freebsd-dev/sys/arm/allwinner/aw_thermal.c
Emmanuel Vadot d6b4447496 allwinner: aw_thermal: Cope with DTS changes
The upstream DTS now include the thermal device node and the SID
calibration entry.
Update our driver to cope with this change and remove the DTB
overlays that aren't needed anymore.

MFC after:	2 months
X-MFC-With:	r359934
2020-04-14 19:05:17 +00:00

733 lines
18 KiB
C

/*-
* Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Allwinner thermal sensor controller
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/reboot.h>
#include <sys/module.h>
#include <sys/cpu.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/extres/nvmem/nvmem.h>
#include <arm/allwinner/aw_sid.h>
#include "cpufreq_if.h"
#include "nvmem_if.h"
#define THS_CTRL0 0x00
#define THS_CTRL1 0x04
#define ADC_CALI_EN (1 << 17)
#define THS_CTRL2 0x40
#define SENSOR_ACQ1_SHIFT 16
#define SENSOR2_EN (1 << 2)
#define SENSOR1_EN (1 << 1)
#define SENSOR0_EN (1 << 0)
#define THS_INTC 0x44
#define THS_THERMAL_PER_SHIFT 12
#define THS_INTS 0x48
#define THS2_DATA_IRQ_STS (1 << 10)
#define THS1_DATA_IRQ_STS (1 << 9)
#define THS0_DATA_IRQ_STS (1 << 8)
#define SHUT_INT2_STS (1 << 6)
#define SHUT_INT1_STS (1 << 5)
#define SHUT_INT0_STS (1 << 4)
#define ALARM_INT2_STS (1 << 2)
#define ALARM_INT1_STS (1 << 1)
#define ALARM_INT0_STS (1 << 0)
#define THS_ALARM0_CTRL 0x50
#define ALARM_T_HOT_MASK 0xfff
#define ALARM_T_HOT_SHIFT 16
#define ALARM_T_HYST_MASK 0xfff
#define ALARM_T_HYST_SHIFT 0
#define THS_SHUTDOWN0_CTRL 0x60
#define SHUT_T_HOT_MASK 0xfff
#define SHUT_T_HOT_SHIFT 16
#define THS_FILTER 0x70
#define THS_CALIB0 0x74
#define THS_CALIB1 0x78
#define THS_DATA0 0x80
#define THS_DATA1 0x84
#define THS_DATA2 0x88
#define DATA_MASK 0xfff
#define A83T_CLK_RATE 24000000
#define A83T_ADC_ACQUIRE_TIME 23 /* 24Mhz/(23 + 1) = 1us */
#define A83T_THERMAL_PER 1 /* 4096 * (1 + 1) / 24Mhz = 341 us */
#define A83T_FILTER 0x5 /* Filter enabled, avg of 4 */
#define A83T_TEMP_BASE 2719000
#define A83T_TEMP_MUL 1000
#define A83T_TEMP_DIV 14186
#define A64_CLK_RATE 4000000
#define A64_ADC_ACQUIRE_TIME 400 /* 4Mhz/(400 + 1) = 100 us */
#define A64_THERMAL_PER 24 /* 4096 * (24 + 1) / 4Mhz = 25.6 ms */
#define A64_FILTER 0x6 /* Filter enabled, avg of 8 */
#define A64_TEMP_BASE 2170000
#define A64_TEMP_MUL 1000
#define A64_TEMP_DIV 8560
#define H3_CLK_RATE 4000000
#define H3_ADC_ACQUIRE_TIME 0x3f
#define H3_THERMAL_PER 401
#define H3_FILTER 0x6 /* Filter enabled, avg of 8 */
#define H3_TEMP_BASE 217
#define H3_TEMP_MUL 1000
#define H3_TEMP_DIV 8253
#define H3_TEMP_MINUS 1794000
#define H3_INIT_ALARM 90 /* degC */
#define H3_INIT_SHUT 105 /* degC */
#define H5_CLK_RATE 24000000
#define H5_ADC_ACQUIRE_TIME 479 /* 24Mhz/479 = 20us */
#define H5_THERMAL_PER 58 /* 4096 * (58 + 1) / 24Mhz = 10ms */
#define H5_FILTER 0x6 /* Filter enabled, avg of 8 */
#define H5_TEMP_BASE 233832448
#define H5_TEMP_MUL 124885
#define H5_TEMP_DIV 20
#define H5_TEMP_BASE_CPU 271581184
#define H5_TEMP_MUL_CPU 152253
#define H5_TEMP_BASE_GPU 289406976
#define H5_TEMP_MUL_GPU 166724
#define H5_INIT_CPU_ALARM 80 /* degC */
#define H5_INIT_CPU_SHUT 96 /* degC */
#define H5_INIT_GPU_ALARM 84 /* degC */
#define H5_INIT_GPU_SHUT 100 /* degC */
#define TEMP_C_TO_K 273
#define SENSOR_ENABLE_ALL (SENSOR0_EN|SENSOR1_EN|SENSOR2_EN)
#define SHUT_INT_ALL (SHUT_INT0_STS|SHUT_INT1_STS|SHUT_INT2_STS)
#define ALARM_INT_ALL (ALARM_INT0_STS)
#define MAX_SENSORS 3
#define MAX_CF_LEVELS 64
#define THROTTLE_ENABLE_DEFAULT 1
/* Enable thermal throttling */
static int aw_thermal_throttle_enable = THROTTLE_ENABLE_DEFAULT;
TUNABLE_INT("hw.aw_thermal.throttle_enable", &aw_thermal_throttle_enable);
struct aw_thermal_sensor {
const char *name;
const char *desc;
int init_alarm;
int init_shut;
};
struct aw_thermal_config {
struct aw_thermal_sensor sensors[MAX_SENSORS];
int nsensors;
uint64_t clk_rate;
uint32_t adc_acquire_time;
int adc_cali_en;
uint32_t filter;
uint32_t thermal_per;
int (*to_temp)(uint32_t, int);
uint32_t (*to_reg)(int, int);
int temp_base;
int temp_mul;
int temp_div;
int calib0, calib1;
uint32_t calib0_mask, calib1_mask;
};
static int
a83t_to_temp(uint32_t val, int sensor)
{
return ((A83T_TEMP_BASE - (val * A83T_TEMP_MUL)) / A83T_TEMP_DIV);
}
static const struct aw_thermal_config a83t_config = {
.nsensors = 3,
.sensors = {
[0] = {
.name = "cluster0",
.desc = "CPU cluster 0 temperature",
},
[1] = {
.name = "cluster1",
.desc = "CPU cluster 1 temperature",
},
[2] = {
.name = "gpu",
.desc = "GPU temperature",
},
},
.clk_rate = A83T_CLK_RATE,
.adc_acquire_time = A83T_ADC_ACQUIRE_TIME,
.adc_cali_en = 1,
.filter = A83T_FILTER,
.thermal_per = A83T_THERMAL_PER,
.to_temp = a83t_to_temp,
.calib0_mask = 0xffffffff,
.calib1_mask = 0xffff,
};
static int
a64_to_temp(uint32_t val, int sensor)
{
return ((A64_TEMP_BASE - (val * A64_TEMP_MUL)) / A64_TEMP_DIV);
}
static const struct aw_thermal_config a64_config = {
.nsensors = 3,
.sensors = {
[0] = {
.name = "cpu",
.desc = "CPU temperature",
},
[1] = {
.name = "gpu1",
.desc = "GPU temperature 1",
},
[2] = {
.name = "gpu2",
.desc = "GPU temperature 2",
},
},
.clk_rate = A64_CLK_RATE,
.adc_acquire_time = A64_ADC_ACQUIRE_TIME,
.adc_cali_en = 1,
.filter = A64_FILTER,
.thermal_per = A64_THERMAL_PER,
.to_temp = a64_to_temp,
.calib0_mask = 0xffffffff,
.calib1_mask = 0xffff,
};
static int
h3_to_temp(uint32_t val, int sensor)
{
return (H3_TEMP_BASE - ((val * H3_TEMP_MUL) / H3_TEMP_DIV));
}
static uint32_t
h3_to_reg(int val, int sensor)
{
return ((H3_TEMP_MINUS - (val * H3_TEMP_DIV)) / H3_TEMP_MUL);
}
static const struct aw_thermal_config h3_config = {
.nsensors = 1,
.sensors = {
[0] = {
.name = "cpu",
.desc = "CPU temperature",
.init_alarm = H3_INIT_ALARM,
.init_shut = H3_INIT_SHUT,
},
},
.clk_rate = H3_CLK_RATE,
.adc_acquire_time = H3_ADC_ACQUIRE_TIME,
.adc_cali_en = 1,
.filter = H3_FILTER,
.thermal_per = H3_THERMAL_PER,
.to_temp = h3_to_temp,
.to_reg = h3_to_reg,
.calib0_mask = 0xffffffff,
};
static int
h5_to_temp(uint32_t val, int sensor)
{
int tmp;
/* Temp is lower than 70 degrees */
if (val > 0x500) {
tmp = H5_TEMP_BASE - (val * H5_TEMP_MUL);
tmp >>= H5_TEMP_DIV;
return (tmp);
}
if (sensor == 0)
tmp = H5_TEMP_BASE_CPU - (val * H5_TEMP_MUL_CPU);
else if (sensor == 1)
tmp = H5_TEMP_BASE_GPU - (val * H5_TEMP_MUL_GPU);
else {
printf("Unknown sensor %d\n", sensor);
return (val);
}
tmp >>= H5_TEMP_DIV;
return (tmp);
}
static uint32_t
h5_to_reg(int val, int sensor)
{
int tmp;
if (val < 70) {
tmp = H5_TEMP_BASE - (val << H5_TEMP_DIV);
tmp /= H5_TEMP_MUL;
} else {
if (sensor == 0) {
tmp = H5_TEMP_BASE_CPU - (val << H5_TEMP_DIV);
tmp /= H5_TEMP_MUL_CPU;
} else if (sensor == 1) {
tmp = H5_TEMP_BASE_GPU - (val << H5_TEMP_DIV);
tmp /= H5_TEMP_MUL_GPU;
} else {
printf("Unknown sensor %d\n", sensor);
return (val);
}
}
return ((uint32_t)tmp);
}
static const struct aw_thermal_config h5_config = {
.nsensors = 2,
.sensors = {
[0] = {
.name = "cpu",
.desc = "CPU temperature",
.init_alarm = H5_INIT_CPU_ALARM,
.init_shut = H5_INIT_CPU_SHUT,
},
[1] = {
.name = "gpu",
.desc = "GPU temperature",
.init_alarm = H5_INIT_GPU_ALARM,
.init_shut = H5_INIT_GPU_SHUT,
},
},
.clk_rate = H5_CLK_RATE,
.adc_acquire_time = H5_ADC_ACQUIRE_TIME,
.filter = H5_FILTER,
.thermal_per = H5_THERMAL_PER,
.to_temp = h5_to_temp,
.to_reg = h5_to_reg,
.calib0_mask = 0xffffffff,
};
static struct ofw_compat_data compat_data[] = {
{ "allwinner,sun8i-a83t-ths", (uintptr_t)&a83t_config },
{ "allwinner,sun8i-h3-ths", (uintptr_t)&h3_config },
{ "allwinner,sun50i-a64-ths", (uintptr_t)&a64_config },
{ "allwinner,sun50i-h5-ths", (uintptr_t)&h5_config },
{ NULL, (uintptr_t)NULL }
};
#define THS_CONF(d) \
(void *)ofw_bus_search_compatible((d), compat_data)->ocd_data
struct aw_thermal_softc {
device_t dev;
struct resource *res[2];
struct aw_thermal_config *conf;
struct task cf_task;
int throttle;
int min_freq;
struct cf_level levels[MAX_CF_LEVELS];
eventhandler_tag cf_pre_tag;
clk_t clk_apb;
clk_t clk_ths;
};
static struct resource_spec aw_thermal_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
#define RD4(sc, reg) bus_read_4((sc)->res[0], (reg))
#define WR4(sc, reg, val) bus_write_4((sc)->res[0], (reg), (val))
static int
aw_thermal_init(struct aw_thermal_softc *sc)
{
phandle_t node;
uint32_t calib[2];
int error;
node = ofw_bus_get_node(sc->dev);
if (nvmem_get_cell_len(node, "calibration") > sizeof(calib)) {
device_printf(sc->dev, "calibration nvmem cell is too large\n");
return (ENXIO);
}
error = nvmem_read_cell_by_name(node, "calibration",
(void *)&calib, nvmem_get_cell_len(node, "calibration"));
/* Read calibration settings from EFUSE */
if (error != 0) {
device_printf(sc->dev, "Cannot read THS efuse\n");
return (error);
}
calib[0] &= sc->conf->calib0_mask;
calib[1] &= sc->conf->calib1_mask;
/* Write calibration settings to thermal controller */
if (calib[0] != 0)
WR4(sc, THS_CALIB0, calib[0]);
if (calib[1] != 0)
WR4(sc, THS_CALIB1, calib[1]);
/* Configure ADC acquire time (CLK_IN/(N+1)) and enable sensors */
WR4(sc, THS_CTRL1, ADC_CALI_EN);
WR4(sc, THS_CTRL0, sc->conf->adc_acquire_time);
WR4(sc, THS_CTRL2, sc->conf->adc_acquire_time << SENSOR_ACQ1_SHIFT);
/* Set thermal period */
WR4(sc, THS_INTC, sc->conf->thermal_per << THS_THERMAL_PER_SHIFT);
/* Enable average filter */
WR4(sc, THS_FILTER, sc->conf->filter);
/* Enable interrupts */
WR4(sc, THS_INTS, RD4(sc, THS_INTS));
WR4(sc, THS_INTC, RD4(sc, THS_INTC) | SHUT_INT_ALL | ALARM_INT_ALL);
/* Enable sensors */
WR4(sc, THS_CTRL2, RD4(sc, THS_CTRL2) | SENSOR_ENABLE_ALL);
return (0);
}
static int
aw_thermal_gettemp(struct aw_thermal_softc *sc, int sensor)
{
uint32_t val;
val = RD4(sc, THS_DATA0 + (sensor * 4));
return (sc->conf->to_temp(val, sensor));
}
static int
aw_thermal_getshut(struct aw_thermal_softc *sc, int sensor)
{
uint32_t val;
val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
val = (val >> SHUT_T_HOT_SHIFT) & SHUT_T_HOT_MASK;
return (sc->conf->to_temp(val, sensor));
}
static void
aw_thermal_setshut(struct aw_thermal_softc *sc, int sensor, int temp)
{
uint32_t val;
val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
val &= ~(SHUT_T_HOT_MASK << SHUT_T_HOT_SHIFT);
val |= (sc->conf->to_reg(temp, sensor) << SHUT_T_HOT_SHIFT);
WR4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4), val);
}
static int
aw_thermal_gethyst(struct aw_thermal_softc *sc, int sensor)
{
uint32_t val;
val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
val = (val >> ALARM_T_HYST_SHIFT) & ALARM_T_HYST_MASK;
return (sc->conf->to_temp(val, sensor));
}
static int
aw_thermal_getalarm(struct aw_thermal_softc *sc, int sensor)
{
uint32_t val;
val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
val = (val >> ALARM_T_HOT_SHIFT) & ALARM_T_HOT_MASK;
return (sc->conf->to_temp(val, sensor));
}
static void
aw_thermal_setalarm(struct aw_thermal_softc *sc, int sensor, int temp)
{
uint32_t val;
val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
val &= ~(ALARM_T_HOT_MASK << ALARM_T_HOT_SHIFT);
val |= (sc->conf->to_reg(temp, sensor) << ALARM_T_HOT_SHIFT);
WR4(sc, THS_ALARM0_CTRL + (sensor * 4), val);
}
static int
aw_thermal_sysctl(SYSCTL_HANDLER_ARGS)
{
struct aw_thermal_softc *sc;
int sensor, val;
sc = arg1;
sensor = arg2;
val = aw_thermal_gettemp(sc, sensor) + TEMP_C_TO_K;
return sysctl_handle_opaque(oidp, &val, sizeof(val), req);
}
static void
aw_thermal_throttle(struct aw_thermal_softc *sc, int enable)
{
device_t cf_dev;
int count, error;
if (enable == sc->throttle)
return;
if (enable != 0) {
/* Set the lowest available frequency */
cf_dev = devclass_get_device(devclass_find("cpufreq"), 0);
if (cf_dev == NULL)
return;
count = MAX_CF_LEVELS;
error = CPUFREQ_LEVELS(cf_dev, sc->levels, &count);
if (error != 0 || count == 0)
return;
sc->min_freq = sc->levels[count - 1].total_set.freq;
error = CPUFREQ_SET(cf_dev, &sc->levels[count - 1],
CPUFREQ_PRIO_USER);
if (error != 0)
return;
}
sc->throttle = enable;
}
static void
aw_thermal_cf_task(void *arg, int pending)
{
struct aw_thermal_softc *sc;
sc = arg;
aw_thermal_throttle(sc, 1);
}
static void
aw_thermal_cf_pre_change(void *arg, const struct cf_level *level, int *status)
{
struct aw_thermal_softc *sc;
int temp_cur, temp_alarm;
sc = arg;
if (aw_thermal_throttle_enable == 0 || sc->throttle == 0 ||
level->total_set.freq == sc->min_freq)
return;
temp_cur = aw_thermal_gettemp(sc, 0);
temp_alarm = aw_thermal_getalarm(sc, 0);
if (temp_cur < temp_alarm)
aw_thermal_throttle(sc, 0);
else
*status = ENXIO;
}
static void
aw_thermal_intr(void *arg)
{
struct aw_thermal_softc *sc;
device_t dev;
uint32_t ints;
dev = arg;
sc = device_get_softc(dev);
ints = RD4(sc, THS_INTS);
WR4(sc, THS_INTS, ints);
if ((ints & SHUT_INT_ALL) != 0) {
device_printf(dev,
"WARNING - current temperature exceeds safe limits\n");
shutdown_nice(RB_POWEROFF);
}
if ((ints & ALARM_INT_ALL) != 0)
taskqueue_enqueue(taskqueue_thread, &sc->cf_task);
}
static int
aw_thermal_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (THS_CONF(dev) == NULL)
return (ENXIO);
device_set_desc(dev, "Allwinner Thermal Sensor Controller");
return (BUS_PROBE_DEFAULT);
}
static int
aw_thermal_attach(device_t dev)
{
struct aw_thermal_softc *sc;
hwreset_t rst;
int i, error;
void *ih;
sc = device_get_softc(dev);
sc->dev = dev;
rst = NULL;
ih = NULL;
sc->conf = THS_CONF(dev);
TASK_INIT(&sc->cf_task, 0, aw_thermal_cf_task, sc);
if (bus_alloc_resources(dev, aw_thermal_spec, sc->res) != 0) {
device_printf(dev, "cannot allocate resources for device\n");
return (ENXIO);
}
if (clk_get_by_ofw_name(dev, 0, "bus", &sc->clk_apb) == 0) {
error = clk_enable(sc->clk_apb);
if (error != 0) {
device_printf(dev, "cannot enable apb clock\n");
goto fail;
}
}
if (clk_get_by_ofw_name(dev, 0, "mod", &sc->clk_ths) == 0) {
error = clk_set_freq(sc->clk_ths, sc->conf->clk_rate, 0);
if (error != 0) {
device_printf(dev, "cannot set ths clock rate\n");
goto fail;
}
error = clk_enable(sc->clk_ths);
if (error != 0) {
device_printf(dev, "cannot enable ths clock\n");
goto fail;
}
}
if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) {
error = hwreset_deassert(rst);
if (error != 0) {
device_printf(dev, "cannot de-assert reset\n");
goto fail;
}
}
error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE,
NULL, aw_thermal_intr, dev, &ih);
if (error != 0) {
device_printf(dev, "cannot setup interrupt handler\n");
goto fail;
}
for (i = 0; i < sc->conf->nsensors; i++) {
if (sc->conf->sensors[i].init_alarm > 0)
aw_thermal_setalarm(sc, i,
sc->conf->sensors[i].init_alarm);
if (sc->conf->sensors[i].init_shut > 0)
aw_thermal_setshut(sc, i,
sc->conf->sensors[i].init_shut);
}
if (aw_thermal_init(sc) != 0)
goto fail;
for (i = 0; i < sc->conf->nsensors; i++)
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, sc->conf->sensors[i].name,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
sc, i, aw_thermal_sysctl, "IK0",
sc->conf->sensors[i].desc);
if (bootverbose)
for (i = 0; i < sc->conf->nsensors; i++) {
device_printf(dev,
"%s: alarm %dC hyst %dC shut %dC\n",
sc->conf->sensors[i].name,
aw_thermal_getalarm(sc, i),
aw_thermal_gethyst(sc, i),
aw_thermal_getshut(sc, i));
}
sc->cf_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
aw_thermal_cf_pre_change, sc, EVENTHANDLER_PRI_FIRST);
return (0);
fail:
if (ih != NULL)
bus_teardown_intr(dev, sc->res[1], ih);
if (rst != NULL)
hwreset_release(rst);
if (sc->clk_apb != NULL)
clk_release(sc->clk_apb);
if (sc->clk_ths != NULL)
clk_release(sc->clk_ths);
bus_release_resources(dev, aw_thermal_spec, sc->res);
return (ENXIO);
}
static device_method_t aw_thermal_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, aw_thermal_probe),
DEVMETHOD(device_attach, aw_thermal_attach),
DEVMETHOD_END
};
static driver_t aw_thermal_driver = {
"aw_thermal",
aw_thermal_methods,
sizeof(struct aw_thermal_softc),
};
static devclass_t aw_thermal_devclass;
DRIVER_MODULE(aw_thermal, simplebus, aw_thermal_driver, aw_thermal_devclass,
0, 0);
MODULE_VERSION(aw_thermal, 1);
MODULE_DEPEND(aw_thermal, aw_sid, 1, 1, 1);
SIMPLEBUS_PNP_INFO(compat_data);