freebsd-dev/sys/dev/drm2/ttm/ttm_bo.c
Warner Losh 592ffb2175 Revert drm2 removal.
Revert r338177, r338176, r338175, r338174, r338172

After long consultations with re@, core members and mmacy, revert
these changes. Followup changes will be made to mark them as
deprecated and prent a message about where to find the up-to-date
driver.  Followup commits will be made to make this clear in the
installer. Followup commits to reduce POLA in ways we're still
exploring.

It's anticipated that after the freeze, this will be removed in
13-current (with the residual of the drm2 code copied to
sys/arm/dev/drm2 for the TEGRA port's use w/o the intel or
radeon drivers).

Due to the impending freeze, there was no formal core vote for
this. I've been talking to different core members all day, as well as
Matt Macey and Glen Barber. Nobody is completely happy, all are
grudgingly going along with this. Work is in progress to mitigate
the negative effects as much as possible.

Requested by: re@ (gjb, rgrimes)
2018-08-24 00:02:00 +00:00

1896 lines
45 KiB
C

/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/drm2/drmP.h>
#include <dev/drm2/ttm/ttm_module.h>
#include <dev/drm2/ttm/ttm_bo_driver.h>
#include <dev/drm2/ttm/ttm_placement.h>
#include <vm/vm_pageout.h>
#define TTM_ASSERT_LOCKED(param)
#define TTM_DEBUG(fmt, arg...)
#define TTM_BO_HASH_ORDER 13
static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects");
static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
{
int i;
for (i = 0; i <= TTM_PL_PRIV5; i++)
if (flags & (1 << i)) {
*mem_type = i;
return 0;
}
return -EINVAL;
}
static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
printf(" has_type: %d\n", man->has_type);
printf(" use_type: %d\n", man->use_type);
printf(" flags: 0x%08X\n", man->flags);
printf(" gpu_offset: 0x%08lX\n", man->gpu_offset);
printf(" size: %ju\n", (uintmax_t)man->size);
printf(" available_caching: 0x%08X\n", man->available_caching);
printf(" default_caching: 0x%08X\n", man->default_caching);
if (mem_type != TTM_PL_SYSTEM)
(*man->func->debug)(man, TTM_PFX);
}
static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
int i, ret, mem_type;
printf("No space for %p (%lu pages, %luK, %luM)\n",
bo, bo->mem.num_pages, bo->mem.size >> 10,
bo->mem.size >> 20);
for (i = 0; i < placement->num_placement; i++) {
ret = ttm_mem_type_from_flags(placement->placement[i],
&mem_type);
if (ret)
return;
printf(" placement[%d]=0x%08X (%d)\n",
i, placement->placement[i], mem_type);
ttm_mem_type_debug(bo->bdev, mem_type);
}
}
#if 0
static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
char *buffer)
{
return snprintf(buffer, PAGE_SIZE, "%lu\n",
(unsigned long) atomic_read(&glob->bo_count));
}
#endif
static inline uint32_t ttm_bo_type_flags(unsigned type)
{
return 1 << (type);
}
static void ttm_bo_release_list(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
size_t acc_size = bo->acc_size;
MPASS(atomic_read(&bo->list_kref) == 0);
MPASS(atomic_read(&bo->kref) == 0);
MPASS(atomic_read(&bo->cpu_writers) == 0);
MPASS(bo->sync_obj == NULL);
MPASS(bo->mem.mm_node == NULL);
MPASS(list_empty(&bo->lru));
MPASS(list_empty(&bo->ddestroy));
if (bo->ttm)
ttm_tt_destroy(bo->ttm);
atomic_dec(&bo->glob->bo_count);
if (bo->destroy)
bo->destroy(bo);
else {
free(bo, M_TTM_BO);
}
ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
}
static int
ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible)
{
const char *wmsg;
int flags, ret;
ret = 0;
if (interruptible) {
flags = PCATCH;
wmsg = "ttbowi";
} else {
flags = 0;
wmsg = "ttbowu";
}
while (ttm_bo_is_reserved(bo)) {
ret = -msleep(bo, &bo->glob->lru_lock, flags, wmsg, 0);
if (ret == -EINTR || ret == -ERESTART)
ret = -ERESTARTSYS;
if (ret != 0)
break;
}
return (ret);
}
void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
MPASS(ttm_bo_is_reserved(bo));
if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
MPASS(list_empty(&bo->lru));
man = &bdev->man[bo->mem.mem_type];
list_add_tail(&bo->lru, &man->lru);
refcount_acquire(&bo->list_kref);
if (bo->ttm != NULL) {
list_add_tail(&bo->swap, &bo->glob->swap_lru);
refcount_acquire(&bo->list_kref);
}
}
}
int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
{
int put_count = 0;
if (!list_empty(&bo->swap)) {
list_del_init(&bo->swap);
++put_count;
}
if (!list_empty(&bo->lru)) {
list_del_init(&bo->lru);
++put_count;
}
/*
* TODO: Add a driver hook to delete from
* driver-specific LRU's here.
*/
return put_count;
}
int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait, bool use_sequence, uint32_t sequence)
{
int ret;
while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
/**
* Deadlock avoidance for multi-bo reserving.
*/
if (use_sequence && bo->seq_valid) {
/**
* We've already reserved this one.
*/
if (unlikely(sequence == bo->val_seq))
return -EDEADLK;
/**
* Already reserved by a thread that will not back
* off for us. We need to back off.
*/
if (unlikely(sequence - bo->val_seq < (1U << 31)))
return -EAGAIN;
}
if (no_wait)
return -EBUSY;
ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
if (unlikely(ret))
return ret;
}
if (use_sequence) {
bool wake_up = false;
/**
* Wake up waiters that may need to recheck for deadlock,
* if we decreased the sequence number.
*/
if (unlikely((bo->val_seq - sequence < (1U << 31))
|| !bo->seq_valid))
wake_up = true;
/*
* In the worst case with memory ordering these values can be
* seen in the wrong order. However since we call wake_up_all
* in that case, this will hopefully not pose a problem,
* and the worst case would only cause someone to accidentally
* hit -EAGAIN in ttm_bo_reserve when they see old value of
* val_seq. However this would only happen if seq_valid was
* written before val_seq was, and just means some slightly
* increased cpu usage
*/
bo->val_seq = sequence;
bo->seq_valid = true;
if (wake_up)
wakeup(bo);
} else {
bo->seq_valid = false;
}
return 0;
}
void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
bool never_free)
{
u_int old;
old = atomic_fetchadd_int(&bo->list_kref, -count);
if (old <= count) {
if (never_free)
panic("ttm_bo_ref_buf");
ttm_bo_release_list(bo);
}
}
int ttm_bo_reserve(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait, bool use_sequence, uint32_t sequence)
{
struct ttm_bo_global *glob = bo->glob;
int put_count = 0;
int ret;
mtx_lock(&bo->glob->lru_lock);
ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
sequence);
if (likely(ret == 0)) {
put_count = ttm_bo_del_from_lru(bo);
mtx_unlock(&glob->lru_lock);
ttm_bo_list_ref_sub(bo, put_count, true);
} else
mtx_unlock(&bo->glob->lru_lock);
return ret;
}
int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
bool interruptible, uint32_t sequence)
{
bool wake_up = false;
int ret;
while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
if (bo->seq_valid && sequence == bo->val_seq) {
DRM_ERROR(
"%s: bo->seq_valid && sequence == bo->val_seq",
__func__);
}
ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
if (unlikely(ret))
return ret;
}
if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid)
wake_up = true;
/**
* Wake up waiters that may need to recheck for deadlock,
* if we decreased the sequence number.
*/
bo->val_seq = sequence;
bo->seq_valid = true;
if (wake_up)
wakeup(bo);
return 0;
}
int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
bool interruptible, uint32_t sequence)
{
struct ttm_bo_global *glob = bo->glob;
int put_count, ret;
mtx_lock(&glob->lru_lock);
ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
if (likely(!ret)) {
put_count = ttm_bo_del_from_lru(bo);
mtx_unlock(&glob->lru_lock);
ttm_bo_list_ref_sub(bo, put_count, true);
} else
mtx_unlock(&glob->lru_lock);
return ret;
}
void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
{
ttm_bo_add_to_lru(bo);
atomic_set(&bo->reserved, 0);
wakeup(bo);
}
void ttm_bo_unreserve(struct ttm_buffer_object *bo)
{
struct ttm_bo_global *glob = bo->glob;
mtx_lock(&glob->lru_lock);
ttm_bo_unreserve_locked(bo);
mtx_unlock(&glob->lru_lock);
}
/*
* Call bo->mutex locked.
*/
static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
int ret = 0;
uint32_t page_flags = 0;
TTM_ASSERT_LOCKED(&bo->mutex);
bo->ttm = NULL;
if (bdev->need_dma32)
page_flags |= TTM_PAGE_FLAG_DMA32;
switch (bo->type) {
case ttm_bo_type_device:
if (zero_alloc)
page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
case ttm_bo_type_kernel:
bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags, glob->dummy_read_page);
if (unlikely(bo->ttm == NULL))
ret = -ENOMEM;
break;
case ttm_bo_type_sg:
bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
page_flags | TTM_PAGE_FLAG_SG,
glob->dummy_read_page);
if (unlikely(bo->ttm == NULL)) {
ret = -ENOMEM;
break;
}
bo->ttm->sg = bo->sg;
break;
default:
printf("[TTM] Illegal buffer object type\n");
ret = -EINVAL;
break;
}
return ret;
}
static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem,
bool evict, bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
int ret = 0;
if (old_is_pci || new_is_pci ||
((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
ret = ttm_mem_io_lock(old_man, true);
if (unlikely(ret != 0))
goto out_err;
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(old_man);
}
/*
* Create and bind a ttm if required.
*/
if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (bo->ttm == NULL) {
bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
ret = ttm_bo_add_ttm(bo, zero);
if (ret)
goto out_err;
}
ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
if (ret)
goto out_err;
if (mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_tt_bind(bo->ttm, mem);
if (ret)
goto out_err;
}
if (bo->mem.mem_type == TTM_PL_SYSTEM) {
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
bo->mem = *mem;
mem->mm_node = NULL;
goto moved;
}
}
if (bdev->driver->move_notify)
bdev->driver->move_notify(bo, mem);
if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
else if (bdev->driver->move)
ret = bdev->driver->move(bo, evict, interruptible,
no_wait_gpu, mem);
else
ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
if (ret) {
if (bdev->driver->move_notify) {
struct ttm_mem_reg tmp_mem = *mem;
*mem = bo->mem;
bo->mem = tmp_mem;
bdev->driver->move_notify(bo, mem);
bo->mem = *mem;
*mem = tmp_mem;
}
goto out_err;
}
moved:
if (bo->evicted) {
ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
if (ret)
printf("[TTM] Can not flush read caches\n");
bo->evicted = false;
}
if (bo->mem.mm_node) {
bo->offset = (bo->mem.start << PAGE_SHIFT) +
bdev->man[bo->mem.mem_type].gpu_offset;
bo->cur_placement = bo->mem.placement;
} else
bo->offset = 0;
return 0;
out_err:
new_man = &bdev->man[bo->mem.mem_type];
if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
ttm_tt_unbind(bo->ttm);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
return ret;
}
/**
* Call bo::reserved.
* Will release GPU memory type usage on destruction.
* This is the place to put in driver specific hooks to release
* driver private resources.
* Will release the bo::reserved lock.
*/
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
if (bo->bdev->driver->move_notify)
bo->bdev->driver->move_notify(bo, NULL);
if (bo->ttm) {
ttm_tt_unbind(bo->ttm);
ttm_tt_destroy(bo->ttm);
bo->ttm = NULL;
}
ttm_bo_mem_put(bo, &bo->mem);
atomic_set(&bo->reserved, 0);
wakeup(&bo);
/*
* Since the final reference to this bo may not be dropped by
* the current task we have to put a memory barrier here to make
* sure the changes done in this function are always visible.
*
* This function only needs protection against the final kref_put.
*/
mb();
}
static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_global *glob = bo->glob;
struct ttm_bo_driver *driver = bdev->driver;
void *sync_obj = NULL;
int put_count;
int ret;
mtx_lock(&glob->lru_lock);
ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
mtx_lock(&bdev->fence_lock);
(void) ttm_bo_wait(bo, false, false, true);
if (!ret && !bo->sync_obj) {
mtx_unlock(&bdev->fence_lock);
put_count = ttm_bo_del_from_lru(bo);
mtx_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
ttm_bo_list_ref_sub(bo, put_count, true);
return;
}
if (bo->sync_obj)
sync_obj = driver->sync_obj_ref(bo->sync_obj);
mtx_unlock(&bdev->fence_lock);
if (!ret) {
atomic_set(&bo->reserved, 0);
wakeup(bo);
}
refcount_acquire(&bo->list_kref);
list_add_tail(&bo->ddestroy, &bdev->ddestroy);
mtx_unlock(&glob->lru_lock);
if (sync_obj) {
driver->sync_obj_flush(sync_obj);
driver->sync_obj_unref(&sync_obj);
}
taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
((hz / 100) < 1) ? 1 : hz / 100);
}
/**
* function ttm_bo_cleanup_refs_and_unlock
* If bo idle, remove from delayed- and lru lists, and unref.
* If not idle, do nothing.
*
* Must be called with lru_lock and reservation held, this function
* will drop both before returning.
*
* @interruptible Any sleeps should occur interruptibly.
* @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
*/
static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_bo_driver *driver = bdev->driver;
struct ttm_bo_global *glob = bo->glob;
int put_count;
int ret;
mtx_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, false, true);
if (ret && !no_wait_gpu) {
void *sync_obj;
/*
* Take a reference to the fence and unreserve,
* at this point the buffer should be dead, so
* no new sync objects can be attached.
*/
sync_obj = driver->sync_obj_ref(bo->sync_obj);
mtx_unlock(&bdev->fence_lock);
atomic_set(&bo->reserved, 0);
wakeup(bo);
mtx_unlock(&glob->lru_lock);
ret = driver->sync_obj_wait(sync_obj, false, interruptible);
driver->sync_obj_unref(&sync_obj);
if (ret)
return ret;
/*
* remove sync_obj with ttm_bo_wait, the wait should be
* finished, and no new wait object should have been added.
*/
mtx_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, false, true);
mtx_unlock(&bdev->fence_lock);
if (ret)
return ret;
mtx_lock(&glob->lru_lock);
ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
/*
* We raced, and lost, someone else holds the reservation now,
* and is probably busy in ttm_bo_cleanup_memtype_use.
*
* Even if it's not the case, because we finished waiting any
* delayed destruction would succeed, so just return success
* here.
*/
if (ret) {
mtx_unlock(&glob->lru_lock);
return 0;
}
} else
mtx_unlock(&bdev->fence_lock);
if (ret || unlikely(list_empty(&bo->ddestroy))) {
atomic_set(&bo->reserved, 0);
wakeup(bo);
mtx_unlock(&glob->lru_lock);
return ret;
}
put_count = ttm_bo_del_from_lru(bo);
list_del_init(&bo->ddestroy);
++put_count;
mtx_unlock(&glob->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
ttm_bo_list_ref_sub(bo, put_count, true);
return 0;
}
/**
* Traverse the delayed list, and call ttm_bo_cleanup_refs on all
* encountered buffers.
*/
static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
{
struct ttm_bo_global *glob = bdev->glob;
struct ttm_buffer_object *entry = NULL;
int ret = 0;
mtx_lock(&glob->lru_lock);
if (list_empty(&bdev->ddestroy))
goto out_unlock;
entry = list_first_entry(&bdev->ddestroy,
struct ttm_buffer_object, ddestroy);
refcount_acquire(&entry->list_kref);
for (;;) {
struct ttm_buffer_object *nentry = NULL;
if (entry->ddestroy.next != &bdev->ddestroy) {
nentry = list_first_entry(&entry->ddestroy,
struct ttm_buffer_object, ddestroy);
refcount_acquire(&nentry->list_kref);
}
ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
if (remove_all && ret) {
ret = ttm_bo_reserve_nolru(entry, false, false,
false, 0);
}
if (!ret)
ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
!remove_all);
else
mtx_unlock(&glob->lru_lock);
if (refcount_release(&entry->list_kref))
ttm_bo_release_list(entry);
entry = nentry;
if (ret || !entry)
goto out;
mtx_lock(&glob->lru_lock);
if (list_empty(&entry->ddestroy))
break;
}
out_unlock:
mtx_unlock(&glob->lru_lock);
out:
if (entry && refcount_release(&entry->list_kref))
ttm_bo_release_list(entry);
return ret;
}
static void ttm_bo_delayed_workqueue(void *arg, int pending __unused)
{
struct ttm_bo_device *bdev = arg;
if (ttm_bo_delayed_delete(bdev, false)) {
taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
((hz / 100) < 1) ? 1 : hz / 100);
}
}
static void ttm_bo_release(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
rw_wlock(&bdev->vm_lock);
if (likely(bo->vm_node != NULL)) {
RB_REMOVE(ttm_bo_device_buffer_objects,
&bdev->addr_space_rb, bo);
drm_mm_put_block(bo->vm_node);
bo->vm_node = NULL;
}
rw_wunlock(&bdev->vm_lock);
ttm_mem_io_lock(man, false);
ttm_mem_io_free_vm(bo);
ttm_mem_io_unlock(man);
ttm_bo_cleanup_refs_or_queue(bo);
if (refcount_release(&bo->list_kref))
ttm_bo_release_list(bo);
}
void ttm_bo_unref(struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo = *p_bo;
*p_bo = NULL;
if (refcount_release(&bo->kref))
ttm_bo_release(bo);
}
int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
{
int pending;
if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, &pending))
taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
return (pending);
}
void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
{
if (resched) {
taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
((hz / 100) < 1) ? 1 : hz / 100);
}
}
static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_reg evict_mem;
struct ttm_placement placement;
int ret = 0;
mtx_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
mtx_unlock(&bdev->fence_lock);
if (unlikely(ret != 0)) {
if (ret != -ERESTARTSYS) {
printf("[TTM] Failed to expire sync object before buffer eviction\n");
}
goto out;
}
MPASS(ttm_bo_is_reserved(bo));
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.bus.io_reserved_vm = false;
evict_mem.bus.io_reserved_count = 0;
placement.fpfn = 0;
placement.lpfn = 0;
placement.num_placement = 0;
placement.num_busy_placement = 0;
bdev->driver->evict_flags(bo, &placement);
ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
no_wait_gpu);
if (ret) {
if (ret != -ERESTARTSYS) {
printf("[TTM] Failed to find memory space for buffer 0x%p eviction\n",
bo);
ttm_bo_mem_space_debug(bo, &placement);
}
goto out;
}
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
no_wait_gpu);
if (ret) {
if (ret != -ERESTARTSYS)
printf("[TTM] Buffer eviction failed\n");
ttm_bo_mem_put(bo, &evict_mem);
goto out;
}
bo->evicted = true;
out:
return ret;
}
static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
uint32_t mem_type,
bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_global *glob = bdev->glob;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_buffer_object *bo;
int ret = -EBUSY, put_count;
mtx_lock(&glob->lru_lock);
list_for_each_entry(bo, &man->lru, lru) {
ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
if (!ret)
break;
}
if (ret) {
mtx_unlock(&glob->lru_lock);
return ret;
}
refcount_acquire(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
no_wait_gpu);
if (refcount_release(&bo->list_kref))
ttm_bo_release_list(bo);
return ret;
}
put_count = ttm_bo_del_from_lru(bo);
mtx_unlock(&glob->lru_lock);
MPASS(ret == 0);
ttm_bo_list_ref_sub(bo, put_count, true);
ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
ttm_bo_unreserve(bo);
if (refcount_release(&bo->list_kref))
ttm_bo_release_list(bo);
return ret;
}
void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
if (mem->mm_node)
(*man->func->put_node)(man, mem);
}
/**
* Repeatedly evict memory from the LRU for @mem_type until we create enough
* space, or we've evicted everything and there isn't enough space.
*/
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
uint32_t mem_type,
struct ttm_placement *placement,
struct ttm_mem_reg *mem,
bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
int ret;
do {
ret = (*man->func->get_node)(man, bo, placement, mem);
if (unlikely(ret != 0))
return ret;
if (mem->mm_node)
break;
ret = ttm_mem_evict_first(bdev, mem_type,
interruptible, no_wait_gpu);
if (unlikely(ret != 0))
return ret;
} while (1);
if (mem->mm_node == NULL)
return -ENOMEM;
mem->mem_type = mem_type;
return 0;
}
static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
uint32_t cur_placement,
uint32_t proposed_placement)
{
uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
/**
* Keep current caching if possible.
*/
if ((cur_placement & caching) != 0)
result |= (cur_placement & caching);
else if ((man->default_caching & caching) != 0)
result |= man->default_caching;
else if ((TTM_PL_FLAG_CACHED & caching) != 0)
result |= TTM_PL_FLAG_CACHED;
else if ((TTM_PL_FLAG_WC & caching) != 0)
result |= TTM_PL_FLAG_WC;
else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
result |= TTM_PL_FLAG_UNCACHED;
return result;
}
static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
uint32_t mem_type,
uint32_t proposed_placement,
uint32_t *masked_placement)
{
uint32_t cur_flags = ttm_bo_type_flags(mem_type);
if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
return false;
if ((proposed_placement & man->available_caching) == 0)
return false;
cur_flags |= (proposed_placement & man->available_caching);
*masked_placement = cur_flags;
return true;
}
/**
* Creates space for memory region @mem according to its type.
*
* This function first searches for free space in compatible memory types in
* the priority order defined by the driver. If free space isn't found, then
* ttm_bo_mem_force_space is attempted in priority order to evict and find
* space.
*/
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_mem_reg *mem,
bool interruptible,
bool no_wait_gpu)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man;
uint32_t mem_type = TTM_PL_SYSTEM;
uint32_t cur_flags = 0;
bool type_found = false;
bool type_ok = false;
bool has_erestartsys = false;
int i, ret;
mem->mm_node = NULL;
for (i = 0; i < placement->num_placement; ++i) {
ret = ttm_mem_type_from_flags(placement->placement[i],
&mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
type_ok = ttm_bo_mt_compatible(man,
mem_type,
placement->placement[i],
&cur_flags);
if (!type_ok)
continue;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, placement->placement[i],
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM)
break;
if (man->has_type && man->use_type) {
type_found = true;
ret = (*man->func->get_node)(man, bo, placement, mem);
if (unlikely(ret))
return ret;
}
if (mem->mm_node)
break;
}
if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
return 0;
}
if (!type_found)
return -EINVAL;
for (i = 0; i < placement->num_busy_placement; ++i) {
ret = ttm_mem_type_from_flags(placement->busy_placement[i],
&mem_type);
if (ret)
return ret;
man = &bdev->man[mem_type];
if (!man->has_type)
continue;
if (!ttm_bo_mt_compatible(man,
mem_type,
placement->busy_placement[i],
&cur_flags))
continue;
cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
cur_flags);
/*
* Use the access and other non-mapping-related flag bits from
* the memory placement flags to the current flags
*/
ttm_flag_masked(&cur_flags, placement->busy_placement[i],
~TTM_PL_MASK_MEMTYPE);
if (mem_type == TTM_PL_SYSTEM) {
mem->mem_type = mem_type;
mem->placement = cur_flags;
mem->mm_node = NULL;
return 0;
}
ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
interruptible, no_wait_gpu);
if (ret == 0 && mem->mm_node) {
mem->placement = cur_flags;
return 0;
}
if (ret == -ERESTARTSYS)
has_erestartsys = true;
}
ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
return ret;
}
static
int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
bool interruptible,
bool no_wait_gpu)
{
int ret = 0;
struct ttm_mem_reg mem;
struct ttm_bo_device *bdev = bo->bdev;
MPASS(ttm_bo_is_reserved(bo));
/*
* FIXME: It's possible to pipeline buffer moves.
* Have the driver move function wait for idle when necessary,
* instead of doing it here.
*/
mtx_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
mtx_unlock(&bdev->fence_lock);
if (ret)
return ret;
mem.num_pages = bo->num_pages;
mem.size = mem.num_pages << PAGE_SHIFT;
mem.page_alignment = bo->mem.page_alignment;
mem.bus.io_reserved_vm = false;
mem.bus.io_reserved_count = 0;
/*
* Determine where to move the buffer.
*/
ret = ttm_bo_mem_space(bo, placement, &mem,
interruptible, no_wait_gpu);
if (ret)
goto out_unlock;
ret = ttm_bo_handle_move_mem(bo, &mem, false,
interruptible, no_wait_gpu);
out_unlock:
if (ret && mem.mm_node)
ttm_bo_mem_put(bo, &mem);
return ret;
}
static int ttm_bo_mem_compat(struct ttm_placement *placement,
struct ttm_mem_reg *mem)
{
int i;
if (mem->mm_node && placement->lpfn != 0 &&
(mem->start < placement->fpfn ||
mem->start + mem->num_pages > placement->lpfn))
return -1;
for (i = 0; i < placement->num_placement; i++) {
if ((placement->placement[i] & mem->placement &
TTM_PL_MASK_CACHING) &&
(placement->placement[i] & mem->placement &
TTM_PL_MASK_MEM))
return i;
}
return -1;
}
int ttm_bo_validate(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
bool interruptible,
bool no_wait_gpu)
{
int ret;
MPASS(ttm_bo_is_reserved(bo));
/* Check that range is valid */
if (placement->lpfn || placement->fpfn)
if (placement->fpfn > placement->lpfn ||
(placement->lpfn - placement->fpfn) < bo->num_pages)
return -EINVAL;
/*
* Check whether we need to move buffer.
*/
ret = ttm_bo_mem_compat(placement, &bo->mem);
if (ret < 0) {
ret = ttm_bo_move_buffer(bo, placement, interruptible,
no_wait_gpu);
if (ret)
return ret;
} else {
/*
* Use the access and other non-mapping-related flag bits from
* the compatible memory placement flags to the active flags
*/
ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
~TTM_PL_MASK_MEMTYPE);
}
/*
* We might need to add a TTM.
*/
if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
ret = ttm_bo_add_ttm(bo, true);
if (ret)
return ret;
}
return 0;
}
int ttm_bo_check_placement(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
MPASS(!((placement->fpfn || placement->lpfn) &&
(bo->mem.num_pages > (placement->lpfn - placement->fpfn))));
return 0;
}
int ttm_bo_init(struct ttm_bo_device *bdev,
struct ttm_buffer_object *bo,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
struct vm_object *persistent_swap_storage,
size_t acc_size,
struct sg_table *sg,
void (*destroy) (struct ttm_buffer_object *))
{
int ret = 0;
unsigned long num_pages;
struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
if (ret) {
printf("[TTM] Out of kernel memory\n");
if (destroy)
(*destroy)(bo);
else
free(bo, M_TTM_BO);
return -ENOMEM;
}
num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (num_pages == 0) {
printf("[TTM] Illegal buffer object size\n");
if (destroy)
(*destroy)(bo);
else
free(bo, M_TTM_BO);
ttm_mem_global_free(mem_glob, acc_size);
return -EINVAL;
}
bo->destroy = destroy;
refcount_init(&bo->kref, 1);
refcount_init(&bo->list_kref, 1);
atomic_set(&bo->cpu_writers, 0);
atomic_set(&bo->reserved, 1);
INIT_LIST_HEAD(&bo->lru);
INIT_LIST_HEAD(&bo->ddestroy);
INIT_LIST_HEAD(&bo->swap);
INIT_LIST_HEAD(&bo->io_reserve_lru);
bo->bdev = bdev;
bo->glob = bdev->glob;
bo->type = type;
bo->num_pages = num_pages;
bo->mem.size = num_pages << PAGE_SHIFT;
bo->mem.mem_type = TTM_PL_SYSTEM;
bo->mem.num_pages = bo->num_pages;
bo->mem.mm_node = NULL;
bo->mem.page_alignment = page_alignment;
bo->mem.bus.io_reserved_vm = false;
bo->mem.bus.io_reserved_count = 0;
bo->priv_flags = 0;
bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
bo->seq_valid = false;
bo->persistent_swap_storage = persistent_swap_storage;
bo->acc_size = acc_size;
bo->sg = sg;
atomic_inc(&bo->glob->bo_count);
ret = ttm_bo_check_placement(bo, placement);
if (unlikely(ret != 0))
goto out_err;
/*
* For ttm_bo_type_device buffers, allocate
* address space from the device.
*/
if (bo->type == ttm_bo_type_device ||
bo->type == ttm_bo_type_sg) {
ret = ttm_bo_setup_vm(bo);
if (ret)
goto out_err;
}
ret = ttm_bo_validate(bo, placement, interruptible, false);
if (ret)
goto out_err;
ttm_bo_unreserve(bo);
return 0;
out_err:
ttm_bo_unreserve(bo);
ttm_bo_unref(&bo);
return ret;
}
size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += PAGE_ALIGN(npages * sizeof(void *));
size += ttm_round_pot(sizeof(struct ttm_tt));
return size;
}
size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size)
{
unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
size_t size = 0;
size += ttm_round_pot(struct_size);
size += PAGE_ALIGN(npages * sizeof(void *));
size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
size += ttm_round_pot(sizeof(struct ttm_dma_tt));
return size;
}
int ttm_bo_create(struct ttm_bo_device *bdev,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
struct vm_object *persistent_swap_storage,
struct ttm_buffer_object **p_bo)
{
struct ttm_buffer_object *bo;
size_t acc_size;
int ret;
bo = malloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO);
acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
interruptible, persistent_swap_storage, acc_size,
NULL, NULL);
if (likely(ret == 0))
*p_bo = bo;
return ret;
}
static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
unsigned mem_type, bool allow_errors)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
struct ttm_bo_global *glob = bdev->glob;
int ret;
/*
* Can't use standard list traversal since we're unlocking.
*/
mtx_lock(&glob->lru_lock);
while (!list_empty(&man->lru)) {
mtx_unlock(&glob->lru_lock);
ret = ttm_mem_evict_first(bdev, mem_type, false, false);
if (ret) {
if (allow_errors) {
return ret;
} else {
printf("[TTM] Cleanup eviction failed\n");
}
}
mtx_lock(&glob->lru_lock);
}
mtx_unlock(&glob->lru_lock);
return 0;
}
int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man;
int ret = -EINVAL;
if (mem_type >= TTM_NUM_MEM_TYPES) {
printf("[TTM] Illegal memory type %d\n", mem_type);
return ret;
}
man = &bdev->man[mem_type];
if (!man->has_type) {
printf("[TTM] Trying to take down uninitialized memory manager type %u\n",
mem_type);
return ret;
}
man->use_type = false;
man->has_type = false;
ret = 0;
if (mem_type > 0) {
ttm_bo_force_list_clean(bdev, mem_type, false);
ret = (*man->func->takedown)(man);
}
return ret;
}
int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
{
struct ttm_mem_type_manager *man = &bdev->man[mem_type];
if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
printf("[TTM] Illegal memory manager memory type %u\n", mem_type);
return -EINVAL;
}
if (!man->has_type) {
printf("[TTM] Memory type %u has not been initialized\n", mem_type);
return 0;
}
return ttm_bo_force_list_clean(bdev, mem_type, true);
}
int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
unsigned long p_size)
{
int ret = -EINVAL;
struct ttm_mem_type_manager *man;
MPASS(type < TTM_NUM_MEM_TYPES);
man = &bdev->man[type];
MPASS(!man->has_type);
man->io_reserve_fastpath = true;
man->use_io_reserve_lru = false;
sx_init(&man->io_reserve_mutex, "ttmman");
INIT_LIST_HEAD(&man->io_reserve_lru);
ret = bdev->driver->init_mem_type(bdev, type, man);
if (ret)
return ret;
man->bdev = bdev;
ret = 0;
if (type != TTM_PL_SYSTEM) {
ret = (*man->func->init)(man, p_size);
if (ret)
return ret;
}
man->has_type = true;
man->use_type = true;
man->size = p_size;
INIT_LIST_HEAD(&man->lru);
return 0;
}
static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
{
ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
vm_page_free(glob->dummy_read_page);
}
void ttm_bo_global_release(struct drm_global_reference *ref)
{
struct ttm_bo_global *glob = ref->object;
if (refcount_release(&glob->kobj_ref))
ttm_bo_global_kobj_release(glob);
}
int ttm_bo_global_init(struct drm_global_reference *ref)
{
struct ttm_bo_global_ref *bo_ref =
container_of(ref, struct ttm_bo_global_ref, ref);
struct ttm_bo_global *glob = ref->object;
int req, ret;
int tries;
sx_init(&glob->device_list_mutex, "ttmdlm");
mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF);
glob->mem_glob = bo_ref->mem_glob;
req = VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ;
tries = 0;
retry:
glob->dummy_read_page = vm_page_alloc_contig(NULL, 0, req,
1, 0, VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE);
if (unlikely(glob->dummy_read_page == NULL)) {
if (tries < 1 && vm_page_reclaim_contig(req, 1,
0, VM_MAX_ADDRESS, PAGE_SIZE, 0)) {
tries++;
goto retry;
}
ret = -ENOMEM;
goto out_no_drp;
}
INIT_LIST_HEAD(&glob->swap_lru);
INIT_LIST_HEAD(&glob->device_list);
ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
if (unlikely(ret != 0)) {
printf("[TTM] Could not register buffer object swapout\n");
goto out_no_shrink;
}
atomic_set(&glob->bo_count, 0);
refcount_init(&glob->kobj_ref, 1);
return (0);
out_no_shrink:
vm_page_free(glob->dummy_read_page);
out_no_drp:
free(glob, M_DRM_GLOBAL);
return ret;
}
int ttm_bo_device_release(struct ttm_bo_device *bdev)
{
int ret = 0;
unsigned i = TTM_NUM_MEM_TYPES;
struct ttm_mem_type_manager *man;
struct ttm_bo_global *glob = bdev->glob;
while (i--) {
man = &bdev->man[i];
if (man->has_type) {
man->use_type = false;
if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
ret = -EBUSY;
printf("[TTM] DRM memory manager type %d is not clean\n",
i);
}
man->has_type = false;
}
}
sx_xlock(&glob->device_list_mutex);
list_del(&bdev->device_list);
sx_xunlock(&glob->device_list_mutex);
if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, NULL))
taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
while (ttm_bo_delayed_delete(bdev, true))
;
mtx_lock(&glob->lru_lock);
if (list_empty(&bdev->ddestroy))
TTM_DEBUG("Delayed destroy list was clean\n");
if (list_empty(&bdev->man[0].lru))
TTM_DEBUG("Swap list was clean\n");
mtx_unlock(&glob->lru_lock);
MPASS(drm_mm_clean(&bdev->addr_space_mm));
rw_wlock(&bdev->vm_lock);
drm_mm_takedown(&bdev->addr_space_mm);
rw_wunlock(&bdev->vm_lock);
return ret;
}
int ttm_bo_device_init(struct ttm_bo_device *bdev,
struct ttm_bo_global *glob,
struct ttm_bo_driver *driver,
uint64_t file_page_offset,
bool need_dma32)
{
int ret = -EINVAL;
rw_init(&bdev->vm_lock, "ttmvml");
bdev->driver = driver;
memset(bdev->man, 0, sizeof(bdev->man));
/*
* Initialize the system memory buffer type.
* Other types need to be driver / IOCTL initialized.
*/
ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
if (unlikely(ret != 0))
goto out_no_sys;
RB_INIT(&bdev->addr_space_rb);
ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
if (unlikely(ret != 0))
goto out_no_addr_mm;
TIMEOUT_TASK_INIT(taskqueue_thread, &bdev->wq, 0,
ttm_bo_delayed_workqueue, bdev);
INIT_LIST_HEAD(&bdev->ddestroy);
bdev->dev_mapping = NULL;
bdev->glob = glob;
bdev->need_dma32 = need_dma32;
bdev->val_seq = 0;
mtx_init(&bdev->fence_lock, "ttmfence", NULL, MTX_DEF);
sx_xlock(&glob->device_list_mutex);
list_add_tail(&bdev->device_list, &glob->device_list);
sx_xunlock(&glob->device_list_mutex);
return 0;
out_no_addr_mm:
ttm_bo_clean_mm(bdev, 0);
out_no_sys:
return ret;
}
/*
* buffer object vm functions.
*/
bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
if (mem->mem_type == TTM_PL_SYSTEM)
return false;
if (man->flags & TTM_MEMTYPE_FLAG_CMA)
return false;
if (mem->placement & TTM_PL_FLAG_CACHED)
return false;
}
return true;
}
void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
{
ttm_bo_release_mmap(bo);
ttm_mem_io_free_vm(bo);
}
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
ttm_mem_io_lock(man, false);
ttm_bo_unmap_virtual_locked(bo);
ttm_mem_io_unlock(man);
}
static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
/* The caller acquired bdev->vm_lock. */
RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo);
}
/**
* ttm_bo_setup_vm:
*
* @bo: the buffer to allocate address space for
*
* Allocate address space in the drm device so that applications
* can mmap the buffer and access the contents. This only
* applies to ttm_bo_type_device objects as others are not
* placed in the drm device address space.
*/
static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
{
struct ttm_bo_device *bdev = bo->bdev;
int ret;
retry_pre_get:
ret = drm_mm_pre_get(&bdev->addr_space_mm);
if (unlikely(ret != 0))
return ret;
rw_wlock(&bdev->vm_lock);
bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
bo->mem.num_pages, 0, 0);
if (unlikely(bo->vm_node == NULL)) {
ret = -ENOMEM;
goto out_unlock;
}
bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
bo->mem.num_pages, 0);
if (unlikely(bo->vm_node == NULL)) {
rw_wunlock(&bdev->vm_lock);
goto retry_pre_get;
}
ttm_bo_vm_insert_rb(bo);
rw_wunlock(&bdev->vm_lock);
bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
return 0;
out_unlock:
rw_wunlock(&bdev->vm_lock);
return ret;
}
int ttm_bo_wait(struct ttm_buffer_object *bo,
bool lazy, bool interruptible, bool no_wait)
{
struct ttm_bo_driver *driver = bo->bdev->driver;
struct ttm_bo_device *bdev = bo->bdev;
void *sync_obj;
int ret = 0;
if (likely(bo->sync_obj == NULL))
return 0;
while (bo->sync_obj) {
if (driver->sync_obj_signaled(bo->sync_obj)) {
void *tmp_obj = bo->sync_obj;
bo->sync_obj = NULL;
clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
mtx_unlock(&bdev->fence_lock);
driver->sync_obj_unref(&tmp_obj);
mtx_lock(&bdev->fence_lock);
continue;
}
if (no_wait)
return -EBUSY;
sync_obj = driver->sync_obj_ref(bo->sync_obj);
mtx_unlock(&bdev->fence_lock);
ret = driver->sync_obj_wait(sync_obj,
lazy, interruptible);
if (unlikely(ret != 0)) {
driver->sync_obj_unref(&sync_obj);
mtx_lock(&bdev->fence_lock);
return ret;
}
mtx_lock(&bdev->fence_lock);
if (likely(bo->sync_obj == sync_obj)) {
void *tmp_obj = bo->sync_obj;
bo->sync_obj = NULL;
clear_bit(TTM_BO_PRIV_FLAG_MOVING,
&bo->priv_flags);
mtx_unlock(&bdev->fence_lock);
driver->sync_obj_unref(&sync_obj);
driver->sync_obj_unref(&tmp_obj);
mtx_lock(&bdev->fence_lock);
} else {
mtx_unlock(&bdev->fence_lock);
driver->sync_obj_unref(&sync_obj);
mtx_lock(&bdev->fence_lock);
}
}
return 0;
}
int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
{
struct ttm_bo_device *bdev = bo->bdev;
int ret = 0;
/*
* Using ttm_bo_reserve makes sure the lru lists are updated.
*/
ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
if (unlikely(ret != 0))
return ret;
mtx_lock(&bdev->fence_lock);
ret = ttm_bo_wait(bo, false, true, no_wait);
mtx_unlock(&bdev->fence_lock);
if (likely(ret == 0))
atomic_inc(&bo->cpu_writers);
ttm_bo_unreserve(bo);
return ret;
}
void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
{
atomic_dec(&bo->cpu_writers);
}
/**
* A buffer object shrink method that tries to swap out the first
* buffer object on the bo_global::swap_lru list.
*/
static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
{
struct ttm_bo_global *glob =
container_of(shrink, struct ttm_bo_global, shrink);
struct ttm_buffer_object *bo;
int ret = -EBUSY;
int put_count;
uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
mtx_lock(&glob->lru_lock);
list_for_each_entry(bo, &glob->swap_lru, swap) {
ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
if (!ret)
break;
}
if (ret) {
mtx_unlock(&glob->lru_lock);
return ret;
}
refcount_acquire(&bo->list_kref);
if (!list_empty(&bo->ddestroy)) {
ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
if (refcount_release(&bo->list_kref))
ttm_bo_release_list(bo);
return ret;
}
put_count = ttm_bo_del_from_lru(bo);
mtx_unlock(&glob->lru_lock);
ttm_bo_list_ref_sub(bo, put_count, true);
/**
* Wait for GPU, then move to system cached.
*/
mtx_lock(&bo->bdev->fence_lock);
ret = ttm_bo_wait(bo, false, false, false);
mtx_unlock(&bo->bdev->fence_lock);
if (unlikely(ret != 0))
goto out;
if ((bo->mem.placement & swap_placement) != swap_placement) {
struct ttm_mem_reg evict_mem;
evict_mem = bo->mem;
evict_mem.mm_node = NULL;
evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
evict_mem.mem_type = TTM_PL_SYSTEM;
ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
false, false);
if (unlikely(ret != 0))
goto out;
}
ttm_bo_unmap_virtual(bo);
/**
* Swap out. Buffer will be swapped in again as soon as
* anyone tries to access a ttm page.
*/
if (bo->bdev->driver->swap_notify)
bo->bdev->driver->swap_notify(bo);
ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
out:
/**
*
* Unreserve without putting on LRU to avoid swapping out an
* already swapped buffer.
*/
atomic_set(&bo->reserved, 0);
wakeup(bo);
if (refcount_release(&bo->list_kref))
ttm_bo_release_list(bo);
return ret;
}
void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
{
while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
;
}