freebsd-dev/sys/arm/econa/if_ece.c
Marius Strobl 8e5d93dbb4 Convert the PHY drivers to honor the mii_flags passed down and convert
the NIC drivers as well as the PHY drivers to take advantage of the
mii_attach() introduced in r213878 to get rid of certain hacks. For
the most part these were:
- Artificially limiting miibus_{read,write}reg methods to certain PHY
  addresses; we now let mii_attach() only probe the PHY at the desired
  address(es) instead.
- PHY drivers setting MIIF_* flags based on the NIC driver they hang
  off from, partly even based on grabbing and using the softc of the
  parent; we now pass these flags down from the NIC to the PHY drivers
  via mii_attach(). This got us rid of all such hacks except those of
  brgphy() in combination with bce(4) and bge(4), which is way beyond
  what can be expressed with simple flags.

While at it, I took the opportunity to change the NIC drivers to pass
up the error returned by mii_attach() (previously by mii_phy_probe())
and unify the error message used in this case where and as appropriate
as mii_attach() actually can fail for a number of reasons, not just
because of no PHY(s) being present at the expected address(es).

Reviewed by:	jhb, yongari
2010-10-15 14:52:11 +00:00

1947 lines
45 KiB
C

/*-
* Copyright (c) 2009 Yohanes Nugroho <yohanes@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <arm/econa/if_ecereg.h>
#include <arm/econa/if_ecevar.h>
#include <arm/econa/econa_var.h>
#include <machine/bus.h>
#include <machine/intr.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
static uint8_t
vlan0_mac[ETHER_ADDR_LEN] = {0x00, 0xaa, 0xbb, 0xcc, 0xdd, 0x19};
/*
* Boot loader expects the hardware state to be the same when we
* restart the device (warm boot), so we need to save the initial
* config values.
*/
int initial_switch_config;
int initial_cpu_config;
int initial_port0_config;
int initial_port1_config;
static inline uint32_t
read_4(struct ece_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off));
}
static inline void
write_4(struct ece_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off, val);
}
#define ECE_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define ECE_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define ECE_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
MTX_NETWORK_LOCK, MTX_DEF)
#define ECE_TXLOCK(_sc) mtx_lock(&(_sc)->sc_mtx_tx)
#define ECE_TXUNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx_tx)
#define ECE_TXLOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx_tx, device_get_nameunit(_sc->dev), \
"ECE TX Lock", MTX_DEF)
#define ECE_CLEANUPLOCK(_sc) mtx_lock(&(_sc)->sc_mtx_cleanup)
#define ECE_CLEANUPUNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx_cleanup)
#define ECE_CLEANUPLOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx_cleanup, device_get_nameunit(_sc->dev), \
"ECE cleanup Lock", MTX_DEF)
#define ECE_RXLOCK(_sc) mtx_lock(&(_sc)->sc_mtx_rx)
#define ECE_RXUNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx_rx)
#define ECE_RXLOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx_rx, device_get_nameunit(_sc->dev), \
"ECE RX Lock", MTX_DEF)
#define ECE_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define ECE_TXLOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx_tx);
#define ECE_RXLOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx_rx);
#define ECE_CLEANUPLOCK_DESTROY(_sc) \
mtx_destroy(&_sc->sc_mtx_cleanup);
#define ECE_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define ECE_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
static devclass_t ece_devclass;
/* ifnet entry points */
static void eceinit_locked(void *);
static void ecestart_locked(struct ifnet *);
static void eceinit(void *);
static void ecestart(struct ifnet *);
static void ecestop(struct ece_softc *);
static int eceioctl(struct ifnet * ifp, u_long, caddr_t);
/* bus entry points */
static int ece_probe(device_t dev);
static int ece_attach(device_t dev);
static int ece_detach(device_t dev);
static void ece_intr(void *);
static void ece_intr_qf(void *);
static void ece_intr_status(void *xsc);
/* helper routines */
static int ece_activate(device_t dev);
static void ece_deactivate(device_t dev);
static int ece_ifmedia_upd(struct ifnet *ifp);
static void ece_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
static int ece_get_mac(struct ece_softc *sc, u_char *eaddr);
static void ece_set_mac(struct ece_softc *sc, u_char *eaddr);
static int configure_cpu_port(struct ece_softc *sc);
static int configure_lan_port(struct ece_softc *sc, int phy_type);
static void set_pvid(struct ece_softc *sc, int port0, int port1, int cpu);
static void set_vlan_vid(struct ece_softc *sc, int vlan);
static void set_vlan_member(struct ece_softc *sc, int vlan);
static void set_vlan_tag(struct ece_softc *sc, int vlan);
static int hardware_init(struct ece_softc *sc);
static void ece_intr_rx_locked(struct ece_softc *sc, int count);
static void ece_free_desc_dma_tx(struct ece_softc *sc);
static void ece_free_desc_dma_rx(struct ece_softc *sc);
static void ece_intr_task(void *arg, int pending __unused);
static void ece_tx_task(void *arg, int pending __unused);
static void ece_cleanup_task(void *arg, int pending __unused);
static int ece_allocate_dma(struct ece_softc *sc);
static void ece_intr_tx(void *xsc);
static void clear_mac_entries(struct ece_softc *ec, int include_this_mac);
static uint32_t read_mac_entry(struct ece_softc *ec,
uint8_t *mac_result,
int first);
/*PHY related functions*/
static inline int
phy_read(struct ece_softc *sc, int phy, int reg)
{
int val;
int ii;
int status;
write_4(sc, PHY_CONTROL, PHY_RW_OK);
write_4(sc, PHY_CONTROL,
(PHY_ADDRESS(phy)|PHY_READ_COMMAND |
PHY_REGISTER(reg)));
for (ii = 0; ii < 0x1000; ii++) {
status = read_4(sc, PHY_CONTROL);
if (status & PHY_RW_OK) {
/* Clear the rw_ok status, and clear other
* bits value. */
write_4(sc, PHY_CONTROL, PHY_RW_OK);
val = PHY_GET_DATA(status);
return (val);
}
}
return (0);
}
static inline void
phy_write(struct ece_softc *sc, int phy, int reg, int data)
{
int ii;
write_4(sc, PHY_CONTROL, PHY_RW_OK);
write_4(sc, PHY_CONTROL,
PHY_ADDRESS(phy) | PHY_REGISTER(reg) |
PHY_WRITE_COMMAND | PHY_DATA(data));
for (ii = 0; ii < 0x1000; ii++) {
if (read_4(sc, PHY_CONTROL) & PHY_RW_OK) {
/* Clear the rw_ok status, and clear other
* bits value.
*/
write_4(sc, PHY_CONTROL, PHY_RW_OK);
return;
}
}
}
static int get_phy_type(struct ece_softc *sc)
{
uint16_t phy0_id = 0, phy1_id = 0;
/*
* Use SMI (MDC/MDIO) to read Link Partner's PHY Identifier
* Register 1.
*/
phy0_id = phy_read(sc, 0, 0x2);
phy1_id = phy_read(sc, 1, 0x2);
if ((phy0_id == 0xFFFF) && (phy1_id == 0x000F))
return (ASIX_GIGA_PHY);
else if ((phy0_id == 0x0243) && (phy1_id == 0x0243))
return (TWO_SINGLE_PHY);
else if ((phy0_id == 0xFFFF) && (phy1_id == 0x0007))
return (VSC8601_GIGA_PHY);
else if ((phy0_id == 0x0243) && (phy1_id == 0xFFFF))
return (IC_PLUS_PHY);
return (NOT_FOUND_PHY);
}
static int
ece_probe(device_t dev)
{
device_set_desc(dev, "Econa Ethernet Controller");
return (0);
}
static int
ece_attach(device_t dev)
{
struct ece_softc *sc;
struct ifnet *ifp = NULL;
struct sysctl_ctx_list *sctx;
struct sysctl_oid *soid;
u_char eaddr[ETHER_ADDR_LEN];
int err;
int i, rid;
uint32_t rnd;
err = 0;
sc = device_get_softc(dev);
sc->dev = dev;
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mem_res == NULL)
goto out;
power_on_network_interface();
rid = 0;
sc->irq_res_status = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res_status == NULL)
goto out;
rid = 1;
/*TSTC: Fm-Switch-Tx-Complete*/
sc->irq_res_tx = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res_tx == NULL)
goto out;
rid = 2;
/*FSRC: Fm-Switch-Rx-Complete*/
sc->irq_res_rec = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res_rec == NULL)
goto out;
rid = 4;
/*FSQF: Fm-Switch-Queue-Full*/
sc->irq_res_qf = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res_qf == NULL)
goto out;
err = ece_activate(dev);
if (err)
goto out;
/* Sysctls */
sctx = device_get_sysctl_ctx(dev);
soid = device_get_sysctl_tree(dev);
ECE_LOCK_INIT(sc);
callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
if ((err = ece_get_mac(sc, eaddr)) != 0) {
/* No MAC address configured. Generate the random one. */
if (bootverbose)
device_printf(dev,
"Generating random ethernet address.\n");
rnd = arc4random();
/*from if_ae.c/if_ate.c*/
/*
* Set OUI to convenient locally assigned address. 'b'
* is 0x62, which has the locally assigned bit set, and
* the broadcast/multicast bit clear.
*/
eaddr[0] = 'b';
eaddr[1] = 's';
eaddr[2] = 'd';
eaddr[3] = (rnd >> 16) & 0xff;
eaddr[4] = (rnd >> 8) & 0xff;
eaddr[5] = rnd & 0xff;
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = vlan0_mac[i];
}
ece_set_mac(sc, eaddr);
sc->ifp = ifp = if_alloc(IFT_ETHER);
/* Only one PHY at address 0 in this device. */
err = mii_attach(dev, &sc->miibus, ifp, ece_ifmedia_upd,
ece_ifmedia_sts, BMSR_DEFCAPMASK, 0, MII_OFFSET_ANY, 0);
if (err != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto out;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_capabilities = IFCAP_HWCSUM;
ifp->if_hwassist = (CSUM_IP | CSUM_TCP | CSUM_UDP);
ifp->if_capenable = ifp->if_capabilities;
ifp->if_start = ecestart;
ifp->if_ioctl = eceioctl;
ifp->if_init = eceinit;
ifp->if_snd.ifq_drv_maxlen = ECE_MAX_TX_BUFFERS - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ECE_MAX_TX_BUFFERS - 1);
IFQ_SET_READY(&ifp->if_snd);
/* Create local taskq. */
TASK_INIT(&sc->sc_intr_task, 0, ece_intr_task, sc);
TASK_INIT(&sc->sc_tx_task, 1, ece_tx_task, ifp);
TASK_INIT(&sc->sc_cleanup_task, 2, ece_cleanup_task, sc);
sc->sc_tq = taskqueue_create_fast("ece_taskq", M_WAITOK,
taskqueue_thread_enqueue,
&sc->sc_tq);
if (sc->sc_tq == NULL) {
device_printf(sc->dev, "could not create taskqueue\n");
goto out;
}
ether_ifattach(ifp, eaddr);
/*
* Activate interrupts
*/
err = bus_setup_intr(dev, sc->irq_res_rec, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ece_intr, sc, &sc->intrhand);
if (err) {
ether_ifdetach(ifp);
ECE_LOCK_DESTROY(sc);
goto out;
}
err = bus_setup_intr(dev, sc->irq_res_status,
INTR_TYPE_NET | INTR_MPSAFE,
NULL, ece_intr_status, sc, &sc->intrhand_status);
if (err) {
ether_ifdetach(ifp);
ECE_LOCK_DESTROY(sc);
goto out;
}
err = bus_setup_intr(dev, sc->irq_res_qf, INTR_TYPE_NET | INTR_MPSAFE,
NULL,ece_intr_qf, sc, &sc->intrhand_qf);
if (err) {
ether_ifdetach(ifp);
ECE_LOCK_DESTROY(sc);
goto out;
}
err = bus_setup_intr(dev, sc->irq_res_tx, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ece_intr_tx, sc, &sc->intrhand_tx);
if (err) {
ether_ifdetach(ifp);
ECE_LOCK_DESTROY(sc);
goto out;
}
ECE_TXLOCK_INIT(sc);
ECE_RXLOCK_INIT(sc);
ECE_CLEANUPLOCK_INIT(sc);
/* Enable all interrupt sources. */
write_4(sc, INTERRUPT_MASK, 0x00000000);
/* Enable port 0. */
write_4(sc, PORT_0_CONFIG, read_4(sc, PORT_0_CONFIG) & ~(PORT_DISABLE));
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->dev));
out:;
if (err)
ece_deactivate(dev);
if (err && ifp)
if_free(ifp);
return (err);
}
static int
ece_detach(device_t dev)
{
struct ece_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->ifp;
ecestop(sc);
if (ifp != NULL) {
ether_ifdetach(ifp);
if_free(ifp);
}
ece_deactivate(dev);
return (0);
}
static void
ece_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
u_int32_t *paddr;
KASSERT(nsegs == 1, ("wrong number of segments, should be 1"));
paddr = arg;
*paddr = segs->ds_addr;
}
static int
ece_alloc_desc_dma_tx(struct ece_softc *sc)
{
int i;
int error;
/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
error = bus_dma_tag_create(sc->sc_parent_tag, /* parent */
16, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
sizeof(eth_tx_desc_t)*ECE_MAX_TX_BUFFERS, /* max size */
1, /*nsegments */
sizeof(eth_tx_desc_t)*ECE_MAX_TX_BUFFERS,
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->dmatag_data_tx); /* dmat */
/* Allocate memory for TX ring. */
error = bus_dmamem_alloc(sc->dmatag_data_tx,
(void**)&(sc->desc_tx),
BUS_DMA_NOWAIT | BUS_DMA_ZERO |
BUS_DMA_COHERENT,
&(sc->dmamap_ring_tx));
if (error) {
if_printf(sc->ifp, "failed to allocate DMA memory\n");
bus_dma_tag_destroy(sc->dmatag_data_tx);
sc->dmatag_data_tx = 0;
return (ENXIO);
}
/* Load Ring DMA. */
error = bus_dmamap_load(sc->dmatag_data_tx, sc->dmamap_ring_tx,
sc->desc_tx,
sizeof(eth_tx_desc_t)*ECE_MAX_TX_BUFFERS,
ece_getaddr,
&(sc->ring_paddr_tx), BUS_DMA_NOWAIT);
if (error) {
if_printf(sc->ifp, "can't load descriptor\n");
bus_dmamem_free(sc->dmatag_data_tx, sc->desc_tx,
sc->dmamap_ring_tx);
sc->desc_tx = NULL;
bus_dma_tag_destroy(sc->dmatag_data_tx);
sc->dmatag_data_tx = 0;
return (ENXIO);
}
/* Allocate a busdma tag for mbufs. Alignment is 2 bytes */
error = bus_dma_tag_create(sc->sc_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MCLBYTES*MAX_FRAGMENT, /* maxsize */
MAX_FRAGMENT, /* nsegments */
MCLBYTES, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->dmatag_ring_tx); /* dmat */
if (error) {
if_printf(sc->ifp, "failed to create busdma tag for mbufs\n");
return (ENXIO);
}
for (i = 0; i < ECE_MAX_TX_BUFFERS; i++) {
/* Create dma map for each descriptor. */
error = bus_dmamap_create(sc->dmatag_ring_tx, 0,
&(sc->tx_desc[i].dmamap));
if (error) {
if_printf(sc->ifp, "failed to create map for mbuf\n");
return (ENXIO);
}
}
return (0);
}
static void
ece_free_desc_dma_tx(struct ece_softc *sc)
{
int i;
for (i = 0; i < ECE_MAX_TX_BUFFERS; i++) {
if (sc->tx_desc[i].buff) {
m_freem(sc->tx_desc[i].buff);
sc->tx_desc[i].buff= 0;
}
}
if (sc->dmamap_ring_tx) {
bus_dmamap_unload(sc->dmatag_data_tx, sc->dmamap_ring_tx);
if (sc->desc_tx) {
bus_dmamem_free(sc->dmatag_data_tx,
sc->desc_tx, sc->dmamap_ring_tx);
}
sc->dmamap_ring_tx = 0;
}
if (sc->dmatag_data_tx) {
bus_dma_tag_destroy(sc->dmatag_data_tx);
sc->dmatag_data_tx = 0;
}
if (sc->dmatag_ring_tx) {
for (i = 0; i<ECE_MAX_TX_BUFFERS; i++) {
bus_dmamap_destroy(sc->dmatag_ring_tx,
sc->tx_desc[i].dmamap);
sc->tx_desc[i].dmamap = 0;
}
bus_dma_tag_destroy(sc->dmatag_ring_tx);
sc->dmatag_ring_tx = 0;
}
}
static int
ece_alloc_desc_dma_rx(struct ece_softc *sc)
{
int error;
int i;
/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
error = bus_dma_tag_create(sc->sc_parent_tag, /* parent */
16, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
/* maxsize, nsegments */
sizeof(eth_rx_desc_t)*ECE_MAX_RX_BUFFERS, 1,
/* maxsegsz, flags */
sizeof(eth_rx_desc_t)*ECE_MAX_RX_BUFFERS, 0,
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->dmatag_data_rx); /* dmat */
/* Allocate RX ring. */
error = bus_dmamem_alloc(sc->dmatag_data_rx,
(void**)&(sc->desc_rx),
BUS_DMA_NOWAIT | BUS_DMA_ZERO |
BUS_DMA_COHERENT,
&(sc->dmamap_ring_rx));
if (error) {
if_printf(sc->ifp, "failed to allocate DMA memory\n");
return (ENXIO);
}
/* Load dmamap. */
error = bus_dmamap_load(sc->dmatag_data_rx, sc->dmamap_ring_rx,
sc->desc_rx,
sizeof(eth_rx_desc_t)*ECE_MAX_RX_BUFFERS,
ece_getaddr,
&(sc->ring_paddr_rx), BUS_DMA_NOWAIT);
if (error) {
if_printf(sc->ifp, "can't load descriptor\n");
bus_dmamem_free(sc->dmatag_data_rx, sc->desc_rx,
sc->dmamap_ring_rx);
bus_dma_tag_destroy(sc->dmatag_data_rx);
sc->desc_rx = NULL;
return (ENXIO);
}
/* Allocate a busdma tag for mbufs. */
error = bus_dma_tag_create(sc->sc_parent_tag,/* parent */
16, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filtfunc, filtfuncarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, 0, /* maxsegsz, flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->dmatag_ring_rx); /* dmat */
if (error) {
if_printf(sc->ifp, "failed to create busdma tag for mbufs\n");
return (ENXIO);
}
for (i = 0; i<ECE_MAX_RX_BUFFERS; i++) {
error = bus_dmamap_create(sc->dmatag_ring_rx, 0,
&sc->rx_desc[i].dmamap);
if (error) {
if_printf(sc->ifp, "failed to create map for mbuf\n");
return (ENXIO);
}
}
error = bus_dmamap_create(sc->dmatag_ring_rx, 0, &sc->rx_sparemap);
if (error) {
if_printf(sc->ifp, "failed to create spare map\n");
return (ENXIO);
}
return (0);
}
static void
ece_free_desc_dma_rx(struct ece_softc *sc)
{
int i;
for (i = 0; i < ECE_MAX_RX_BUFFERS; i++) {
if (sc->rx_desc[i].buff) {
m_freem(sc->rx_desc[i].buff);
sc->rx_desc[i].buff= 0;
}
}
if (sc->dmatag_data_rx) {
bus_dmamap_unload(sc->dmatag_data_rx, sc->dmamap_ring_rx);
bus_dmamem_free(sc->dmatag_data_rx, sc->desc_rx,
sc->dmamap_ring_rx);
bus_dma_tag_destroy(sc->dmatag_data_rx);
sc->dmatag_data_rx = 0;
sc->dmamap_ring_rx = 0;
sc->desc_rx = 0;
}
if (sc->dmatag_ring_rx) {
for (i = 0; i < ECE_MAX_RX_BUFFERS; i++)
bus_dmamap_destroy(sc->dmatag_ring_rx,
sc->rx_desc[i].dmamap);
bus_dmamap_destroy(sc->dmatag_ring_rx, sc->rx_sparemap);
bus_dma_tag_destroy(sc->dmatag_ring_rx);
sc->dmatag_ring_rx = 0;
}
}
static int
ece_new_rxbuf(struct ece_softc *sc, struct rx_desc_info* descinfo)
{
struct mbuf *new_mbuf;
bus_dma_segment_t seg[1];
bus_dmamap_t map;
int error;
int nsegs;
bus_dma_tag_t tag;
tag = sc->dmatag_ring_rx;
new_mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (new_mbuf == NULL)
return (ENOBUFS);
new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES;
error = bus_dmamap_load_mbuf_sg(tag, sc->rx_sparemap, new_mbuf,
seg, &nsegs, BUS_DMA_NOWAIT);
KASSERT(nsegs == 1, ("Too many segments returned!"));
if (nsegs != 1 || error) {
m_free(new_mbuf);
return (ENOBUFS);
}
if (descinfo->buff != NULL) {
bus_dmamap_sync(tag, descinfo->dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(tag, descinfo->dmamap);
}
map = descinfo->dmamap;
descinfo->dmamap = sc->rx_sparemap;
sc->rx_sparemap = map;
bus_dmamap_sync(tag, descinfo->dmamap, BUS_DMASYNC_PREREAD);
descinfo->buff = new_mbuf;
descinfo->desc->data_ptr = seg->ds_addr;
descinfo->desc->length = seg->ds_len - 2;
return (0);
}
static int
ece_allocate_dma(struct ece_softc *sc)
{
eth_tx_desc_t *desctx;
eth_rx_desc_t *descrx;
int i;
int error;
/* Create parent tag for tx and rx */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev),/* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, 0,/* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_parent_tag);
ece_alloc_desc_dma_tx(sc);
for (i = 0; i < ECE_MAX_TX_BUFFERS; i++) {
desctx = (eth_tx_desc_t *)(&sc->desc_tx[i]);
memset(desctx, 0, sizeof(eth_tx_desc_t));
desctx->length = MAX_PACKET_LEN;
desctx->cown = 1;
if (i == ECE_MAX_TX_BUFFERS - 1)
desctx->eor = 1;
}
ece_alloc_desc_dma_rx(sc);
for (i = 0; i < ECE_MAX_RX_BUFFERS; i++) {
descrx = &(sc->desc_rx[i]);
memset(descrx, 0, sizeof(eth_rx_desc_t));
sc->rx_desc[i].desc = descrx;
sc->rx_desc[i].buff = 0;
ece_new_rxbuf(sc, &(sc->rx_desc[i]));
if (i == ECE_MAX_RX_BUFFERS - 1)
descrx->eor = 1;
}
sc->tx_prod = 0;
sc->tx_cons = 0;
sc->last_rx = 0;
sc->desc_curr_tx = 0;
return (0);
}
static int
ece_activate(device_t dev)
{
struct ece_softc *sc;
int err;
uint32_t mac_port_config;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->ifp;
initial_switch_config = read_4(sc, SWITCH_CONFIG);
initial_cpu_config = read_4(sc, CPU_PORT_CONFIG);
initial_port0_config = read_4(sc, MAC_PORT_0_CONFIG);
initial_port1_config = read_4(sc, MAC_PORT_1_CONFIG);
/* Disable Port 0 */
mac_port_config = read_4(sc, MAC_PORT_0_CONFIG);
mac_port_config |= (PORT_DISABLE);
write_4(sc, MAC_PORT_0_CONFIG, mac_port_config);
/* Disable Port 1 */
mac_port_config = read_4(sc, MAC_PORT_1_CONFIG);
mac_port_config |= (PORT_DISABLE);
write_4(sc, MAC_PORT_1_CONFIG, mac_port_config);
err = ece_allocate_dma(sc);
if (err) {
if_printf(sc->ifp, "failed allocating dma\n");
goto out;
}
write_4(sc, TS_DESCRIPTOR_POINTER, sc->ring_paddr_tx);
write_4(sc, TS_DESCRIPTOR_BASE_ADDR, sc->ring_paddr_tx);
write_4(sc, FS_DESCRIPTOR_POINTER, sc->ring_paddr_rx);
write_4(sc, FS_DESCRIPTOR_BASE_ADDR, sc->ring_paddr_rx);
write_4(sc, FS_DMA_CONTROL, 1);
return (0);
out:
return (ENXIO);
}
static void
ece_deactivate(device_t dev)
{
struct ece_softc *sc;
sc = device_get_softc(dev);
if (sc->intrhand)
bus_teardown_intr(dev, sc->irq_res_rec, sc->intrhand);
sc->intrhand = 0;
if (sc->intrhand_qf)
bus_teardown_intr(dev, sc->irq_res_qf, sc->intrhand_qf);
sc->intrhand_qf = 0;
bus_generic_detach(sc->dev);
if (sc->miibus)
device_delete_child(sc->dev, sc->miibus);
if (sc->mem_res)
bus_release_resource(dev, SYS_RES_IOPORT,
rman_get_rid(sc->mem_res), sc->mem_res);
sc->mem_res = 0;
if (sc->irq_res_rec)
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->irq_res_rec), sc->irq_res_rec);
if (sc->irq_res_qf)
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->irq_res_qf), sc->irq_res_qf);
if (sc->irq_res_qf)
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->irq_res_status), sc->irq_res_status);
sc->irq_res_rec = 0;
sc->irq_res_qf = 0;
sc->irq_res_status = 0;
ECE_TXLOCK_DESTROY(sc);
ECE_RXLOCK_DESTROY(sc);
ece_free_desc_dma_tx(sc);
ece_free_desc_dma_rx(sc);
return;
}
/*
* Change media according to request.
*/
static int
ece_ifmedia_upd(struct ifnet *ifp)
{
struct ece_softc *sc = ifp->if_softc;
struct mii_data *mii;
int error;
mii = device_get_softc(sc->miibus);
ECE_LOCK(sc);
error = mii_mediachg(mii);
ECE_UNLOCK(sc);
return (error);
}
/*
* Notify the world which media we're using.
*/
static void
ece_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ece_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
ECE_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
ECE_UNLOCK(sc);
}
static void
ece_tick(void *xsc)
{
struct ece_softc *sc = xsc;
struct mii_data *mii;
int active;
mii = device_get_softc(sc->miibus);
active = mii->mii_media_active;
mii_tick(mii);
/*
* Schedule another timeout one second from now.
*/
callout_reset(&sc->tick_ch, hz, ece_tick, sc);
}
static uint32_t
read_mac_entry(struct ece_softc *ec,
uint8_t *mac_result,
int first)
{
uint32_t ii;
struct arl_table_entry_t entry;
uint32_t *entry_val;
write_4(ec, ARL_TABLE_ACCESS_CONTROL_0, 0);
write_4(ec, ARL_TABLE_ACCESS_CONTROL_1, 0);
write_4(ec, ARL_TABLE_ACCESS_CONTROL_2, 0);
if (first)
write_4(ec, ARL_TABLE_ACCESS_CONTROL_0, 0x1);
else
write_4(ec, ARL_TABLE_ACCESS_CONTROL_0, 0x2);
for (ii = 0; ii < 0x1000; ii++)
if (read_4(ec, ARL_TABLE_ACCESS_CONTROL_1) & (0x1))
break;
entry_val = (uint32_t*) (&entry);
entry_val[0] = read_4(ec, ARL_TABLE_ACCESS_CONTROL_1);
entry_val[1] = read_4(ec, ARL_TABLE_ACCESS_CONTROL_2);
if (mac_result)
memcpy(mac_result, entry.mac_addr, ETHER_ADDR_LEN);
return (entry.table_end);
}
static uint32_t
write_arl_table_entry(struct ece_softc *ec,
uint32_t filter,
uint32_t vlan_mac,
uint32_t vlan_gid,
uint32_t age_field,
uint32_t port_map,
const uint8_t *mac_addr)
{
uint32_t ii;
uint32_t *entry_val;
struct arl_table_entry_t entry;
memset(&entry, 0, sizeof(entry));
entry.filter = filter;
entry.vlan_mac = vlan_mac;
entry.vlan_gid = vlan_gid;
entry.age_field = age_field;
entry.port_map = port_map;
memcpy(entry.mac_addr, mac_addr, ETHER_ADDR_LEN);
entry_val = (uint32_t*) (&entry);
write_4(ec, ARL_TABLE_ACCESS_CONTROL_0, 0);
write_4(ec, ARL_TABLE_ACCESS_CONTROL_1, 0);
write_4(ec, ARL_TABLE_ACCESS_CONTROL_2, 0);
write_4(ec, ARL_TABLE_ACCESS_CONTROL_1, entry_val[0]);
write_4(ec, ARL_TABLE_ACCESS_CONTROL_2, entry_val[1]);
write_4(ec, ARL_TABLE_ACCESS_CONTROL_0, ARL_WRITE_COMMAND);
for (ii = 0; ii < 0x1000; ii++)
if (read_4(ec, ARL_TABLE_ACCESS_CONTROL_1) &
ARL_COMMAND_COMPLETE)
return (1); /* Write OK. */
/* Write failed. */
return (0);
}
static void
remove_mac_entry(struct ece_softc *sc,
uint8_t *mac)
{
/* Invalid age_field mean erase this entry. */
write_arl_table_entry(sc, 0, 1, VLAN0_GROUP_ID,
INVALID_ENTRY, VLAN0_GROUP,
mac);
}
static void
add_mac_entry(struct ece_softc *sc,
uint8_t *mac)
{
write_arl_table_entry(sc, 0, 1, VLAN0_GROUP_ID,
NEW_ENTRY, VLAN0_GROUP,
mac);
}
/**
* The behavior of ARL table reading and deletion is not well defined
* in the documentation. To be safe, all mac addresses are put to a
* list, then deleted.
*
*/
static void
clear_mac_entries(struct ece_softc *ec, int include_this_mac)
{
int table_end;
struct mac_list * temp;
struct mac_list * mac_list_header;
struct mac_list * current;
char mac[ETHER_ADDR_LEN];
current = 0;
mac_list_header = 0;
table_end = read_mac_entry(ec, mac, 1);
while (!table_end) {
if (!include_this_mac &&
memcmp(mac, vlan0_mac, ETHER_ADDR_LEN) == 0) {
/* Read next entry. */
table_end = read_mac_entry(ec, mac, 0);
continue;
}
temp = (struct mac_list*)malloc(sizeof(struct mac_list),
M_DEVBUF,
M_NOWAIT | M_ZERO);
memcpy(temp->mac_addr, mac, ETHER_ADDR_LEN);
temp->next = 0;
if (mac_list_header) {
current->next = temp;
current = temp;
} else {
mac_list_header = temp;
current = temp;
}
/* Read next Entry */
table_end = read_mac_entry(ec, mac, 0);
}
current = mac_list_header;
while (current) {
remove_mac_entry(ec, current->mac_addr);
temp = current;
current = current->next;
free(temp, M_DEVBUF);
}
}
static int
configure_lan_port(struct ece_softc *sc, int phy_type)
{
uint32_t sw_config;
uint32_t mac_port_config;
/*
* Configure switch
*/
sw_config = read_4(sc, SWITCH_CONFIG);
/* Enable fast aging. */
sw_config |= FAST_AGING;
/* Enable IVL learning. */
sw_config |= IVL_LEARNING;
/* Disable hardware NAT. */
sw_config &= ~(HARDWARE_NAT);
sw_config |= SKIP_L2_LOOKUP_PORT_0 | SKIP_L2_LOOKUP_PORT_1| NIC_MODE;
write_4(sc, SWITCH_CONFIG, sw_config);
sw_config = read_4(sc, SWITCH_CONFIG);
mac_port_config = read_4(sc, MAC_PORT_0_CONFIG);
if (!(mac_port_config & 0x1) || (mac_port_config & 0x2))
if_printf(sc->ifp, "Link Down\n");
else
write_4(sc, MAC_PORT_0_CONFIG, mac_port_config);
return (0);
}
static void
set_pvid(struct ece_softc *sc, int port0, int port1, int cpu)
{
uint32_t val;
val = read_4(sc, VLAN_PORT_PVID) & (~(0x7 << 0));
write_4(sc, VLAN_PORT_PVID, val);
val = read_4(sc, VLAN_PORT_PVID) | ((port0) & 0x07);
write_4(sc, VLAN_PORT_PVID, val);
val = read_4(sc, VLAN_PORT_PVID) & (~(0x7 << 4));
write_4(sc, VLAN_PORT_PVID, val);
val = read_4(sc, VLAN_PORT_PVID) | (((port1) & 0x07) << 4);
write_4(sc, VLAN_PORT_PVID, val);
val = read_4(sc, VLAN_PORT_PVID) & (~(0x7 << 8));
write_4(sc, VLAN_PORT_PVID, val);
val = read_4(sc, VLAN_PORT_PVID) | (((cpu) & 0x07) << 8);
write_4(sc, VLAN_PORT_PVID, val);
}
/* VLAN related functions */
static void
set_vlan_vid(struct ece_softc *sc, int vlan)
{
const uint32_t regs[] = {
VLAN_VID_0_1,
VLAN_VID_0_1,
VLAN_VID_2_3,
VLAN_VID_2_3,
VLAN_VID_4_5,
VLAN_VID_4_5,
VLAN_VID_6_7,
VLAN_VID_6_7
};
const int vids[] = {
VLAN0_VID,
VLAN1_VID,
VLAN2_VID,
VLAN3_VID,
VLAN4_VID,
VLAN5_VID,
VLAN6_VID,
VLAN7_VID
};
uint32_t val;
uint32_t reg;
int vid;
reg = regs[vlan];
vid = vids[vlan];
if (vlan & 1) {
val = read_4(sc, reg);
write_4(sc, reg, val & (~(0xFFF << 0)));
val = read_4(sc, reg);
write_4(sc, reg, val|((vid & 0xFFF) << 0));
} else {
val = read_4(sc, reg);
write_4(sc, reg, val & (~(0xFFF << 12)));
val = read_4(sc, reg);
write_4(sc, reg, val|((vid & 0xFFF) << 12));
}
}
static void
set_vlan_member(struct ece_softc *sc, int vlan)
{
unsigned char shift;
uint32_t val;
int group;
const int groups[] = {
VLAN0_GROUP,
VLAN1_GROUP,
VLAN2_GROUP,
VLAN3_GROUP,
VLAN4_GROUP,
VLAN5_GROUP,
VLAN6_GROUP,
VLAN7_GROUP
};
group = groups[vlan];
shift = vlan*3;
val = read_4(sc, VLAN_MEMBER_PORT_MAP) & (~(0x7 << shift));
write_4(sc, VLAN_MEMBER_PORT_MAP, val);
val = read_4(sc, VLAN_MEMBER_PORT_MAP);
write_4(sc, VLAN_MEMBER_PORT_MAP, val | ((group & 0x7) << shift));
}
static void
set_vlan_tag(struct ece_softc *sc, int vlan)
{
unsigned char shift;
uint32_t val;
int tag = 0;
shift = vlan*3;
val = read_4(sc, VLAN_TAG_PORT_MAP) & (~(0x7 << shift));
write_4(sc, VLAN_TAG_PORT_MAP, val);
val = read_4(sc, VLAN_TAG_PORT_MAP);
write_4(sc, VLAN_TAG_PORT_MAP, val | ((tag & 0x7) << shift));
}
static int
configure_cpu_port(struct ece_softc *sc)
{
uint32_t cpu_port_config;
int i;
cpu_port_config = read_4(sc, CPU_PORT_CONFIG);
/* SA learning Disable */
cpu_port_config |= (SA_LEARNING_DISABLE);
/* set data offset + 2 */
cpu_port_config &= ~(1 << 31);
write_4(sc, CPU_PORT_CONFIG, cpu_port_config);
if (!write_arl_table_entry(sc, 0, 1, VLAN0_GROUP_ID,
STATIC_ENTRY, VLAN0_GROUP,
vlan0_mac))
return (1);
set_pvid(sc, PORT0_PVID, PORT1_PVID, CPU_PORT_PVID);
for (i = 0; i < 8; i++) {
set_vlan_vid(sc, i);
set_vlan_member(sc, i);
set_vlan_tag(sc, i);
}
/* disable all interrupt status sources */
write_4(sc, INTERRUPT_MASK, 0xffff1fff);
/* clear previous interrupt sources */
write_4(sc, INTERRUPT_STATUS, 0x00001FFF);
write_4(sc, TS_DMA_CONTROL, 0);
write_4(sc, FS_DMA_CONTROL, 0);
return (0);
}
static int
hardware_init(struct ece_softc *sc)
{
int status = 0;
static int gw_phy_type;
gw_phy_type = get_phy_type(sc);
/* Currently only ic_plus phy is supported. */
if (gw_phy_type != IC_PLUS_PHY) {
device_printf(sc->dev, "PHY type is not supported (%d)\n",
gw_phy_type);
return (-1);
}
status = configure_lan_port(sc, gw_phy_type);
configure_cpu_port(sc);
return (0);
}
static void
set_mac_address(struct ece_softc *sc, const char *mac, int mac_len)
{
/* Invalid age_field mean erase this entry. */
write_arl_table_entry(sc, 0, 1, VLAN0_GROUP_ID,
INVALID_ENTRY, VLAN0_GROUP,
mac);
memcpy(vlan0_mac, mac, ETHER_ADDR_LEN);
write_arl_table_entry(sc, 0, 1, VLAN0_GROUP_ID,
STATIC_ENTRY, VLAN0_GROUP,
mac);
}
static void
ece_set_mac(struct ece_softc *sc, u_char *eaddr)
{
memcpy(vlan0_mac, eaddr, ETHER_ADDR_LEN);
set_mac_address(sc, eaddr, ETHER_ADDR_LEN);
}
/*
* TODO: the device doesn't have MAC stored, we should read the
* configuration stored in FLASH, but the format depends on the
* bootloader used.*
*/
static int
ece_get_mac(struct ece_softc *sc, u_char *eaddr)
{
return (ENXIO);
}
static void
ece_intr_rx_locked(struct ece_softc *sc, int count)
{
struct ifnet *ifp = sc->ifp;
struct mbuf *mb;
struct rx_desc_info *rxdesc;
eth_rx_desc_t *desc;
int fssd_curr;
int fssd;
int i;
int idx;
int rxcount;
uint32_t status;
fssd_curr = read_4(sc, FS_DESCRIPTOR_POINTER);
fssd = (fssd_curr - (uint32_t)sc->ring_paddr_rx)>>4;
desc = sc->rx_desc[sc->last_rx].desc;
/* Prepare to read the data in the ring. */
bus_dmamap_sync(sc->dmatag_ring_rx,
sc->dmamap_ring_rx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (fssd > sc->last_rx)
rxcount = fssd - sc->last_rx;
else if (fssd < sc->last_rx)
rxcount = (ECE_MAX_RX_BUFFERS - sc->last_rx) + fssd;
else {
if (desc->cown == 0)
return;
else
rxcount = ECE_MAX_RX_BUFFERS;
}
for (i= 0; i < rxcount; i++) {
status = desc->cown;
if (!status)
break;
idx = sc->last_rx;
rxdesc = &sc->rx_desc[idx];
mb = rxdesc->buff;
if (desc->length < ETHER_MIN_LEN - ETHER_CRC_LEN ||
desc->length > ETHER_MAX_LEN - ETHER_CRC_LEN +
ETHER_VLAN_ENCAP_LEN) {
ifp->if_ierrors++;
desc->cown = 0;
desc->length = MCLBYTES - 2;
/* Invalid packet, skip and process next
* packet.
*/
continue;
}
if (ece_new_rxbuf(sc, rxdesc) != 0) {
ifp->if_iqdrops++;
desc->cown = 0;
desc->length = MCLBYTES - 2;
break;
}
/**
* The device will write to addrress + 2 So we need to adjust
* the address after the packet is received.
*/
mb->m_data += 2;
mb->m_len = mb->m_pkthdr.len = desc->length;
mb->m_flags |= M_PKTHDR;
mb->m_pkthdr.rcvif = ifp;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
/*check for valid checksum*/
if ( (!desc->l4f) && (desc->prot != 3)) {
mb->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
mb->m_pkthdr.csum_flags |= CSUM_IP_VALID;
mb->m_pkthdr.csum_data = 0xffff;
}
}
ECE_RXUNLOCK(sc);
(*ifp->if_input)(ifp, mb);
ECE_RXLOCK(sc);
desc->cown = 0;
desc->length = MCLBYTES - 2;
bus_dmamap_sync(sc->dmatag_ring_rx,
sc->dmamap_ring_rx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->last_rx == ECE_MAX_RX_BUFFERS - 1)
sc->last_rx = 0;
else
sc->last_rx++;
desc = sc->rx_desc[sc->last_rx].desc;
}
/* Sync updated flags. */
bus_dmamap_sync(sc->dmatag_ring_rx,
sc->dmamap_ring_rx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return;
}
static void
ece_intr_task(void *arg, int pending __unused)
{
struct ece_softc *sc = arg;
ECE_RXLOCK(sc);
ece_intr_rx_locked(sc, -1);
ECE_RXUNLOCK(sc);
}
static void
ece_intr(void *xsc)
{
struct ece_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
write_4(sc, FS_DMA_CONTROL, 0);
return;
}
taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
}
static void
ece_intr_status(void *xsc)
{
struct ece_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
int stat;
stat = read_4(sc, INTERRUPT_STATUS);
write_4(sc, INTERRUPT_STATUS, stat);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((stat & ERROR_MASK) != 0)
ifp->if_iqdrops++;
}
}
static void
ece_cleanup_locked(struct ece_softc *sc)
{
eth_tx_desc_t *desc;
if (sc->tx_cons == sc->tx_prod) return;
/* Prepare to read the ring (owner bit). */
bus_dmamap_sync(sc->dmatag_ring_tx,
sc->dmamap_ring_tx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (sc->tx_cons != sc->tx_prod) {
desc = sc->tx_desc[sc->tx_cons].desc;
if (desc->cown != 0) {
struct tx_desc_info *td = &(sc->tx_desc[sc->tx_cons]);
/* We are finished with this descriptor ... */
bus_dmamap_sync(sc->dmatag_data_tx, td->dmamap,
BUS_DMASYNC_POSTWRITE);
/* ... and unload, so we can reuse. */
bus_dmamap_unload(sc->dmatag_data_tx, td->dmamap);
m_freem(td->buff);
td->buff = 0;
sc->tx_cons = (sc->tx_cons + 1) % ECE_MAX_TX_BUFFERS;
} else {
break;
}
}
}
static void
ece_cleanup_task(void *arg, int pending __unused)
{
struct ece_softc *sc = arg;
ECE_CLEANUPLOCK(sc);
ece_cleanup_locked(sc);
ECE_CLEANUPUNLOCK(sc);
}
static void
ece_intr_tx(void *xsc)
{
struct ece_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
/* This should not happen, stop DMA. */
write_4(sc, FS_DMA_CONTROL, 0);
return;
}
taskqueue_enqueue(sc->sc_tq, &sc->sc_cleanup_task);
}
static void
ece_intr_qf(void *xsc)
{
struct ece_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
/* This should not happen, stop DMA. */
write_4(sc, FS_DMA_CONTROL, 0);
return;
}
taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
write_4(sc, FS_DMA_CONTROL, 1);
}
/*
* Reset and initialize the chip
*/
static void
eceinit_locked(void *xsc)
{
struct ece_softc *sc = xsc;
struct ifnet *ifp = sc->ifp;
struct mii_data *mii;
uint32_t cfg_reg;
uint32_t cpu_port_config;
uint32_t mac_port_config;
while (1) {
cfg_reg = read_4(sc, BIST_RESULT_TEST_0);
if ((cfg_reg & (1<<17)))
break;
DELAY(100);
}
/* Set to default values. */
write_4(sc, SWITCH_CONFIG, 0x007AA7A1);
write_4(sc, MAC_PORT_0_CONFIG, 0x00423D00);
write_4(sc, MAC_PORT_1_CONFIG, 0x00423D80);
write_4(sc, CPU_PORT_CONFIG, 0x004C0000);
hardware_init(sc);
mac_port_config = read_4(sc, MAC_PORT_0_CONFIG);
/* Enable Port 0 */
mac_port_config &= (~(PORT_DISABLE));
write_4(sc, MAC_PORT_0_CONFIG, mac_port_config);
cpu_port_config = read_4(sc, CPU_PORT_CONFIG);
/* Enable CPU. */
cpu_port_config &= ~(PORT_DISABLE);
write_4(sc, CPU_PORT_CONFIG, cpu_port_config);
/*
* Set 'running' flag, and clear output active flag
* and attempt to start the output
*/
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
mii = device_get_softc(sc->miibus);
mii_pollstat(mii);
/* Enable DMA. */
write_4(sc, FS_DMA_CONTROL, 1);
callout_reset(&sc->tick_ch, hz, ece_tick, sc);
}
static inline int
ece_encap(struct ece_softc *sc, struct mbuf *m0)
{
struct ifnet *ifp;
bus_dma_segment_t segs[MAX_FRAGMENT];
bus_dmamap_t mapp;
eth_tx_desc_t *desc = 0;
int csum_flags;
int desc_no;
int error;
int nsegs;
int seg;
ifp = sc->ifp;
/* Fetch unused map */
mapp = sc->tx_desc[sc->tx_prod].dmamap;
error = bus_dmamap_load_mbuf_sg(sc->dmatag_ring_tx, mapp,
m0, segs, &nsegs,
BUS_DMA_NOWAIT);
if (error != 0) {
bus_dmamap_unload(sc->dmatag_ring_tx, mapp);
return ((error != 0) ? error : -1);
}
desc = &(sc->desc_tx[sc->desc_curr_tx]);
sc->tx_desc[sc->tx_prod].desc = desc;
sc->tx_desc[sc->tx_prod].buff = m0;
desc_no = sc->desc_curr_tx;
for (seg = 0; seg < nsegs; seg++) {
if (desc->cown == 0 ) {
if_printf(ifp, "ERROR: descriptor is still used\n");
return (-1);
}
desc->length = segs[seg].ds_len;
desc->data_ptr = segs[seg].ds_addr;
if (seg == 0) {
desc->fs = 1;
} else {
desc->fs = 0;
}
if (seg == nsegs - 1) {
desc->ls = 1;
} else {
desc->ls = 0;
}
csum_flags = m0->m_pkthdr.csum_flags;
desc->fr = 1;
desc->pmap = 1;
desc->insv = 0;
desc->ico = 0;
desc->tco = 0;
desc->uco = 0;
desc->interrupt = 1;
if (csum_flags & CSUM_IP) {
desc->ico = 1;
if (csum_flags & CSUM_TCP)
desc->tco = 1;
if (csum_flags & CSUM_UDP)
desc->uco = 1;
}
desc++;
sc->desc_curr_tx = (sc->desc_curr_tx + 1) % ECE_MAX_TX_BUFFERS;
if (sc->desc_curr_tx == 0) {
desc = (eth_tx_desc_t *)&(sc->desc_tx[0]);
}
}
desc = sc->tx_desc[sc->tx_prod].desc;
sc->tx_prod = (sc->tx_prod + 1) % ECE_MAX_TX_BUFFERS;
/*
* After all descriptors are set, we set the flags to start the
* sending proces.
*/
for (seg = 0; seg < nsegs; seg++) {
desc->cown = 0;
desc++;
desc_no = (desc_no + 1) % ECE_MAX_TX_BUFFERS;
if (desc_no == 0)
desc = (eth_tx_desc_t *)&(sc->desc_tx[0]);
}
bus_dmamap_sync(sc->dmatag_data_tx, mapp, BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* dequeu packets and transmit
*/
static void
ecestart_locked(struct ifnet *ifp)
{
struct ece_softc *sc;
struct mbuf *m0;
uint32_t queued = 0;
sc = ifp->if_softc;
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
bus_dmamap_sync(sc->dmatag_ring_tx,
sc->dmamap_ring_tx,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (;;) {
/* Get packet from the queue */
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (ece_encap(sc, m0)) {
IF_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
queued++;
BPF_MTAP(ifp, m0);
}
if (queued) {
bus_dmamap_sync(sc->dmatag_ring_tx, sc->dmamap_ring_tx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
write_4(sc, TS_DMA_CONTROL, 1);
}
}
static void
eceinit(void *xsc)
{
struct ece_softc *sc = xsc;
ECE_LOCK(sc);
eceinit_locked(sc);
ECE_UNLOCK(sc);
}
static void
ece_tx_task(void *arg, int pending __unused)
{
struct ifnet *ifp;
ifp = (struct ifnet *)arg;
ecestart(ifp);
}
static void
ecestart(struct ifnet *ifp)
{
struct ece_softc *sc = ifp->if_softc;
ECE_TXLOCK(sc);
ecestart_locked(ifp);
ECE_TXUNLOCK(sc);
}
/*
* Turn off interrupts, and stop the nic. Can be called with sc->ifp
* NULL so be careful.
*/
static void
ecestop(struct ece_softc *sc)
{
struct ifnet *ifp = sc->ifp;
uint32_t mac_port_config;
write_4(sc, TS_DMA_CONTROL, 0);
write_4(sc, FS_DMA_CONTROL, 0);
if (ifp)
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->tick_ch);
/*Disable Port 0 */
mac_port_config = read_4(sc, MAC_PORT_0_CONFIG);
mac_port_config |= (PORT_DISABLE);
write_4(sc, MAC_PORT_0_CONFIG, mac_port_config);
/*Disable Port 1 */
mac_port_config = read_4(sc, MAC_PORT_1_CONFIG);
mac_port_config |= (PORT_DISABLE);
write_4(sc, MAC_PORT_1_CONFIG, mac_port_config);
/* Disable all interrupt status sources. */
write_4(sc, INTERRUPT_MASK, 0x00001FFF);
/* Clear previous interrupt sources. */
write_4(sc, INTERRUPT_STATUS, 0x00001FFF);
write_4(sc, SWITCH_CONFIG, initial_switch_config);
write_4(sc, CPU_PORT_CONFIG, initial_cpu_config);
write_4(sc, MAC_PORT_0_CONFIG, initial_port0_config);
write_4(sc, MAC_PORT_1_CONFIG, initial_port1_config);
clear_mac_entries(sc, 1);
}
static void
ece_restart(struct ece_softc *sc)
{
struct ifnet *ifp = sc->ifp;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* Enable port 0. */
write_4(sc, PORT_0_CONFIG,
read_4(sc, PORT_0_CONFIG) & ~(PORT_DISABLE));
write_4(sc, INTERRUPT_MASK, 0x00000000);
write_4(sc, FS_DMA_CONTROL, 1);
callout_reset(&sc->tick_ch, hz, ece_tick, sc);
}
static void
set_filter(struct ece_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t mac_port_config;
ifp = sc->ifp;
clear_mac_entries(sc, 0);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
mac_port_config = read_4(sc, MAC_PORT_0_CONFIG);
mac_port_config &= ~(DISABLE_BROADCAST_PACKET);
mac_port_config &= ~(DISABLE_MULTICAST_PACKET);
write_4(sc, MAC_PORT_0_CONFIG, mac_port_config);
return;
}
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
add_mac_entry(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
}
if_maddr_runlock(ifp);
}
static int
eceioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ece_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct ifreq *ifr = (struct ifreq *)data;
int mask, error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
ECE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0 &&
ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ecestop(sc);
} else {
/* Reinitialize card on any parameter change. */
if ((ifp->if_flags & IFF_UP) &&
!(ifp->if_drv_flags & IFF_DRV_RUNNING))
ece_restart(sc);
}
ECE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ECE_LOCK(sc);
set_filter(sc);
ECE_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if (mask & IFCAP_VLAN_MTU) {
ECE_LOCK(sc);
ECE_UNLOCK(sc);
}
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
ece_child_detached(device_t dev, device_t child)
{
struct ece_softc *sc;
sc = device_get_softc(dev);
if (child == sc->miibus)
sc->miibus = NULL;
}
/*
* MII bus support routines.
*/
static int
ece_miibus_readreg(device_t dev, int phy, int reg)
{
struct ece_softc *sc;
sc = device_get_softc(dev);
return (phy_read(sc, phy, reg));
}
static int
ece_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct ece_softc *sc;
sc = device_get_softc(dev);
phy_write(sc, phy, reg, data);
return (0);
}
static device_method_t ece_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ece_probe),
DEVMETHOD(device_attach, ece_attach),
DEVMETHOD(device_detach, ece_detach),
/* Bus interface */
DEVMETHOD(bus_child_detached, ece_child_detached),
/* MII interface */
DEVMETHOD(miibus_readreg, ece_miibus_readreg),
DEVMETHOD(miibus_writereg, ece_miibus_writereg),
{ 0, 0 }
};
static driver_t ece_driver = {
"ece",
ece_methods,
sizeof(struct ece_softc),
};
DRIVER_MODULE(ece, econaarm, ece_driver, ece_devclass, 0, 0);
DRIVER_MODULE(miibus, ece, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(ece, miibus, 1, 1, 1);
MODULE_DEPEND(ece, ether, 1, 1, 1);