b40b48b876
build glue.
2253 lines
84 KiB
C++
2253 lines
84 KiB
C++
//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines structures to encapsulate information gleaned from the
|
|
// target register and register class definitions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenRegisters.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/IntEqClasses.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/SparseBitVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <set>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "regalloc-emitter"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenSubRegIndex
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
|
|
: TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true) {
|
|
Name = R->getName();
|
|
if (R->getValue("Namespace"))
|
|
Namespace = R->getValueAsString("Namespace");
|
|
Size = R->getValueAsInt("Size");
|
|
Offset = R->getValueAsInt("Offset");
|
|
}
|
|
|
|
CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
|
|
unsigned Enum)
|
|
: TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
|
|
EnumValue(Enum), AllSuperRegsCovered(true) {
|
|
}
|
|
|
|
std::string CodeGenSubRegIndex::getQualifiedName() const {
|
|
std::string N = getNamespace();
|
|
if (!N.empty())
|
|
N += "::";
|
|
N += getName();
|
|
return N;
|
|
}
|
|
|
|
void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
|
|
if (!TheDef)
|
|
return;
|
|
|
|
std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
|
|
if (!Comps.empty()) {
|
|
if (Comps.size() != 2)
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"ComposedOf must have exactly two entries");
|
|
CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
|
|
CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
|
|
CodeGenSubRegIndex *X = A->addComposite(B, this);
|
|
if (X)
|
|
PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
|
|
}
|
|
|
|
std::vector<Record*> Parts =
|
|
TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
|
|
if (!Parts.empty()) {
|
|
if (Parts.size() < 2)
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"CoveredBySubRegs must have two or more entries");
|
|
SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
|
|
for (unsigned i = 0, e = Parts.size(); i != e; ++i)
|
|
IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
|
|
RegBank.addConcatSubRegIndex(IdxParts, this);
|
|
}
|
|
}
|
|
|
|
LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
|
|
// Already computed?
|
|
if (LaneMask.any())
|
|
return LaneMask;
|
|
|
|
// Recursion guard, shouldn't be required.
|
|
LaneMask = LaneBitmask::getAll();
|
|
|
|
// The lane mask is simply the union of all sub-indices.
|
|
LaneBitmask M;
|
|
for (const auto &C : Composed)
|
|
M |= C.second->computeLaneMask();
|
|
assert(M.any() && "Missing lane mask, sub-register cycle?");
|
|
LaneMask = M;
|
|
return LaneMask;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenRegister
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
|
|
: TheDef(R),
|
|
EnumValue(Enum),
|
|
CostPerUse(R->getValueAsInt("CostPerUse")),
|
|
CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
|
|
HasDisjunctSubRegs(false),
|
|
SubRegsComplete(false),
|
|
SuperRegsComplete(false),
|
|
TopoSig(~0u)
|
|
{}
|
|
|
|
void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
|
|
std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
|
|
std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
|
|
|
|
if (SRIs.size() != SRs.size())
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"SubRegs and SubRegIndices must have the same size");
|
|
|
|
for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
|
|
ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
|
|
ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
|
|
}
|
|
|
|
// Also compute leading super-registers. Each register has a list of
|
|
// covered-by-subregs super-registers where it appears as the first explicit
|
|
// sub-register.
|
|
//
|
|
// This is used by computeSecondarySubRegs() to find candidates.
|
|
if (CoveredBySubRegs && !ExplicitSubRegs.empty())
|
|
ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
|
|
|
|
// Add ad hoc alias links. This is a symmetric relationship between two
|
|
// registers, so build a symmetric graph by adding links in both ends.
|
|
std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
|
|
for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
|
|
CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
|
|
ExplicitAliases.push_back(Reg);
|
|
Reg->ExplicitAliases.push_back(this);
|
|
}
|
|
}
|
|
|
|
const StringRef CodeGenRegister::getName() const {
|
|
assert(TheDef && "no def");
|
|
return TheDef->getName();
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Iterate over all register units in a set of registers.
|
|
class RegUnitIterator {
|
|
CodeGenRegister::Vec::const_iterator RegI, RegE;
|
|
CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
|
|
|
|
public:
|
|
RegUnitIterator(const CodeGenRegister::Vec &Regs):
|
|
RegI(Regs.begin()), RegE(Regs.end()) {
|
|
|
|
if (RegI != RegE) {
|
|
UnitI = (*RegI)->getRegUnits().begin();
|
|
UnitE = (*RegI)->getRegUnits().end();
|
|
advance();
|
|
}
|
|
}
|
|
|
|
bool isValid() const { return UnitI != UnitE; }
|
|
|
|
unsigned operator* () const { assert(isValid()); return *UnitI; }
|
|
|
|
const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
|
|
|
|
/// Preincrement. Move to the next unit.
|
|
void operator++() {
|
|
assert(isValid() && "Cannot advance beyond the last operand");
|
|
++UnitI;
|
|
advance();
|
|
}
|
|
|
|
protected:
|
|
void advance() {
|
|
while (UnitI == UnitE) {
|
|
if (++RegI == RegE)
|
|
break;
|
|
UnitI = (*RegI)->getRegUnits().begin();
|
|
UnitE = (*RegI)->getRegUnits().end();
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Return true of this unit appears in RegUnits.
|
|
static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
|
|
return RegUnits.test(Unit);
|
|
}
|
|
|
|
// Inherit register units from subregisters.
|
|
// Return true if the RegUnits changed.
|
|
bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
|
|
bool changed = false;
|
|
for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
|
|
I != E; ++I) {
|
|
CodeGenRegister *SR = I->second;
|
|
// Merge the subregister's units into this register's RegUnits.
|
|
changed |= (RegUnits |= SR->RegUnits);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
const CodeGenRegister::SubRegMap &
|
|
CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
|
|
// Only compute this map once.
|
|
if (SubRegsComplete)
|
|
return SubRegs;
|
|
SubRegsComplete = true;
|
|
|
|
HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
|
|
|
|
// First insert the explicit subregs and make sure they are fully indexed.
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
|
|
if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
|
|
PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
|
|
" appears twice in Register " + getName());
|
|
// Map explicit sub-registers first, so the names take precedence.
|
|
// The inherited sub-registers are mapped below.
|
|
SubReg2Idx.insert(std::make_pair(SR, Idx));
|
|
}
|
|
|
|
// Keep track of inherited subregs and how they can be reached.
|
|
SmallPtrSet<CodeGenRegister*, 8> Orphans;
|
|
|
|
// Clone inherited subregs and place duplicate entries in Orphans.
|
|
// Here the order is important - earlier subregs take precedence.
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
const SubRegMap &Map = SR->computeSubRegs(RegBank);
|
|
HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
|
|
|
|
for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
|
|
++SI) {
|
|
if (!SubRegs.insert(*SI).second)
|
|
Orphans.insert(SI->second);
|
|
}
|
|
}
|
|
|
|
// Expand any composed subreg indices.
|
|
// If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
|
|
// qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
|
|
// expanded subreg indices recursively.
|
|
SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
|
|
for (unsigned i = 0; i != Indices.size(); ++i) {
|
|
CodeGenSubRegIndex *Idx = Indices[i];
|
|
const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
|
|
CodeGenRegister *SR = SubRegs[Idx];
|
|
const SubRegMap &Map = SR->computeSubRegs(RegBank);
|
|
|
|
// Look at the possible compositions of Idx.
|
|
// They may not all be supported by SR.
|
|
for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
|
|
E = Comps.end(); I != E; ++I) {
|
|
SubRegMap::const_iterator SRI = Map.find(I->first);
|
|
if (SRI == Map.end())
|
|
continue; // Idx + I->first doesn't exist in SR.
|
|
// Add I->second as a name for the subreg SRI->second, assuming it is
|
|
// orphaned, and the name isn't already used for something else.
|
|
if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
|
|
continue;
|
|
// We found a new name for the orphaned sub-register.
|
|
SubRegs.insert(std::make_pair(I->second, SRI->second));
|
|
Indices.push_back(I->second);
|
|
}
|
|
}
|
|
|
|
// Now Orphans contains the inherited subregisters without a direct index.
|
|
// Create inferred indexes for all missing entries.
|
|
// Work backwards in the Indices vector in order to compose subregs bottom-up.
|
|
// Consider this subreg sequence:
|
|
//
|
|
// qsub_1 -> dsub_0 -> ssub_0
|
|
//
|
|
// The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
|
|
// can be reached in two different ways:
|
|
//
|
|
// qsub_1 -> ssub_0
|
|
// dsub_2 -> ssub_0
|
|
//
|
|
// We pick the latter composition because another register may have [dsub_0,
|
|
// dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
|
|
// dsub_2 -> ssub_0 composition can be shared.
|
|
while (!Indices.empty() && !Orphans.empty()) {
|
|
CodeGenSubRegIndex *Idx = Indices.pop_back_val();
|
|
CodeGenRegister *SR = SubRegs[Idx];
|
|
const SubRegMap &Map = SR->computeSubRegs(RegBank);
|
|
for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
|
|
++SI)
|
|
if (Orphans.erase(SI->second))
|
|
SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
|
|
}
|
|
|
|
// Compute the inverse SubReg -> Idx map.
|
|
for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
|
|
SI != SE; ++SI) {
|
|
if (SI->second == this) {
|
|
ArrayRef<SMLoc> Loc;
|
|
if (TheDef)
|
|
Loc = TheDef->getLoc();
|
|
PrintFatalError(Loc, "Register " + getName() +
|
|
" has itself as a sub-register");
|
|
}
|
|
|
|
// Compute AllSuperRegsCovered.
|
|
if (!CoveredBySubRegs)
|
|
SI->first->AllSuperRegsCovered = false;
|
|
|
|
// Ensure that every sub-register has a unique name.
|
|
DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
|
|
SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
|
|
if (Ins->second == SI->first)
|
|
continue;
|
|
// Trouble: Two different names for SI->second.
|
|
ArrayRef<SMLoc> Loc;
|
|
if (TheDef)
|
|
Loc = TheDef->getLoc();
|
|
PrintFatalError(Loc, "Sub-register can't have two names: " +
|
|
SI->second->getName() + " available as " +
|
|
SI->first->getName() + " and " + Ins->second->getName());
|
|
}
|
|
|
|
// Derive possible names for sub-register concatenations from any explicit
|
|
// sub-registers. By doing this before computeSecondarySubRegs(), we ensure
|
|
// that getConcatSubRegIndex() won't invent any concatenated indices that the
|
|
// user already specified.
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
|
|
continue;
|
|
|
|
// SR is composed of multiple sub-regs. Find their names in this register.
|
|
SmallVector<CodeGenSubRegIndex*, 8> Parts;
|
|
for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
|
|
Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
|
|
|
|
// Offer this as an existing spelling for the concatenation of Parts.
|
|
RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
|
|
}
|
|
|
|
// Initialize RegUnitList. Because getSubRegs is called recursively, this
|
|
// processes the register hierarchy in postorder.
|
|
//
|
|
// Inherit all sub-register units. It is good enough to look at the explicit
|
|
// sub-registers, the other registers won't contribute any more units.
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
RegUnits |= SR->RegUnits;
|
|
}
|
|
|
|
// Absent any ad hoc aliasing, we create one register unit per leaf register.
|
|
// These units correspond to the maximal cliques in the register overlap
|
|
// graph which is optimal.
|
|
//
|
|
// When there is ad hoc aliasing, we simply create one unit per edge in the
|
|
// undirected ad hoc aliasing graph. Technically, we could do better by
|
|
// identifying maximal cliques in the ad hoc graph, but cliques larger than 2
|
|
// are extremely rare anyway (I've never seen one), so we don't bother with
|
|
// the added complexity.
|
|
for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
|
|
CodeGenRegister *AR = ExplicitAliases[i];
|
|
// Only visit each edge once.
|
|
if (AR->SubRegsComplete)
|
|
continue;
|
|
// Create a RegUnit representing this alias edge, and add it to both
|
|
// registers.
|
|
unsigned Unit = RegBank.newRegUnit(this, AR);
|
|
RegUnits.set(Unit);
|
|
AR->RegUnits.set(Unit);
|
|
}
|
|
|
|
// Finally, create units for leaf registers without ad hoc aliases. Note that
|
|
// a leaf register with ad hoc aliases doesn't get its own unit - it isn't
|
|
// necessary. This means the aliasing leaf registers can share a single unit.
|
|
if (RegUnits.empty())
|
|
RegUnits.set(RegBank.newRegUnit(this));
|
|
|
|
// We have now computed the native register units. More may be adopted later
|
|
// for balancing purposes.
|
|
NativeRegUnits = RegUnits;
|
|
|
|
return SubRegs;
|
|
}
|
|
|
|
// In a register that is covered by its sub-registers, try to find redundant
|
|
// sub-registers. For example:
|
|
//
|
|
// QQ0 = {Q0, Q1}
|
|
// Q0 = {D0, D1}
|
|
// Q1 = {D2, D3}
|
|
//
|
|
// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
|
|
// the register definition.
|
|
//
|
|
// The explicitly specified registers form a tree. This function discovers
|
|
// sub-register relationships that would force a DAG.
|
|
//
|
|
void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
|
|
// Collect new sub-registers first, add them later.
|
|
SmallVector<SubRegMap::value_type, 8> NewSubRegs;
|
|
|
|
// Look at the leading super-registers of each sub-register. Those are the
|
|
// candidates for new sub-registers, assuming they are fully contained in
|
|
// this register.
|
|
for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
|
|
const CodeGenRegister *SubReg = I->second;
|
|
const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
|
|
for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
|
|
CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
|
|
// Already got this sub-register?
|
|
if (Cand == this || getSubRegIndex(Cand))
|
|
continue;
|
|
// Check if each component of Cand is already a sub-register.
|
|
// We know that the first component is I->second, and is present with the
|
|
// name I->first.
|
|
SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
|
|
assert(!Cand->ExplicitSubRegs.empty() &&
|
|
"Super-register has no sub-registers");
|
|
for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
|
|
if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
|
|
Parts.push_back(Idx);
|
|
else {
|
|
// Sub-register doesn't exist.
|
|
Parts.clear();
|
|
break;
|
|
}
|
|
}
|
|
// If some Cand sub-register is not part of this register, or if Cand only
|
|
// has one sub-register, there is nothing to do.
|
|
if (Parts.size() <= 1)
|
|
continue;
|
|
|
|
// Each part of Cand is a sub-register of this. Make the full Cand also
|
|
// a sub-register with a concatenated sub-register index.
|
|
CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
|
|
NewSubRegs.push_back(std::make_pair(Concat, Cand));
|
|
}
|
|
}
|
|
|
|
// Now add all the new sub-registers.
|
|
for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
|
|
// Don't add Cand if another sub-register is already using the index.
|
|
if (!SubRegs.insert(NewSubRegs[i]).second)
|
|
continue;
|
|
|
|
CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
|
|
CodeGenRegister *NewSubReg = NewSubRegs[i].second;
|
|
SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
|
|
}
|
|
|
|
// Create sub-register index composition maps for the synthesized indices.
|
|
for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
|
|
CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
|
|
CodeGenRegister *NewSubReg = NewSubRegs[i].second;
|
|
for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
|
|
SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
|
|
CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
|
|
if (!SubIdx)
|
|
PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
|
|
SI->second->getName() + " in " + getName());
|
|
NewIdx->addComposite(SI->first, SubIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
|
|
// Only visit each register once.
|
|
if (SuperRegsComplete)
|
|
return;
|
|
SuperRegsComplete = true;
|
|
|
|
// Make sure all sub-registers have been visited first, so the super-reg
|
|
// lists will be topologically ordered.
|
|
for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
|
|
I != E; ++I)
|
|
I->second->computeSuperRegs(RegBank);
|
|
|
|
// Now add this as a super-register on all sub-registers.
|
|
// Also compute the TopoSigId in post-order.
|
|
TopoSigId Id;
|
|
for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
|
|
I != E; ++I) {
|
|
// Topological signature computed from SubIdx, TopoId(SubReg).
|
|
// Loops and idempotent indices have TopoSig = ~0u.
|
|
Id.push_back(I->first->EnumValue);
|
|
Id.push_back(I->second->TopoSig);
|
|
|
|
// Don't add duplicate entries.
|
|
if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
|
|
continue;
|
|
I->second->SuperRegs.push_back(this);
|
|
}
|
|
TopoSig = RegBank.getTopoSig(Id);
|
|
}
|
|
|
|
void
|
|
CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
|
|
CodeGenRegBank &RegBank) const {
|
|
assert(SubRegsComplete && "Must precompute sub-registers");
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
if (OSet.insert(SR))
|
|
SR->addSubRegsPreOrder(OSet, RegBank);
|
|
}
|
|
// Add any secondary sub-registers that weren't part of the explicit tree.
|
|
for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
|
|
I != E; ++I)
|
|
OSet.insert(I->second);
|
|
}
|
|
|
|
// Get the sum of this register's unit weights.
|
|
unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
|
|
unsigned Weight = 0;
|
|
for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
|
|
I != E; ++I) {
|
|
Weight += RegBank.getRegUnit(*I).Weight;
|
|
}
|
|
return Weight;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegisterTuples
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// A RegisterTuples def is used to generate pseudo-registers from lists of
|
|
// sub-registers. We provide a SetTheory expander class that returns the new
|
|
// registers.
|
|
namespace {
|
|
|
|
struct TupleExpander : SetTheory::Expander {
|
|
void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
|
|
std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
|
|
unsigned Dim = Indices.size();
|
|
ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
|
|
if (Dim != SubRegs->size())
|
|
PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
|
|
if (Dim < 2)
|
|
PrintFatalError(Def->getLoc(),
|
|
"Tuples must have at least 2 sub-registers");
|
|
|
|
// Evaluate the sub-register lists to be zipped.
|
|
unsigned Length = ~0u;
|
|
SmallVector<SetTheory::RecSet, 4> Lists(Dim);
|
|
for (unsigned i = 0; i != Dim; ++i) {
|
|
ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
|
|
Length = std::min(Length, unsigned(Lists[i].size()));
|
|
}
|
|
|
|
if (Length == 0)
|
|
return;
|
|
|
|
// Precompute some types.
|
|
Record *RegisterCl = Def->getRecords().getClass("Register");
|
|
RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
|
|
StringInit *BlankName = StringInit::get("");
|
|
|
|
// Zip them up.
|
|
for (unsigned n = 0; n != Length; ++n) {
|
|
std::string Name;
|
|
Record *Proto = Lists[0][n];
|
|
std::vector<Init*> Tuple;
|
|
unsigned CostPerUse = 0;
|
|
for (unsigned i = 0; i != Dim; ++i) {
|
|
Record *Reg = Lists[i][n];
|
|
if (i) Name += '_';
|
|
Name += Reg->getName();
|
|
Tuple.push_back(DefInit::get(Reg));
|
|
CostPerUse = std::max(CostPerUse,
|
|
unsigned(Reg->getValueAsInt("CostPerUse")));
|
|
}
|
|
|
|
// Create a new Record representing the synthesized register. This record
|
|
// is only for consumption by CodeGenRegister, it is not added to the
|
|
// RecordKeeper.
|
|
Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
|
|
Elts.insert(NewReg);
|
|
|
|
// Copy Proto super-classes.
|
|
ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
|
|
for (const auto &SuperPair : Supers)
|
|
NewReg->addSuperClass(SuperPair.first, SuperPair.second);
|
|
|
|
// Copy Proto fields.
|
|
for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
|
|
RecordVal RV = Proto->getValues()[i];
|
|
|
|
// Skip existing fields, like NAME.
|
|
if (NewReg->getValue(RV.getNameInit()))
|
|
continue;
|
|
|
|
StringRef Field = RV.getName();
|
|
|
|
// Replace the sub-register list with Tuple.
|
|
if (Field == "SubRegs")
|
|
RV.setValue(ListInit::get(Tuple, RegisterRecTy));
|
|
|
|
// Provide a blank AsmName. MC hacks are required anyway.
|
|
if (Field == "AsmName")
|
|
RV.setValue(BlankName);
|
|
|
|
// CostPerUse is aggregated from all Tuple members.
|
|
if (Field == "CostPerUse")
|
|
RV.setValue(IntInit::get(CostPerUse));
|
|
|
|
// Composite registers are always covered by sub-registers.
|
|
if (Field == "CoveredBySubRegs")
|
|
RV.setValue(BitInit::get(true));
|
|
|
|
// Copy fields from the RegisterTuples def.
|
|
if (Field == "SubRegIndices" ||
|
|
Field == "CompositeIndices") {
|
|
NewReg->addValue(*Def->getValue(Field));
|
|
continue;
|
|
}
|
|
|
|
// Some fields get their default uninitialized value.
|
|
if (Field == "DwarfNumbers" ||
|
|
Field == "DwarfAlias" ||
|
|
Field == "Aliases") {
|
|
if (const RecordVal *DefRV = RegisterCl->getValue(Field))
|
|
NewReg->addValue(*DefRV);
|
|
continue;
|
|
}
|
|
|
|
// Everything else is copied from Proto.
|
|
NewReg->addValue(RV);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenRegisterClass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
|
|
std::sort(M.begin(), M.end(), deref<llvm::less>());
|
|
M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
|
|
}
|
|
|
|
CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
|
|
: TheDef(R),
|
|
Name(R->getName()),
|
|
TopoSigs(RegBank.getNumTopoSigs()),
|
|
EnumValue(-1) {
|
|
|
|
std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
|
|
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
|
|
Record *Type = TypeList[i];
|
|
if (!Type->isSubClassOf("ValueType"))
|
|
PrintFatalError("RegTypes list member '" + Type->getName() +
|
|
"' does not derive from the ValueType class!");
|
|
VTs.push_back(getValueType(Type));
|
|
}
|
|
assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
|
|
|
|
// Allocation order 0 is the full set. AltOrders provides others.
|
|
const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
|
|
ListInit *AltOrders = R->getValueAsListInit("AltOrders");
|
|
Orders.resize(1 + AltOrders->size());
|
|
|
|
// Default allocation order always contains all registers.
|
|
for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
|
|
Orders[0].push_back((*Elements)[i]);
|
|
const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
|
|
Members.push_back(Reg);
|
|
TopoSigs.set(Reg->getTopoSig());
|
|
}
|
|
sortAndUniqueRegisters(Members);
|
|
|
|
// Alternative allocation orders may be subsets.
|
|
SetTheory::RecSet Order;
|
|
for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
|
|
RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
|
|
Orders[1 + i].append(Order.begin(), Order.end());
|
|
// Verify that all altorder members are regclass members.
|
|
while (!Order.empty()) {
|
|
CodeGenRegister *Reg = RegBank.getReg(Order.back());
|
|
Order.pop_back();
|
|
if (!contains(Reg))
|
|
PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
|
|
" is not a class member");
|
|
}
|
|
}
|
|
|
|
// Allow targets to override the size in bits of the RegisterClass.
|
|
unsigned Size = R->getValueAsInt("Size");
|
|
|
|
Namespace = R->getValueAsString("Namespace");
|
|
SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
|
|
SpillAlignment = R->getValueAsInt("Alignment");
|
|
CopyCost = R->getValueAsInt("CopyCost");
|
|
Allocatable = R->getValueAsBit("isAllocatable");
|
|
AltOrderSelect = R->getValueAsString("AltOrderSelect");
|
|
int AllocationPriority = R->getValueAsInt("AllocationPriority");
|
|
if (AllocationPriority < 0 || AllocationPriority > 63)
|
|
PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
|
|
this->AllocationPriority = AllocationPriority;
|
|
}
|
|
|
|
// Create an inferred register class that was missing from the .td files.
|
|
// Most properties will be inherited from the closest super-class after the
|
|
// class structure has been computed.
|
|
CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
|
|
StringRef Name, Key Props)
|
|
: Members(*Props.Members),
|
|
TheDef(nullptr),
|
|
Name(Name),
|
|
TopoSigs(RegBank.getNumTopoSigs()),
|
|
EnumValue(-1),
|
|
SpillSize(Props.SpillSize),
|
|
SpillAlignment(Props.SpillAlignment),
|
|
CopyCost(0),
|
|
Allocatable(true),
|
|
AllocationPriority(0) {
|
|
for (const auto R : Members)
|
|
TopoSigs.set(R->getTopoSig());
|
|
}
|
|
|
|
// Compute inherited propertied for a synthesized register class.
|
|
void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
|
|
assert(!getDef() && "Only synthesized classes can inherit properties");
|
|
assert(!SuperClasses.empty() && "Synthesized class without super class");
|
|
|
|
// The last super-class is the smallest one.
|
|
CodeGenRegisterClass &Super = *SuperClasses.back();
|
|
|
|
// Most properties are copied directly.
|
|
// Exceptions are members, size, and alignment
|
|
Namespace = Super.Namespace;
|
|
VTs = Super.VTs;
|
|
CopyCost = Super.CopyCost;
|
|
Allocatable = Super.Allocatable;
|
|
AltOrderSelect = Super.AltOrderSelect;
|
|
AllocationPriority = Super.AllocationPriority;
|
|
|
|
// Copy all allocation orders, filter out foreign registers from the larger
|
|
// super-class.
|
|
Orders.resize(Super.Orders.size());
|
|
for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
|
|
for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
|
|
if (contains(RegBank.getReg(Super.Orders[i][j])))
|
|
Orders[i].push_back(Super.Orders[i][j]);
|
|
}
|
|
|
|
bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
|
|
return std::binary_search(Members.begin(), Members.end(), Reg,
|
|
deref<llvm::less>());
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
|
|
OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
|
|
for (const auto R : *K.Members)
|
|
OS << ", " << R->getName();
|
|
return OS << " }";
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
// This is a simple lexicographical order that can be used to search for sets.
|
|
// It is not the same as the topological order provided by TopoOrderRC.
|
|
bool CodeGenRegisterClass::Key::
|
|
operator<(const CodeGenRegisterClass::Key &B) const {
|
|
assert(Members && B.Members);
|
|
return std::tie(*Members, SpillSize, SpillAlignment) <
|
|
std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
|
|
}
|
|
|
|
// Returns true if RC is a strict subclass.
|
|
// RC is a sub-class of this class if it is a valid replacement for any
|
|
// instruction operand where a register of this classis required. It must
|
|
// satisfy these conditions:
|
|
//
|
|
// 1. All RC registers are also in this.
|
|
// 2. The RC spill size must not be smaller than our spill size.
|
|
// 3. RC spill alignment must be compatible with ours.
|
|
//
|
|
static bool testSubClass(const CodeGenRegisterClass *A,
|
|
const CodeGenRegisterClass *B) {
|
|
return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
|
|
A->SpillSize <= B->SpillSize &&
|
|
std::includes(A->getMembers().begin(), A->getMembers().end(),
|
|
B->getMembers().begin(), B->getMembers().end(),
|
|
deref<llvm::less>());
|
|
}
|
|
|
|
/// Sorting predicate for register classes. This provides a topological
|
|
/// ordering that arranges all register classes before their sub-classes.
|
|
///
|
|
/// Register classes with the same registers, spill size, and alignment form a
|
|
/// clique. They will be ordered alphabetically.
|
|
///
|
|
static bool TopoOrderRC(const CodeGenRegisterClass &PA,
|
|
const CodeGenRegisterClass &PB) {
|
|
auto *A = &PA;
|
|
auto *B = &PB;
|
|
if (A == B)
|
|
return false;
|
|
|
|
// Order by ascending spill size.
|
|
if (A->SpillSize < B->SpillSize)
|
|
return true;
|
|
if (A->SpillSize > B->SpillSize)
|
|
return false;
|
|
|
|
// Order by ascending spill alignment.
|
|
if (A->SpillAlignment < B->SpillAlignment)
|
|
return true;
|
|
if (A->SpillAlignment > B->SpillAlignment)
|
|
return false;
|
|
|
|
// Order by descending set size. Note that the classes' allocation order may
|
|
// not have been computed yet. The Members set is always vaild.
|
|
if (A->getMembers().size() > B->getMembers().size())
|
|
return true;
|
|
if (A->getMembers().size() < B->getMembers().size())
|
|
return false;
|
|
|
|
// Finally order by name as a tie breaker.
|
|
return StringRef(A->getName()) < B->getName();
|
|
}
|
|
|
|
std::string CodeGenRegisterClass::getQualifiedName() const {
|
|
if (Namespace.empty())
|
|
return getName();
|
|
else
|
|
return (Namespace + "::" + getName()).str();
|
|
}
|
|
|
|
// Compute sub-classes of all register classes.
|
|
// Assume the classes are ordered topologically.
|
|
void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
|
|
auto &RegClasses = RegBank.getRegClasses();
|
|
|
|
// Visit backwards so sub-classes are seen first.
|
|
for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
|
|
CodeGenRegisterClass &RC = *I;
|
|
RC.SubClasses.resize(RegClasses.size());
|
|
RC.SubClasses.set(RC.EnumValue);
|
|
|
|
// Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
|
|
for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
|
|
CodeGenRegisterClass &SubRC = *I2;
|
|
if (RC.SubClasses.test(SubRC.EnumValue))
|
|
continue;
|
|
if (!testSubClass(&RC, &SubRC))
|
|
continue;
|
|
// SubRC is a sub-class. Grap all its sub-classes so we won't have to
|
|
// check them again.
|
|
RC.SubClasses |= SubRC.SubClasses;
|
|
}
|
|
|
|
// Sweep up missed clique members. They will be immediately preceding RC.
|
|
for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
|
|
RC.SubClasses.set(I2->EnumValue);
|
|
}
|
|
|
|
// Compute the SuperClasses lists from the SubClasses vectors.
|
|
for (auto &RC : RegClasses) {
|
|
const BitVector &SC = RC.getSubClasses();
|
|
auto I = RegClasses.begin();
|
|
for (int s = 0, next_s = SC.find_first(); next_s != -1;
|
|
next_s = SC.find_next(s)) {
|
|
std::advance(I, next_s - s);
|
|
s = next_s;
|
|
if (&*I == &RC)
|
|
continue;
|
|
I->SuperClasses.push_back(&RC);
|
|
}
|
|
}
|
|
|
|
// With the class hierarchy in place, let synthesized register classes inherit
|
|
// properties from their closest super-class. The iteration order here can
|
|
// propagate properties down multiple levels.
|
|
for (auto &RC : RegClasses)
|
|
if (!RC.getDef())
|
|
RC.inheritProperties(RegBank);
|
|
}
|
|
|
|
Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
|
|
CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
|
|
CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
|
|
auto SizeOrder = [](const CodeGenRegisterClass *A,
|
|
const CodeGenRegisterClass *B) {
|
|
return A->getMembers().size() > B->getMembers().size();
|
|
};
|
|
|
|
auto &RegClasses = RegBank.getRegClasses();
|
|
|
|
// Find all the subclasses of this one that fully support the sub-register
|
|
// index and order them by size. BiggestSuperRC should always be first.
|
|
CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
|
|
if (!BiggestSuperRegRC)
|
|
return None;
|
|
BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
|
|
std::vector<CodeGenRegisterClass *> SuperRegRCs;
|
|
for (auto &RC : RegClasses)
|
|
if (SuperRegRCsBV[RC.EnumValue])
|
|
SuperRegRCs.emplace_back(&RC);
|
|
std::sort(SuperRegRCs.begin(), SuperRegRCs.end(), SizeOrder);
|
|
assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first");
|
|
|
|
// Find all the subreg classes and order them by size too.
|
|
std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
|
|
for (auto &RC: RegClasses) {
|
|
BitVector SuperRegClassesBV(RegClasses.size());
|
|
RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
|
|
if (SuperRegClassesBV.any())
|
|
SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
|
|
}
|
|
std::sort(SuperRegClasses.begin(), SuperRegClasses.end(),
|
|
[&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
|
|
const std::pair<CodeGenRegisterClass *, BitVector> &B) {
|
|
return SizeOrder(A.first, B.first);
|
|
});
|
|
|
|
// Find the biggest subclass and subreg class such that R:subidx is in the
|
|
// subreg class for all R in subclass.
|
|
//
|
|
// For example:
|
|
// All registers in X86's GR64 have a sub_32bit subregister but no class
|
|
// exists that contains all the 32-bit subregisters because GR64 contains RIP
|
|
// but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
|
|
// GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
|
|
// having excluded RIP, we are able to find a SubRegRC (GR32).
|
|
CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
|
|
CodeGenRegisterClass *SubRegRC = nullptr;
|
|
for (auto *SuperRegRC : SuperRegRCs) {
|
|
for (const auto &SuperRegClassPair : SuperRegClasses) {
|
|
const BitVector &SuperRegClassBV = SuperRegClassPair.second;
|
|
if (SuperRegClassBV[SuperRegRC->EnumValue]) {
|
|
SubRegRC = SuperRegClassPair.first;
|
|
ChosenSuperRegClass = SuperRegRC;
|
|
|
|
// If SubRegRC is bigger than SuperRegRC then there are members of
|
|
// SubRegRC that don't have super registers via SubIdx. Keep looking to
|
|
// find a better fit and fall back on this one if there isn't one.
|
|
//
|
|
// This is intended to prevent X86 from making odd choices such as
|
|
// picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
|
|
// LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
|
|
// aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
|
|
// mapping.
|
|
if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
|
|
return std::make_pair(ChosenSuperRegClass, SubRegRC);
|
|
}
|
|
}
|
|
|
|
// If we found a fit but it wasn't quite ideal because SubRegRC had excess
|
|
// registers, then we're done.
|
|
if (ChosenSuperRegClass)
|
|
return std::make_pair(ChosenSuperRegClass, SubRegRC);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
|
|
BitVector &Out) const {
|
|
auto FindI = SuperRegClasses.find(SubIdx);
|
|
if (FindI == SuperRegClasses.end())
|
|
return;
|
|
for (CodeGenRegisterClass *RC : FindI->second)
|
|
Out.set(RC->EnumValue);
|
|
}
|
|
|
|
// Populate a unique sorted list of units from a register set.
|
|
void CodeGenRegisterClass::buildRegUnitSet(
|
|
std::vector<unsigned> &RegUnits) const {
|
|
std::vector<unsigned> TmpUnits;
|
|
for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
|
|
TmpUnits.push_back(*UnitI);
|
|
std::sort(TmpUnits.begin(), TmpUnits.end());
|
|
std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
|
|
std::back_inserter(RegUnits));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenRegBank
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
|
|
// Configure register Sets to understand register classes and tuples.
|
|
Sets.addFieldExpander("RegisterClass", "MemberList");
|
|
Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
|
|
Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>());
|
|
|
|
// Read in the user-defined (named) sub-register indices.
|
|
// More indices will be synthesized later.
|
|
std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
|
|
std::sort(SRIs.begin(), SRIs.end(), LessRecord());
|
|
for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
|
|
getSubRegIdx(SRIs[i]);
|
|
// Build composite maps from ComposedOf fields.
|
|
for (auto &Idx : SubRegIndices)
|
|
Idx.updateComponents(*this);
|
|
|
|
// Read in the register definitions.
|
|
std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
|
|
std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
|
|
// Assign the enumeration values.
|
|
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
|
|
getReg(Regs[i]);
|
|
|
|
// Expand tuples and number the new registers.
|
|
std::vector<Record*> Tups =
|
|
Records.getAllDerivedDefinitions("RegisterTuples");
|
|
|
|
for (Record *R : Tups) {
|
|
std::vector<Record *> TupRegs = *Sets.expand(R);
|
|
std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
|
|
for (Record *RC : TupRegs)
|
|
getReg(RC);
|
|
}
|
|
|
|
// Now all the registers are known. Build the object graph of explicit
|
|
// register-register references.
|
|
for (auto &Reg : Registers)
|
|
Reg.buildObjectGraph(*this);
|
|
|
|
// Compute register name map.
|
|
for (auto &Reg : Registers)
|
|
// FIXME: This could just be RegistersByName[name] = register, except that
|
|
// causes some failures in MIPS - perhaps they have duplicate register name
|
|
// entries? (or maybe there's a reason for it - I don't know much about this
|
|
// code, just drive-by refactoring)
|
|
RegistersByName.insert(
|
|
std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
|
|
|
|
// Precompute all sub-register maps.
|
|
// This will create Composite entries for all inferred sub-register indices.
|
|
for (auto &Reg : Registers)
|
|
Reg.computeSubRegs(*this);
|
|
|
|
// Infer even more sub-registers by combining leading super-registers.
|
|
for (auto &Reg : Registers)
|
|
if (Reg.CoveredBySubRegs)
|
|
Reg.computeSecondarySubRegs(*this);
|
|
|
|
// After the sub-register graph is complete, compute the topologically
|
|
// ordered SuperRegs list.
|
|
for (auto &Reg : Registers)
|
|
Reg.computeSuperRegs(*this);
|
|
|
|
// Native register units are associated with a leaf register. They've all been
|
|
// discovered now.
|
|
NumNativeRegUnits = RegUnits.size();
|
|
|
|
// Read in register class definitions.
|
|
std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
|
|
if (RCs.empty())
|
|
PrintFatalError("No 'RegisterClass' subclasses defined!");
|
|
|
|
// Allocate user-defined register classes.
|
|
for (auto *RC : RCs) {
|
|
RegClasses.emplace_back(*this, RC);
|
|
addToMaps(&RegClasses.back());
|
|
}
|
|
|
|
// Infer missing classes to create a full algebra.
|
|
computeInferredRegisterClasses();
|
|
|
|
// Order register classes topologically and assign enum values.
|
|
RegClasses.sort(TopoOrderRC);
|
|
unsigned i = 0;
|
|
for (auto &RC : RegClasses)
|
|
RC.EnumValue = i++;
|
|
CodeGenRegisterClass::computeSubClasses(*this);
|
|
}
|
|
|
|
// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
|
|
CodeGenSubRegIndex*
|
|
CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
|
|
SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
|
|
return &SubRegIndices.back();
|
|
}
|
|
|
|
CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
|
|
CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
|
|
if (Idx)
|
|
return Idx;
|
|
SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
|
|
Idx = &SubRegIndices.back();
|
|
return Idx;
|
|
}
|
|
|
|
CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
|
|
CodeGenRegister *&Reg = Def2Reg[Def];
|
|
if (Reg)
|
|
return Reg;
|
|
Registers.emplace_back(Def, Registers.size() + 1);
|
|
Reg = &Registers.back();
|
|
return Reg;
|
|
}
|
|
|
|
void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
|
|
if (Record *Def = RC->getDef())
|
|
Def2RC.insert(std::make_pair(Def, RC));
|
|
|
|
// Duplicate classes are rejected by insert().
|
|
// That's OK, we only care about the properties handled by CGRC::Key.
|
|
CodeGenRegisterClass::Key K(*RC);
|
|
Key2RC.insert(std::make_pair(K, RC));
|
|
}
|
|
|
|
// Create a synthetic sub-class if it is missing.
|
|
CodeGenRegisterClass*
|
|
CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
|
|
const CodeGenRegister::Vec *Members,
|
|
StringRef Name) {
|
|
// Synthetic sub-class has the same size and alignment as RC.
|
|
CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
|
|
RCKeyMap::const_iterator FoundI = Key2RC.find(K);
|
|
if (FoundI != Key2RC.end())
|
|
return FoundI->second;
|
|
|
|
// Sub-class doesn't exist, create a new one.
|
|
RegClasses.emplace_back(*this, Name, K);
|
|
addToMaps(&RegClasses.back());
|
|
return &RegClasses.back();
|
|
}
|
|
|
|
CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
|
|
if (CodeGenRegisterClass *RC = Def2RC[Def])
|
|
return RC;
|
|
|
|
PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
|
|
}
|
|
|
|
CodeGenSubRegIndex*
|
|
CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
|
|
CodeGenSubRegIndex *B) {
|
|
// Look for an existing entry.
|
|
CodeGenSubRegIndex *Comp = A->compose(B);
|
|
if (Comp)
|
|
return Comp;
|
|
|
|
// None exists, synthesize one.
|
|
std::string Name = A->getName() + "_then_" + B->getName();
|
|
Comp = createSubRegIndex(Name, A->getNamespace());
|
|
A->addComposite(B, Comp);
|
|
return Comp;
|
|
}
|
|
|
|
CodeGenSubRegIndex *CodeGenRegBank::
|
|
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
|
|
assert(Parts.size() > 1 && "Need two parts to concatenate");
|
|
|
|
// Look for an existing entry.
|
|
CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
|
|
if (Idx)
|
|
return Idx;
|
|
|
|
// None exists, synthesize one.
|
|
std::string Name = Parts.front()->getName();
|
|
// Determine whether all parts are contiguous.
|
|
bool isContinuous = true;
|
|
unsigned Size = Parts.front()->Size;
|
|
unsigned LastOffset = Parts.front()->Offset;
|
|
unsigned LastSize = Parts.front()->Size;
|
|
for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
|
|
Name += '_';
|
|
Name += Parts[i]->getName();
|
|
Size += Parts[i]->Size;
|
|
if (Parts[i]->Offset != (LastOffset + LastSize))
|
|
isContinuous = false;
|
|
LastOffset = Parts[i]->Offset;
|
|
LastSize = Parts[i]->Size;
|
|
}
|
|
Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
|
|
Idx->Size = Size;
|
|
Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
|
|
return Idx;
|
|
}
|
|
|
|
void CodeGenRegBank::computeComposites() {
|
|
// Keep track of TopoSigs visited. We only need to visit each TopoSig once,
|
|
// and many registers will share TopoSigs on regular architectures.
|
|
BitVector TopoSigs(getNumTopoSigs());
|
|
|
|
for (const auto &Reg1 : Registers) {
|
|
// Skip identical subreg structures already processed.
|
|
if (TopoSigs.test(Reg1.getTopoSig()))
|
|
continue;
|
|
TopoSigs.set(Reg1.getTopoSig());
|
|
|
|
const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
|
|
e1 = SRM1.end(); i1 != e1; ++i1) {
|
|
CodeGenSubRegIndex *Idx1 = i1->first;
|
|
CodeGenRegister *Reg2 = i1->second;
|
|
// Ignore identity compositions.
|
|
if (&Reg1 == Reg2)
|
|
continue;
|
|
const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
|
|
// Try composing Idx1 with another SubRegIndex.
|
|
for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
|
|
e2 = SRM2.end(); i2 != e2; ++i2) {
|
|
CodeGenSubRegIndex *Idx2 = i2->first;
|
|
CodeGenRegister *Reg3 = i2->second;
|
|
// Ignore identity compositions.
|
|
if (Reg2 == Reg3)
|
|
continue;
|
|
// OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
|
|
CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
|
|
assert(Idx3 && "Sub-register doesn't have an index");
|
|
|
|
// Conflicting composition? Emit a warning but allow it.
|
|
if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
|
|
PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
|
|
" and " + Idx2->getQualifiedName() +
|
|
" compose ambiguously as " + Prev->getQualifiedName() +
|
|
" or " + Idx3->getQualifiedName());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute lane masks. This is similar to register units, but at the
|
|
// sub-register index level. Each bit in the lane mask is like a register unit
|
|
// class, and two lane masks will have a bit in common if two sub-register
|
|
// indices overlap in some register.
|
|
//
|
|
// Conservatively share a lane mask bit if two sub-register indices overlap in
|
|
// some registers, but not in others. That shouldn't happen a lot.
|
|
void CodeGenRegBank::computeSubRegLaneMasks() {
|
|
// First assign individual bits to all the leaf indices.
|
|
unsigned Bit = 0;
|
|
// Determine mask of lanes that cover their registers.
|
|
CoveringLanes = LaneBitmask::getAll();
|
|
for (auto &Idx : SubRegIndices) {
|
|
if (Idx.getComposites().empty()) {
|
|
if (Bit > LaneBitmask::BitWidth) {
|
|
PrintFatalError(
|
|
Twine("Ran out of lanemask bits to represent subregister ")
|
|
+ Idx.getName());
|
|
}
|
|
Idx.LaneMask = LaneBitmask::getLane(Bit);
|
|
++Bit;
|
|
} else {
|
|
Idx.LaneMask = LaneBitmask::getNone();
|
|
}
|
|
}
|
|
|
|
// Compute transformation sequences for composeSubRegIndexLaneMask. The idea
|
|
// here is that for each possible target subregister we look at the leafs
|
|
// in the subregister graph that compose for this target and create
|
|
// transformation sequences for the lanemasks. Each step in the sequence
|
|
// consists of a bitmask and a bitrotate operation. As the rotation amounts
|
|
// are usually the same for many subregisters we can easily combine the steps
|
|
// by combining the masks.
|
|
for (const auto &Idx : SubRegIndices) {
|
|
const auto &Composites = Idx.getComposites();
|
|
auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
|
|
|
|
if (Composites.empty()) {
|
|
// Moving from a class with no subregisters we just had a single lane:
|
|
// The subregister must be a leaf subregister and only occupies 1 bit.
|
|
// Move the bit from the class without subregisters into that position.
|
|
static_assert(sizeof(Idx.LaneMask.getAsInteger()) == 4,
|
|
"Change Log2_32 to a proper one");
|
|
unsigned DstBit = Log2_32(Idx.LaneMask.getAsInteger());
|
|
assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
|
|
"Must be a leaf subregister");
|
|
MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
|
|
LaneTransforms.push_back(MaskRol);
|
|
} else {
|
|
// Go through all leaf subregisters and find the ones that compose with
|
|
// Idx. These make out all possible valid bits in the lane mask we want to
|
|
// transform. Looking only at the leafs ensure that only a single bit in
|
|
// the mask is set.
|
|
unsigned NextBit = 0;
|
|
for (auto &Idx2 : SubRegIndices) {
|
|
// Skip non-leaf subregisters.
|
|
if (!Idx2.getComposites().empty())
|
|
continue;
|
|
// Replicate the behaviour from the lane mask generation loop above.
|
|
unsigned SrcBit = NextBit;
|
|
LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
|
|
if (NextBit < LaneBitmask::BitWidth-1)
|
|
++NextBit;
|
|
assert(Idx2.LaneMask == SrcMask);
|
|
|
|
// Get the composed subregister if there is any.
|
|
auto C = Composites.find(&Idx2);
|
|
if (C == Composites.end())
|
|
continue;
|
|
const CodeGenSubRegIndex *Composite = C->second;
|
|
// The Composed subreg should be a leaf subreg too
|
|
assert(Composite->getComposites().empty());
|
|
|
|
// Create Mask+Rotate operation and merge with existing ops if possible.
|
|
static_assert(sizeof(Composite->LaneMask.getAsInteger()) == 4,
|
|
"Change Log2_32 to a proper one");
|
|
unsigned DstBit = Log2_32(Composite->LaneMask.getAsInteger());
|
|
int Shift = DstBit - SrcBit;
|
|
uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
|
|
: LaneBitmask::BitWidth + Shift;
|
|
for (auto &I : LaneTransforms) {
|
|
if (I.RotateLeft == RotateLeft) {
|
|
I.Mask |= SrcMask;
|
|
SrcMask = LaneBitmask::getNone();
|
|
}
|
|
}
|
|
if (SrcMask.any()) {
|
|
MaskRolPair MaskRol = { SrcMask, RotateLeft };
|
|
LaneTransforms.push_back(MaskRol);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Optimize if the transformation consists of one step only: Set mask to
|
|
// 0xffffffff (including some irrelevant invalid bits) so that it should
|
|
// merge with more entries later while compressing the table.
|
|
if (LaneTransforms.size() == 1)
|
|
LaneTransforms[0].Mask = LaneBitmask::getAll();
|
|
|
|
// Further compression optimization: For invalid compositions resulting
|
|
// in a sequence with 0 entries we can just pick any other. Choose
|
|
// Mask 0xffffffff with Rotation 0.
|
|
if (LaneTransforms.size() == 0) {
|
|
MaskRolPair P = { LaneBitmask::getAll(), 0 };
|
|
LaneTransforms.push_back(P);
|
|
}
|
|
}
|
|
|
|
// FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
|
|
// by the sub-register graph? This doesn't occur in any known targets.
|
|
|
|
// Inherit lanes from composites.
|
|
for (const auto &Idx : SubRegIndices) {
|
|
LaneBitmask Mask = Idx.computeLaneMask();
|
|
// If some super-registers without CoveredBySubRegs use this index, we can
|
|
// no longer assume that the lanes are covering their registers.
|
|
if (!Idx.AllSuperRegsCovered)
|
|
CoveringLanes &= ~Mask;
|
|
}
|
|
|
|
// Compute lane mask combinations for register classes.
|
|
for (auto &RegClass : RegClasses) {
|
|
LaneBitmask LaneMask;
|
|
for (const auto &SubRegIndex : SubRegIndices) {
|
|
if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
|
|
continue;
|
|
LaneMask |= SubRegIndex.LaneMask;
|
|
}
|
|
|
|
// For classes without any subregisters set LaneMask to 1 instead of 0.
|
|
// This makes it easier for client code to handle classes uniformly.
|
|
if (LaneMask.none())
|
|
LaneMask = LaneBitmask::getLane(0);
|
|
|
|
RegClass.LaneMask = LaneMask;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
|
|
// the transitive closure of the union of overlapping register
|
|
// classes. Together, the UberRegSets form a partition of the registers. If we
|
|
// consider overlapping register classes to be connected, then each UberRegSet
|
|
// is a set of connected components.
|
|
//
|
|
// An UberRegSet will likely be a horizontal slice of register names of
|
|
// the same width. Nontrivial subregisters should then be in a separate
|
|
// UberRegSet. But this property isn't required for valid computation of
|
|
// register unit weights.
|
|
//
|
|
// A Weight field caches the max per-register unit weight in each UberRegSet.
|
|
//
|
|
// A set of SingularDeterminants flags single units of some register in this set
|
|
// for which the unit weight equals the set weight. These units should not have
|
|
// their weight increased.
|
|
struct UberRegSet {
|
|
CodeGenRegister::Vec Regs;
|
|
unsigned Weight = 0;
|
|
CodeGenRegister::RegUnitList SingularDeterminants;
|
|
|
|
UberRegSet() = default;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Partition registers into UberRegSets, where each set is the transitive
|
|
// closure of the union of overlapping register classes.
|
|
//
|
|
// UberRegSets[0] is a special non-allocatable set.
|
|
static void computeUberSets(std::vector<UberRegSet> &UberSets,
|
|
std::vector<UberRegSet*> &RegSets,
|
|
CodeGenRegBank &RegBank) {
|
|
const auto &Registers = RegBank.getRegisters();
|
|
|
|
// The Register EnumValue is one greater than its index into Registers.
|
|
assert(Registers.size() == Registers.back().EnumValue &&
|
|
"register enum value mismatch");
|
|
|
|
// For simplicitly make the SetID the same as EnumValue.
|
|
IntEqClasses UberSetIDs(Registers.size()+1);
|
|
std::set<unsigned> AllocatableRegs;
|
|
for (auto &RegClass : RegBank.getRegClasses()) {
|
|
if (!RegClass.Allocatable)
|
|
continue;
|
|
|
|
const CodeGenRegister::Vec &Regs = RegClass.getMembers();
|
|
if (Regs.empty())
|
|
continue;
|
|
|
|
unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
|
|
assert(USetID && "register number 0 is invalid");
|
|
|
|
AllocatableRegs.insert((*Regs.begin())->EnumValue);
|
|
for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
|
|
AllocatableRegs.insert((*I)->EnumValue);
|
|
UberSetIDs.join(USetID, (*I)->EnumValue);
|
|
}
|
|
}
|
|
// Combine non-allocatable regs.
|
|
for (const auto &Reg : Registers) {
|
|
unsigned RegNum = Reg.EnumValue;
|
|
if (AllocatableRegs.count(RegNum))
|
|
continue;
|
|
|
|
UberSetIDs.join(0, RegNum);
|
|
}
|
|
UberSetIDs.compress();
|
|
|
|
// Make the first UberSet a special unallocatable set.
|
|
unsigned ZeroID = UberSetIDs[0];
|
|
|
|
// Insert Registers into the UberSets formed by union-find.
|
|
// Do not resize after this.
|
|
UberSets.resize(UberSetIDs.getNumClasses());
|
|
unsigned i = 0;
|
|
for (const CodeGenRegister &Reg : Registers) {
|
|
unsigned USetID = UberSetIDs[Reg.EnumValue];
|
|
if (!USetID)
|
|
USetID = ZeroID;
|
|
else if (USetID == ZeroID)
|
|
USetID = 0;
|
|
|
|
UberRegSet *USet = &UberSets[USetID];
|
|
USet->Regs.push_back(&Reg);
|
|
sortAndUniqueRegisters(USet->Regs);
|
|
RegSets[i++] = USet;
|
|
}
|
|
}
|
|
|
|
// Recompute each UberSet weight after changing unit weights.
|
|
static void computeUberWeights(std::vector<UberRegSet> &UberSets,
|
|
CodeGenRegBank &RegBank) {
|
|
// Skip the first unallocatable set.
|
|
for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
|
|
E = UberSets.end(); I != E; ++I) {
|
|
|
|
// Initialize all unit weights in this set, and remember the max units/reg.
|
|
const CodeGenRegister *Reg = nullptr;
|
|
unsigned MaxWeight = 0, Weight = 0;
|
|
for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
|
|
if (Reg != UnitI.getReg()) {
|
|
if (Weight > MaxWeight)
|
|
MaxWeight = Weight;
|
|
Reg = UnitI.getReg();
|
|
Weight = 0;
|
|
}
|
|
unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
|
|
if (!UWeight) {
|
|
UWeight = 1;
|
|
RegBank.increaseRegUnitWeight(*UnitI, UWeight);
|
|
}
|
|
Weight += UWeight;
|
|
}
|
|
if (Weight > MaxWeight)
|
|
MaxWeight = Weight;
|
|
if (I->Weight != MaxWeight) {
|
|
DEBUG(
|
|
dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
|
|
for (auto &Unit : I->Regs)
|
|
dbgs() << " " << Unit->getName();
|
|
dbgs() << "\n");
|
|
// Update the set weight.
|
|
I->Weight = MaxWeight;
|
|
}
|
|
|
|
// Find singular determinants.
|
|
for (const auto R : I->Regs) {
|
|
if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
|
|
I->SingularDeterminants |= R->getRegUnits();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
|
|
// a register and its subregisters so that they have the same weight as their
|
|
// UberSet. Self-recursion processes the subregister tree in postorder so
|
|
// subregisters are normalized first.
|
|
//
|
|
// Side effects:
|
|
// - creates new adopted register units
|
|
// - causes superregisters to inherit adopted units
|
|
// - increases the weight of "singular" units
|
|
// - induces recomputation of UberWeights.
|
|
static bool normalizeWeight(CodeGenRegister *Reg,
|
|
std::vector<UberRegSet> &UberSets,
|
|
std::vector<UberRegSet*> &RegSets,
|
|
SparseBitVector<> &NormalRegs,
|
|
CodeGenRegister::RegUnitList &NormalUnits,
|
|
CodeGenRegBank &RegBank) {
|
|
if (NormalRegs.test(Reg->EnumValue))
|
|
return false;
|
|
NormalRegs.set(Reg->EnumValue);
|
|
|
|
bool Changed = false;
|
|
const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
|
|
SRE = SRM.end(); SRI != SRE; ++SRI) {
|
|
if (SRI->second == Reg)
|
|
continue; // self-cycles happen
|
|
|
|
Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
|
|
NormalRegs, NormalUnits, RegBank);
|
|
}
|
|
// Postorder register normalization.
|
|
|
|
// Inherit register units newly adopted by subregisters.
|
|
if (Reg->inheritRegUnits(RegBank))
|
|
computeUberWeights(UberSets, RegBank);
|
|
|
|
// Check if this register is too skinny for its UberRegSet.
|
|
UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
|
|
|
|
unsigned RegWeight = Reg->getWeight(RegBank);
|
|
if (UberSet->Weight > RegWeight) {
|
|
// A register unit's weight can be adjusted only if it is the singular unit
|
|
// for this register, has not been used to normalize a subregister's set,
|
|
// and has not already been used to singularly determine this UberRegSet.
|
|
unsigned AdjustUnit = *Reg->getRegUnits().begin();
|
|
if (Reg->getRegUnits().count() != 1
|
|
|| hasRegUnit(NormalUnits, AdjustUnit)
|
|
|| hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
|
|
// We don't have an adjustable unit, so adopt a new one.
|
|
AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
|
|
Reg->adoptRegUnit(AdjustUnit);
|
|
// Adopting a unit does not immediately require recomputing set weights.
|
|
}
|
|
else {
|
|
// Adjust the existing single unit.
|
|
RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
|
|
// The unit may be shared among sets and registers within this set.
|
|
computeUberWeights(UberSets, RegBank);
|
|
}
|
|
Changed = true;
|
|
}
|
|
|
|
// Mark these units normalized so superregisters can't change their weights.
|
|
NormalUnits |= Reg->getRegUnits();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Compute a weight for each register unit created during getSubRegs.
|
|
//
|
|
// The goal is that two registers in the same class will have the same weight,
|
|
// where each register's weight is defined as sum of its units' weights.
|
|
void CodeGenRegBank::computeRegUnitWeights() {
|
|
std::vector<UberRegSet> UberSets;
|
|
std::vector<UberRegSet*> RegSets(Registers.size());
|
|
computeUberSets(UberSets, RegSets, *this);
|
|
// UberSets and RegSets are now immutable.
|
|
|
|
computeUberWeights(UberSets, *this);
|
|
|
|
// Iterate over each Register, normalizing the unit weights until reaching
|
|
// a fix point.
|
|
unsigned NumIters = 0;
|
|
for (bool Changed = true; Changed; ++NumIters) {
|
|
assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
|
|
Changed = false;
|
|
for (auto &Reg : Registers) {
|
|
CodeGenRegister::RegUnitList NormalUnits;
|
|
SparseBitVector<> NormalRegs;
|
|
Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
|
|
NormalUnits, *this);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find a set in UniqueSets with the same elements as Set.
|
|
// Return an iterator into UniqueSets.
|
|
static std::vector<RegUnitSet>::const_iterator
|
|
findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
|
|
const RegUnitSet &Set) {
|
|
std::vector<RegUnitSet>::const_iterator
|
|
I = UniqueSets.begin(), E = UniqueSets.end();
|
|
for(;I != E; ++I) {
|
|
if (I->Units == Set.Units)
|
|
break;
|
|
}
|
|
return I;
|
|
}
|
|
|
|
// Return true if the RUSubSet is a subset of RUSuperSet.
|
|
static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
|
|
const std::vector<unsigned> &RUSuperSet) {
|
|
return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
|
|
RUSubSet.begin(), RUSubSet.end());
|
|
}
|
|
|
|
/// Iteratively prune unit sets. Prune subsets that are close to the superset,
|
|
/// but with one or two registers removed. We occasionally have registers like
|
|
/// APSR and PC thrown in with the general registers. We also see many
|
|
/// special-purpose register subsets, such as tail-call and Thumb
|
|
/// encodings. Generating all possible overlapping sets is combinatorial and
|
|
/// overkill for modeling pressure. Ideally we could fix this statically in
|
|
/// tablegen by (1) having the target define register classes that only include
|
|
/// the allocatable registers and marking other classes as non-allocatable and
|
|
/// (2) having a way to mark special purpose classes as "don't-care" classes for
|
|
/// the purpose of pressure. However, we make an attempt to handle targets that
|
|
/// are not nicely defined by merging nearly identical register unit sets
|
|
/// statically. This generates smaller tables. Then, dynamically, we adjust the
|
|
/// set limit by filtering the reserved registers.
|
|
///
|
|
/// Merge sets only if the units have the same weight. For example, on ARM,
|
|
/// Q-tuples with ssub index 0 include all S regs but also include D16+. We
|
|
/// should not expand the S set to include D regs.
|
|
void CodeGenRegBank::pruneUnitSets() {
|
|
assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
|
|
|
|
// Form an equivalence class of UnitSets with no significant difference.
|
|
std::vector<unsigned> SuperSetIDs;
|
|
for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
|
|
SubIdx != EndIdx; ++SubIdx) {
|
|
const RegUnitSet &SubSet = RegUnitSets[SubIdx];
|
|
unsigned SuperIdx = 0;
|
|
for (; SuperIdx != EndIdx; ++SuperIdx) {
|
|
if (SuperIdx == SubIdx)
|
|
continue;
|
|
|
|
unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
|
|
const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
|
|
if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
|
|
&& (SubSet.Units.size() + 3 > SuperSet.Units.size())
|
|
&& UnitWeight == RegUnits[SuperSet.Units[0]].Weight
|
|
&& UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
|
|
DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
|
|
<< "\n");
|
|
// We can pick any of the set names for the merged set. Go for the
|
|
// shortest one to avoid picking the name of one of the classes that are
|
|
// artificially created by tablegen. So "FPR128_lo" instead of
|
|
// "QQQQ_with_qsub3_in_FPR128_lo".
|
|
if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
|
|
RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
|
|
break;
|
|
}
|
|
}
|
|
if (SuperIdx == EndIdx)
|
|
SuperSetIDs.push_back(SubIdx);
|
|
}
|
|
// Populate PrunedUnitSets with each equivalence class's superset.
|
|
std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
|
|
for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
|
|
unsigned SuperIdx = SuperSetIDs[i];
|
|
PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
|
|
PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
|
|
}
|
|
RegUnitSets.swap(PrunedUnitSets);
|
|
}
|
|
|
|
// Create a RegUnitSet for each RegClass that contains all units in the class
|
|
// including adopted units that are necessary to model register pressure. Then
|
|
// iteratively compute RegUnitSets such that the union of any two overlapping
|
|
// RegUnitSets is repreresented.
|
|
//
|
|
// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
|
|
// RegUnitSet that is a superset of that RegUnitClass.
|
|
void CodeGenRegBank::computeRegUnitSets() {
|
|
assert(RegUnitSets.empty() && "dirty RegUnitSets");
|
|
|
|
// Compute a unique RegUnitSet for each RegClass.
|
|
auto &RegClasses = getRegClasses();
|
|
for (auto &RC : RegClasses) {
|
|
if (!RC.Allocatable)
|
|
continue;
|
|
|
|
// Speculatively grow the RegUnitSets to hold the new set.
|
|
RegUnitSets.resize(RegUnitSets.size() + 1);
|
|
RegUnitSets.back().Name = RC.getName();
|
|
|
|
// Compute a sorted list of units in this class.
|
|
RC.buildRegUnitSet(RegUnitSets.back().Units);
|
|
|
|
// Find an existing RegUnitSet.
|
|
std::vector<RegUnitSet>::const_iterator SetI =
|
|
findRegUnitSet(RegUnitSets, RegUnitSets.back());
|
|
if (SetI != std::prev(RegUnitSets.end()))
|
|
RegUnitSets.pop_back();
|
|
}
|
|
|
|
DEBUG(dbgs() << "\nBefore pruning:\n";
|
|
for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
|
|
USIdx < USEnd; ++USIdx) {
|
|
dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
|
|
<< ":";
|
|
for (auto &U : RegUnitSets[USIdx].Units)
|
|
printRegUnitName(U);
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
// Iteratively prune unit sets.
|
|
pruneUnitSets();
|
|
|
|
DEBUG(dbgs() << "\nBefore union:\n";
|
|
for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
|
|
USIdx < USEnd; ++USIdx) {
|
|
dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
|
|
<< ":";
|
|
for (auto &U : RegUnitSets[USIdx].Units)
|
|
printRegUnitName(U);
|
|
dbgs() << "\n";
|
|
}
|
|
dbgs() << "\nUnion sets:\n");
|
|
|
|
// Iterate over all unit sets, including new ones added by this loop.
|
|
unsigned NumRegUnitSubSets = RegUnitSets.size();
|
|
for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
|
|
// In theory, this is combinatorial. In practice, it needs to be bounded
|
|
// by a small number of sets for regpressure to be efficient.
|
|
// If the assert is hit, we need to implement pruning.
|
|
assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
|
|
|
|
// Compare new sets with all original classes.
|
|
for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
|
|
SearchIdx != EndIdx; ++SearchIdx) {
|
|
std::set<unsigned> Intersection;
|
|
std::set_intersection(RegUnitSets[Idx].Units.begin(),
|
|
RegUnitSets[Idx].Units.end(),
|
|
RegUnitSets[SearchIdx].Units.begin(),
|
|
RegUnitSets[SearchIdx].Units.end(),
|
|
std::inserter(Intersection, Intersection.begin()));
|
|
if (Intersection.empty())
|
|
continue;
|
|
|
|
// Speculatively grow the RegUnitSets to hold the new set.
|
|
RegUnitSets.resize(RegUnitSets.size() + 1);
|
|
RegUnitSets.back().Name =
|
|
RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
|
|
|
|
std::set_union(RegUnitSets[Idx].Units.begin(),
|
|
RegUnitSets[Idx].Units.end(),
|
|
RegUnitSets[SearchIdx].Units.begin(),
|
|
RegUnitSets[SearchIdx].Units.end(),
|
|
std::inserter(RegUnitSets.back().Units,
|
|
RegUnitSets.back().Units.begin()));
|
|
|
|
// Find an existing RegUnitSet, or add the union to the unique sets.
|
|
std::vector<RegUnitSet>::const_iterator SetI =
|
|
findRegUnitSet(RegUnitSets, RegUnitSets.back());
|
|
if (SetI != std::prev(RegUnitSets.end()))
|
|
RegUnitSets.pop_back();
|
|
else {
|
|
DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
|
|
<< " " << RegUnitSets.back().Name << ":";
|
|
for (auto &U : RegUnitSets.back().Units)
|
|
printRegUnitName(U);
|
|
dbgs() << "\n";);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Iteratively prune unit sets after inferring supersets.
|
|
pruneUnitSets();
|
|
|
|
DEBUG(dbgs() << "\n";
|
|
for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
|
|
USIdx < USEnd; ++USIdx) {
|
|
dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
|
|
<< ":";
|
|
for (auto &U : RegUnitSets[USIdx].Units)
|
|
printRegUnitName(U);
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
// For each register class, list the UnitSets that are supersets.
|
|
RegClassUnitSets.resize(RegClasses.size());
|
|
int RCIdx = -1;
|
|
for (auto &RC : RegClasses) {
|
|
++RCIdx;
|
|
if (!RC.Allocatable)
|
|
continue;
|
|
|
|
// Recompute the sorted list of units in this class.
|
|
std::vector<unsigned> RCRegUnits;
|
|
RC.buildRegUnitSet(RCRegUnits);
|
|
|
|
// Don't increase pressure for unallocatable regclasses.
|
|
if (RCRegUnits.empty())
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
|
|
for (auto U : RCRegUnits)
|
|
printRegUnitName(U);
|
|
dbgs() << "\n UnitSetIDs:");
|
|
|
|
// Find all supersets.
|
|
for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
|
|
USIdx != USEnd; ++USIdx) {
|
|
if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
|
|
DEBUG(dbgs() << " " << USIdx);
|
|
RegClassUnitSets[RCIdx].push_back(USIdx);
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "\n");
|
|
assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
|
|
}
|
|
|
|
// For each register unit, ensure that we have the list of UnitSets that
|
|
// contain the unit. Normally, this matches an existing list of UnitSets for a
|
|
// register class. If not, we create a new entry in RegClassUnitSets as a
|
|
// "fake" register class.
|
|
for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
|
|
UnitIdx < UnitEnd; ++UnitIdx) {
|
|
std::vector<unsigned> RUSets;
|
|
for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
|
|
RegUnitSet &RUSet = RegUnitSets[i];
|
|
if (!is_contained(RUSet.Units, UnitIdx))
|
|
continue;
|
|
RUSets.push_back(i);
|
|
}
|
|
unsigned RCUnitSetsIdx = 0;
|
|
for (unsigned e = RegClassUnitSets.size();
|
|
RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
|
|
if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
|
|
break;
|
|
}
|
|
}
|
|
RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
|
|
if (RCUnitSetsIdx == RegClassUnitSets.size()) {
|
|
// Create a new list of UnitSets as a "fake" register class.
|
|
RegClassUnitSets.resize(RCUnitSetsIdx + 1);
|
|
RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenRegBank::computeRegUnitLaneMasks() {
|
|
for (auto &Register : Registers) {
|
|
// Create an initial lane mask for all register units.
|
|
const auto &RegUnits = Register.getRegUnits();
|
|
CodeGenRegister::RegUnitLaneMaskList
|
|
RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
|
|
// Iterate through SubRegisters.
|
|
typedef CodeGenRegister::SubRegMap SubRegMap;
|
|
const SubRegMap &SubRegs = Register.getSubRegs();
|
|
for (SubRegMap::const_iterator S = SubRegs.begin(),
|
|
SE = SubRegs.end(); S != SE; ++S) {
|
|
CodeGenRegister *SubReg = S->second;
|
|
// Ignore non-leaf subregisters, their lane masks are fully covered by
|
|
// the leaf subregisters anyway.
|
|
if (!SubReg->getSubRegs().empty())
|
|
continue;
|
|
CodeGenSubRegIndex *SubRegIndex = S->first;
|
|
const CodeGenRegister *SubRegister = S->second;
|
|
LaneBitmask LaneMask = SubRegIndex->LaneMask;
|
|
// Distribute LaneMask to Register Units touched.
|
|
for (unsigned SUI : SubRegister->getRegUnits()) {
|
|
bool Found = false;
|
|
unsigned u = 0;
|
|
for (unsigned RU : RegUnits) {
|
|
if (SUI == RU) {
|
|
RegUnitLaneMasks[u] |= LaneMask;
|
|
assert(!Found);
|
|
Found = true;
|
|
}
|
|
++u;
|
|
}
|
|
(void)Found;
|
|
assert(Found);
|
|
}
|
|
}
|
|
Register.setRegUnitLaneMasks(RegUnitLaneMasks);
|
|
}
|
|
}
|
|
|
|
void CodeGenRegBank::computeDerivedInfo() {
|
|
computeComposites();
|
|
computeSubRegLaneMasks();
|
|
|
|
// Compute a weight for each register unit created during getSubRegs.
|
|
// This may create adopted register units (with unit # >= NumNativeRegUnits).
|
|
computeRegUnitWeights();
|
|
|
|
// Compute a unique set of RegUnitSets. One for each RegClass and inferred
|
|
// supersets for the union of overlapping sets.
|
|
computeRegUnitSets();
|
|
|
|
computeRegUnitLaneMasks();
|
|
|
|
// Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
|
|
for (CodeGenRegisterClass &RC : RegClasses) {
|
|
RC.HasDisjunctSubRegs = false;
|
|
RC.CoveredBySubRegs = true;
|
|
for (const CodeGenRegister *Reg : RC.getMembers()) {
|
|
RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
|
|
RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
|
|
}
|
|
}
|
|
|
|
// Get the weight of each set.
|
|
for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
|
|
RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
|
|
|
|
// Find the order of each set.
|
|
RegUnitSetOrder.reserve(RegUnitSets.size());
|
|
for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
|
|
RegUnitSetOrder.push_back(Idx);
|
|
|
|
std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
|
|
[this](unsigned ID1, unsigned ID2) {
|
|
return getRegPressureSet(ID1).Units.size() <
|
|
getRegPressureSet(ID2).Units.size();
|
|
});
|
|
for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
|
|
RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Synthesize missing register class intersections.
|
|
//
|
|
// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
|
|
// returns a maximal register class for all X.
|
|
//
|
|
void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
|
|
assert(!RegClasses.empty());
|
|
// Stash the iterator to the last element so that this loop doesn't visit
|
|
// elements added by the getOrCreateSubClass call within it.
|
|
for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
|
|
I != std::next(E); ++I) {
|
|
CodeGenRegisterClass *RC1 = RC;
|
|
CodeGenRegisterClass *RC2 = &*I;
|
|
if (RC1 == RC2)
|
|
continue;
|
|
|
|
// Compute the set intersection of RC1 and RC2.
|
|
const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
|
|
const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
|
|
CodeGenRegister::Vec Intersection;
|
|
std::set_intersection(
|
|
Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
|
|
std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
|
|
|
|
// Skip disjoint class pairs.
|
|
if (Intersection.empty())
|
|
continue;
|
|
|
|
// If RC1 and RC2 have different spill sizes or alignments, use the
|
|
// larger size for sub-classing. If they are equal, prefer RC1.
|
|
if (RC2->SpillSize > RC1->SpillSize ||
|
|
(RC2->SpillSize == RC1->SpillSize &&
|
|
RC2->SpillAlignment > RC1->SpillAlignment))
|
|
std::swap(RC1, RC2);
|
|
|
|
getOrCreateSubClass(RC1, &Intersection,
|
|
RC1->getName() + "_and_" + RC2->getName());
|
|
}
|
|
}
|
|
|
|
//
|
|
// Synthesize missing sub-classes for getSubClassWithSubReg().
|
|
//
|
|
// Make sure that the set of registers in RC with a given SubIdx sub-register
|
|
// form a register class. Update RC->SubClassWithSubReg.
|
|
//
|
|
void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
|
|
// Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
|
|
typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
|
|
deref<llvm::less>> SubReg2SetMap;
|
|
|
|
// Compute the set of registers supporting each SubRegIndex.
|
|
SubReg2SetMap SRSets;
|
|
for (const auto R : RC->getMembers()) {
|
|
const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
|
|
E = SRM.end(); I != E; ++I)
|
|
SRSets[I->first].push_back(R);
|
|
}
|
|
|
|
for (auto I : SRSets)
|
|
sortAndUniqueRegisters(I.second);
|
|
|
|
// Find matching classes for all SRSets entries. Iterate in SubRegIndex
|
|
// numerical order to visit synthetic indices last.
|
|
for (const auto &SubIdx : SubRegIndices) {
|
|
SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
|
|
// Unsupported SubRegIndex. Skip it.
|
|
if (I == SRSets.end())
|
|
continue;
|
|
// In most cases, all RC registers support the SubRegIndex.
|
|
if (I->second.size() == RC->getMembers().size()) {
|
|
RC->setSubClassWithSubReg(&SubIdx, RC);
|
|
continue;
|
|
}
|
|
// This is a real subset. See if we have a matching class.
|
|
CodeGenRegisterClass *SubRC =
|
|
getOrCreateSubClass(RC, &I->second,
|
|
RC->getName() + "_with_" + I->first->getName());
|
|
RC->setSubClassWithSubReg(&SubIdx, SubRC);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
|
|
//
|
|
// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
|
|
// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
|
|
//
|
|
|
|
void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
|
|
std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
|
|
SmallVector<std::pair<const CodeGenRegister*,
|
|
const CodeGenRegister*>, 16> SSPairs;
|
|
BitVector TopoSigs(getNumTopoSigs());
|
|
|
|
// Iterate in SubRegIndex numerical order to visit synthetic indices last.
|
|
for (auto &SubIdx : SubRegIndices) {
|
|
// Skip indexes that aren't fully supported by RC's registers. This was
|
|
// computed by inferSubClassWithSubReg() above which should have been
|
|
// called first.
|
|
if (RC->getSubClassWithSubReg(&SubIdx) != RC)
|
|
continue;
|
|
|
|
// Build list of (Super, Sub) pairs for this SubIdx.
|
|
SSPairs.clear();
|
|
TopoSigs.reset();
|
|
for (const auto Super : RC->getMembers()) {
|
|
const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
|
|
assert(Sub && "Missing sub-register");
|
|
SSPairs.push_back(std::make_pair(Super, Sub));
|
|
TopoSigs.set(Sub->getTopoSig());
|
|
}
|
|
|
|
// Iterate over sub-register class candidates. Ignore classes created by
|
|
// this loop. They will never be useful.
|
|
// Store an iterator to the last element (not end) so that this loop doesn't
|
|
// visit newly inserted elements.
|
|
assert(!RegClasses.empty());
|
|
for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
|
|
I != std::next(E); ++I) {
|
|
CodeGenRegisterClass &SubRC = *I;
|
|
// Topological shortcut: SubRC members have the wrong shape.
|
|
if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
|
|
continue;
|
|
// Compute the subset of RC that maps into SubRC.
|
|
CodeGenRegister::Vec SubSetVec;
|
|
for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
|
|
if (SubRC.contains(SSPairs[i].second))
|
|
SubSetVec.push_back(SSPairs[i].first);
|
|
|
|
if (SubSetVec.empty())
|
|
continue;
|
|
|
|
// RC injects completely into SubRC.
|
|
sortAndUniqueRegisters(SubSetVec);
|
|
if (SubSetVec.size() == SSPairs.size()) {
|
|
SubRC.addSuperRegClass(&SubIdx, RC);
|
|
continue;
|
|
}
|
|
|
|
// Only a subset of RC maps into SubRC. Make sure it is represented by a
|
|
// class.
|
|
getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
|
|
SubIdx.getName() + "_in_" +
|
|
SubRC.getName());
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Infer missing register classes.
|
|
//
|
|
void CodeGenRegBank::computeInferredRegisterClasses() {
|
|
assert(!RegClasses.empty());
|
|
// When this function is called, the register classes have not been sorted
|
|
// and assigned EnumValues yet. That means getSubClasses(),
|
|
// getSuperClasses(), and hasSubClass() functions are defunct.
|
|
|
|
// Use one-before-the-end so it doesn't move forward when new elements are
|
|
// added.
|
|
auto FirstNewRC = std::prev(RegClasses.end());
|
|
|
|
// Visit all register classes, including the ones being added by the loop.
|
|
// Watch out for iterator invalidation here.
|
|
for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
|
|
CodeGenRegisterClass *RC = &*I;
|
|
|
|
// Synthesize answers for getSubClassWithSubReg().
|
|
inferSubClassWithSubReg(RC);
|
|
|
|
// Synthesize answers for getCommonSubClass().
|
|
inferCommonSubClass(RC);
|
|
|
|
// Synthesize answers for getMatchingSuperRegClass().
|
|
inferMatchingSuperRegClass(RC);
|
|
|
|
// New register classes are created while this loop is running, and we need
|
|
// to visit all of them. I particular, inferMatchingSuperRegClass needs
|
|
// to match old super-register classes with sub-register classes created
|
|
// after inferMatchingSuperRegClass was called. At this point,
|
|
// inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
|
|
// [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
|
|
if (I == FirstNewRC) {
|
|
auto NextNewRC = std::prev(RegClasses.end());
|
|
for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
|
|
++I2)
|
|
inferMatchingSuperRegClass(&*I2, E2);
|
|
FirstNewRC = NextNewRC;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getRegisterClassForRegister - Find the register class that contains the
|
|
/// specified physical register. If the register is not in a register class,
|
|
/// return null. If the register is in multiple classes, and the classes have a
|
|
/// superset-subset relationship and the same set of types, return the
|
|
/// superclass. Otherwise return null.
|
|
const CodeGenRegisterClass*
|
|
CodeGenRegBank::getRegClassForRegister(Record *R) {
|
|
const CodeGenRegister *Reg = getReg(R);
|
|
const CodeGenRegisterClass *FoundRC = nullptr;
|
|
for (const auto &RC : getRegClasses()) {
|
|
if (!RC.contains(Reg))
|
|
continue;
|
|
|
|
// If this is the first class that contains the register,
|
|
// make a note of it and go on to the next class.
|
|
if (!FoundRC) {
|
|
FoundRC = &RC;
|
|
continue;
|
|
}
|
|
|
|
// If a register's classes have different types, return null.
|
|
if (RC.getValueTypes() != FoundRC->getValueTypes())
|
|
return nullptr;
|
|
|
|
// Check to see if the previously found class that contains
|
|
// the register is a subclass of the current class. If so,
|
|
// prefer the superclass.
|
|
if (RC.hasSubClass(FoundRC)) {
|
|
FoundRC = &RC;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if the previously found class that contains
|
|
// the register is a superclass of the current class. If so,
|
|
// prefer the superclass.
|
|
if (FoundRC->hasSubClass(&RC))
|
|
continue;
|
|
|
|
// Multiple classes, and neither is a superclass of the other.
|
|
// Return null.
|
|
return nullptr;
|
|
}
|
|
return FoundRC;
|
|
}
|
|
|
|
BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
|
|
SetVector<const CodeGenRegister*> Set;
|
|
|
|
// First add Regs with all sub-registers.
|
|
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
|
|
CodeGenRegister *Reg = getReg(Regs[i]);
|
|
if (Set.insert(Reg))
|
|
// Reg is new, add all sub-registers.
|
|
// The pre-ordering is not important here.
|
|
Reg->addSubRegsPreOrder(Set, *this);
|
|
}
|
|
|
|
// Second, find all super-registers that are completely covered by the set.
|
|
for (unsigned i = 0; i != Set.size(); ++i) {
|
|
const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
|
|
for (unsigned j = 0, e = SR.size(); j != e; ++j) {
|
|
const CodeGenRegister *Super = SR[j];
|
|
if (!Super->CoveredBySubRegs || Set.count(Super))
|
|
continue;
|
|
// This new super-register is covered by its sub-registers.
|
|
bool AllSubsInSet = true;
|
|
const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
|
|
E = SRM.end(); I != E; ++I)
|
|
if (!Set.count(I->second)) {
|
|
AllSubsInSet = false;
|
|
break;
|
|
}
|
|
// All sub-registers in Set, add Super as well.
|
|
// We will visit Super later to recheck its super-registers.
|
|
if (AllSubsInSet)
|
|
Set.insert(Super);
|
|
}
|
|
}
|
|
|
|
// Convert to BitVector.
|
|
BitVector BV(Registers.size() + 1);
|
|
for (unsigned i = 0, e = Set.size(); i != e; ++i)
|
|
BV.set(Set[i]->EnumValue);
|
|
return BV;
|
|
}
|
|
|
|
void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
|
|
if (Unit < NumNativeRegUnits)
|
|
dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
|
|
else
|
|
dbgs() << " #" << Unit;
|
|
}
|