g_raid3_shutdown = 1;
LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
if ((sc = gp->softc) == NULL)
continue;
/* Skip synchronization geom. */
if (gp == sc->sc_sync.ds_geom)
continue;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
g_raid3_idle(sc, -1);
g_cancel_event(sc);
error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
if (error != 0)
sx_xunlock(&sc->sc_lock);
g_topology_lock();
}
g_topology_unlock();
}
static void
g_raid3_init(struct g_class *mp)
{
g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
if (g_raid3_post_sync == NULL)
G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
}
static void
g_raid3_fini(struct g_class *mp)
{
if (g_raid3_post_sync != NULL)
EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync);
}
DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);