freebsd-dev/sys/dev/ice/ice_lib.c
Eric Joyner 71d104536b ice(4): Introduce new driver for Intel E800 Ethernet controllers
The ice(4) driver is the driver for the Intel E8xx series Ethernet
controllers; currently with codenames Columbiaville and
Columbia Park.

These new controllers support 100G speeds, as well as introducing
more queues, better virtualization support, and more offload
capabilities. Future work will enable virtual functions (like
in ixl(4)) and the other functionality outlined above.

For full functionality, the kernel should be compiled with
"device ice_ddp" like in the amd64 NOTES file, and/or
ice_ddp_load="YES" should be added to /boot/loader.conf so that
the DDP package file included in this commit can be downloaded
to the adapter. Otherwise, the adapter will fall back to a single
queue mode with limited functionality.

A man page for this driver will be forthcoming.

MFC after:	1 month
Relnotes:	yes
Sponsored by:	Intel Corporation
Differential Revision:	https://reviews.freebsd.org/D21959
2020-05-26 23:35:10 +00:00

8001 lines
236 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright (c) 2020, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*$FreeBSD$*/
/**
* @file ice_lib.c
* @brief Generic device setup and sysctl functions
*
* Library of generic device functions not specific to the networking stack.
*
* This includes hardware initialization functions, as well as handlers for
* many of the device sysctls used to probe driver status or tune specific
* behaviors.
*/
#include "ice_lib.h"
#include "ice_iflib.h"
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <machine/resource.h>
#include <net/if_dl.h>
#include <sys/firmware.h>
#include <sys/priv.h>
/**
* @var M_ICE
* @brief main ice driver allocation type
*
* malloc(9) allocation type used by the majority of memory allocations in the
* ice driver.
*/
MALLOC_DEFINE(M_ICE, "ice", "Intel(R) 100Gb Network Driver lib allocations");
/*
* Helper function prototypes
*/
static int ice_get_next_vsi(struct ice_vsi **all_vsi, int size);
static void ice_set_default_vsi_ctx(struct ice_vsi_ctx *ctx);
static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctx, enum ice_vsi_type type);
static int ice_setup_vsi_qmap(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx);
static int ice_setup_tx_ctx(struct ice_tx_queue *txq,
struct ice_tlan_ctx *tlan_ctx, u16 pf_q);
static int ice_setup_rx_ctx(struct ice_rx_queue *rxq);
static int ice_is_rxq_ready(struct ice_hw *hw, int pf_q, u32 *reg);
static void ice_free_fltr_list(struct ice_list_head *list);
static int ice_add_mac_to_list(struct ice_vsi *vsi, struct ice_list_head *list,
const u8 *addr, enum ice_sw_fwd_act_type action);
static void ice_check_ctrlq_errors(struct ice_softc *sc, const char *qname,
struct ice_ctl_q_info *cq);
static void ice_process_link_event(struct ice_softc *sc, struct ice_rq_event_info *e);
static void ice_process_ctrlq_event(struct ice_softc *sc, const char *qname,
struct ice_rq_event_info *event);
static void ice_nvm_version_str(struct ice_hw *hw, struct sbuf *buf);
static void ice_active_pkg_version_str(struct ice_hw *hw, struct sbuf *buf);
static void ice_os_pkg_version_str(struct ice_hw *hw, struct sbuf *buf);
static bool ice_filter_is_mcast(struct ice_vsi *vsi, struct ice_fltr_info *info);
static u_int ice_sync_one_mcast_filter(void *p, struct sockaddr_dl *sdl, u_int errors);
static void ice_add_debug_tunables(struct ice_softc *sc);
static void ice_add_debug_sysctls(struct ice_softc *sc);
static void ice_vsi_set_rss_params(struct ice_vsi *vsi);
static void ice_get_default_rss_key(u8 *seed);
static int ice_set_rss_key(struct ice_vsi *vsi);
static int ice_set_rss_lut(struct ice_vsi *vsi);
static void ice_set_rss_flow_flds(struct ice_vsi *vsi);
static void ice_clean_vsi_rss_cfg(struct ice_vsi *vsi);
static const char *ice_aq_speed_to_str(struct ice_port_info *pi);
static const char *ice_requested_fec_mode(struct ice_port_info *pi);
static const char *ice_negotiated_fec_mode(struct ice_port_info *pi);
static const char *ice_autoneg_mode(struct ice_port_info *pi);
static const char *ice_flowcontrol_mode(struct ice_port_info *pi);
static void ice_print_bus_link_data(device_t dev, struct ice_hw *hw);
static void ice_set_pci_link_status_data(struct ice_hw *hw, u16 link_status);
static uint8_t ice_pcie_bandwidth_check(struct ice_softc *sc);
static uint64_t ice_pcie_bus_speed_to_rate(enum ice_pcie_bus_speed speed);
static int ice_pcie_lnk_width_to_int(enum ice_pcie_link_width width);
static uint64_t ice_phy_types_to_max_rate(struct ice_port_info *pi);
static void ice_add_sysctls_sw_stats(struct ice_vsi *vsi,
struct sysctl_ctx_list *ctx,
struct sysctl_oid *parent);
static void ice_setup_vsi_common(struct ice_softc *sc, struct ice_vsi *vsi,
enum ice_vsi_type type, int idx,
bool dynamic);
static void ice_handle_mib_change_event(struct ice_softc *sc,
struct ice_rq_event_info *event);
static void
ice_handle_lan_overflow_event(struct ice_softc *sc,
struct ice_rq_event_info *event);
static int ice_add_ethertype_to_list(struct ice_vsi *vsi,
struct ice_list_head *list,
u16 ethertype, u16 direction,
enum ice_sw_fwd_act_type action);
static void ice_add_rx_lldp_filter(struct ice_softc *sc);
static void ice_del_rx_lldp_filter(struct ice_softc *sc);
static u16 ice_aq_phy_types_to_sysctl_speeds(u64 phy_type_low,
u64 phy_type_high);
static void
ice_apply_saved_phy_req_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_aqc_set_phy_cfg_data *cfg);
static void
ice_apply_saved_fec_req_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_aqc_set_phy_cfg_data *cfg);
static void
ice_apply_saved_user_req_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_aqc_set_phy_cfg_data *cfg);
static void
ice_apply_saved_fc_req_to_cfg(struct ice_port_info *pi,
struct ice_aqc_set_phy_cfg_data *cfg);
static void
ice_print_ldo_tlv(struct ice_softc *sc,
struct ice_link_default_override_tlv *tlv);
static void
ice_sysctl_speeds_to_aq_phy_types(u16 sysctl_speeds, u64 *phy_type_low,
u64 *phy_type_high);
static int
ice_intersect_media_types_with_caps(struct ice_softc *sc, u64 *phy_type_low,
u64 *phy_type_high);
static int
ice_get_auto_speeds(struct ice_softc *sc, u64 *phy_type_low,
u64 *phy_type_high);
static void
ice_apply_supported_speed_filter(u64 *phy_type_low, u64 *phy_type_high);
static enum ice_status
ice_get_phy_types(struct ice_softc *sc, u64 *phy_type_low, u64 *phy_type_high);
static int ice_module_init(void);
static int ice_module_exit(void);
/*
* package version comparison functions
*/
static bool pkg_ver_empty(struct ice_pkg_ver *pkg_ver, u8 *pkg_name);
static int pkg_ver_compatible(struct ice_pkg_ver *pkg_ver);
/*
* dynamic sysctl handlers
*/
static int ice_sysctl_show_fw(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_pkg_version(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_os_pkg_version(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_dump_mac_filters(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_dump_vlan_filters(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_dump_ethertype_filters(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_dump_ethertype_mac_filters(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_current_speed(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_request_reset(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_dump_state_flags(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_fec_config(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_fc_config(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_negotiated_fc(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_negotiated_fec(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_phy_type_low(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_phy_type_high(SYSCTL_HANDLER_ARGS);
static int __ice_sysctl_phy_type_handler(SYSCTL_HANDLER_ARGS,
bool is_phy_type_high);
static int ice_sysctl_advertise_speed(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_rx_itr(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_tx_itr(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_fw_lldp_agent(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_fw_cur_lldp_persist_status(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_fw_dflt_lldp_persist_status(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_phy_caps(SYSCTL_HANDLER_ARGS, u8 report_mode);
static int ice_sysctl_phy_sw_caps(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_phy_nvm_caps(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_phy_topo_caps(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_phy_link_status(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_read_i2c_diag_data(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_tx_cso_stat(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_rx_cso_stat(SYSCTL_HANDLER_ARGS);
static int ice_sysctl_pba_number(SYSCTL_HANDLER_ARGS);
/**
* ice_map_bar - Map PCIe BAR memory
* @dev: the PCIe device
* @bar: the BAR info structure
* @bar_num: PCIe BAR number
*
* Maps the specified PCIe BAR. Stores the mapping data in struct
* ice_bar_info.
*/
int
ice_map_bar(device_t dev, struct ice_bar_info *bar, int bar_num)
{
if (bar->res != NULL) {
device_printf(dev, "PCI BAR%d already mapped\n", bar_num);
return (EDOOFUS);
}
bar->rid = PCIR_BAR(bar_num);
bar->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar->rid,
RF_ACTIVE);
if (!bar->res) {
device_printf(dev, "PCI BAR%d mapping failed\n", bar_num);
return (ENXIO);
}
bar->tag = rman_get_bustag(bar->res);
bar->handle = rman_get_bushandle(bar->res);
bar->size = rman_get_size(bar->res);
return (0);
}
/**
* ice_free_bar - Free PCIe BAR memory
* @dev: the PCIe device
* @bar: the BAR info structure
*
* Frees the specified PCIe BAR, releasing its resources.
*/
void
ice_free_bar(device_t dev, struct ice_bar_info *bar)
{
if (bar->res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, bar->rid, bar->res);
bar->res = NULL;
}
/**
* ice_set_ctrlq_len - Configure ctrlq lengths for a device
* @hw: the device hardware structure
*
* Configures the control queues for the given device, setting up the
* specified lengths, prior to initializing hardware.
*/
void
ice_set_ctrlq_len(struct ice_hw *hw)
{
hw->adminq.num_rq_entries = ICE_AQ_LEN;
hw->adminq.num_sq_entries = ICE_AQ_LEN;
hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN;
hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN;
hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
}
/**
* ice_get_next_vsi - Get the next available VSI slot
* @all_vsi: the VSI list
* @size: the size of the VSI list
*
* Returns the index to the first available VSI slot. Will return size (one
* past the last index) if there are no slots available.
*/
static int
ice_get_next_vsi(struct ice_vsi **all_vsi, int size)
{
int i;
for (i = 0; i < size; i++) {
if (all_vsi[i] == NULL)
return i;
}
return size;
}
/**
* ice_setup_vsi_common - Common VSI setup for both dynamic and static VSIs
* @sc: the device private softc structure
* @vsi: the VSI to setup
* @type: the VSI type of the new VSI
* @idx: the index in the all_vsi array to use
* @dynamic: whether this VSI memory was dynamically allocated
*
* Perform setup for a VSI that is common to both dynamically allocated VSIs
* and the static PF VSI which is embedded in the softc structure.
*/
static void
ice_setup_vsi_common(struct ice_softc *sc, struct ice_vsi *vsi,
enum ice_vsi_type type, int idx, bool dynamic)
{
/* Store important values in VSI struct */
vsi->type = type;
vsi->sc = sc;
vsi->idx = idx;
sc->all_vsi[idx] = vsi;
vsi->dynamic = dynamic;
/* Setup the VSI tunables now */
ice_add_vsi_tunables(vsi, sc->vsi_sysctls);
}
/**
* ice_alloc_vsi - Allocate a dynamic VSI
* @sc: device softc structure
* @type: VSI type
*
* Allocates a new dynamic VSI structure and inserts it into the VSI list.
*/
struct ice_vsi *
ice_alloc_vsi(struct ice_softc *sc, enum ice_vsi_type type)
{
struct ice_vsi *vsi;
int idx;
/* Find an open index for a new VSI to be allocated. If the returned
* index is >= the num_available_vsi then it means no slot is
* available.
*/
idx = ice_get_next_vsi(sc->all_vsi, sc->num_available_vsi);
if (idx >= sc->num_available_vsi) {
device_printf(sc->dev, "No available VSI slots\n");
return NULL;
}
vsi = (struct ice_vsi *)malloc(sizeof(*vsi), M_ICE, M_WAITOK|M_ZERO);
if (!vsi) {
device_printf(sc->dev, "Unable to allocate VSI memory\n");
return NULL;
}
ice_setup_vsi_common(sc, vsi, type, idx, true);
return vsi;
}
/**
* ice_setup_pf_vsi - Setup the PF VSI
* @sc: the device private softc
*
* Setup the PF VSI structure which is embedded as sc->pf_vsi in the device
* private softc. Unlike other VSIs, the PF VSI memory is allocated as part of
* the softc memory, instead of being dynamically allocated at creation.
*/
void
ice_setup_pf_vsi(struct ice_softc *sc)
{
ice_setup_vsi_common(sc, &sc->pf_vsi, ICE_VSI_PF, 0, false);
}
/**
* ice_alloc_vsi_qmap
* @vsi: VSI structure
* @max_tx_queues: Number of transmit queues to identify
* @max_rx_queues: Number of receive queues to identify
*
* Allocates a max_[t|r]x_queues array of words for the VSI where each
* word contains the index of the queue it represents. In here, all
* words are initialized to an index of ICE_INVALID_RES_IDX, indicating
* all queues for this VSI are not yet assigned an index and thus,
* not ready for use.
*
* Returns an error code on failure.
*/
int
ice_alloc_vsi_qmap(struct ice_vsi *vsi, const int max_tx_queues,
const int max_rx_queues)
{
struct ice_softc *sc = vsi->sc;
int i;
MPASS(max_tx_queues > 0);
MPASS(max_rx_queues > 0);
/* Allocate Tx queue mapping memory */
if (!(vsi->tx_qmap =
(u16 *) malloc(sizeof(u16) * max_tx_queues, M_ICE, M_WAITOK))) {
device_printf(sc->dev, "Unable to allocate Tx qmap memory\n");
return (ENOMEM);
}
/* Allocate Rx queue mapping memory */
if (!(vsi->rx_qmap =
(u16 *) malloc(sizeof(u16) * max_rx_queues, M_ICE, M_WAITOK))) {
device_printf(sc->dev, "Unable to allocate Rx qmap memory\n");
goto free_tx_qmap;
}
/* Mark every queue map as invalid to start with */
for (i = 0; i < max_tx_queues; i++) {
vsi->tx_qmap[i] = ICE_INVALID_RES_IDX;
}
for (i = 0; i < max_rx_queues; i++) {
vsi->rx_qmap[i] = ICE_INVALID_RES_IDX;
}
return 0;
free_tx_qmap:
free(vsi->tx_qmap, M_ICE);
vsi->tx_qmap = NULL;
return (ENOMEM);
}
/**
* ice_free_vsi_qmaps - Free the PF qmaps associated with a VSI
* @vsi: the VSI private structure
*
* Frees the PF qmaps associated with the given VSI. Generally this will be
* called by ice_release_vsi, but may need to be called during attach cleanup,
* depending on when the qmaps were allocated.
*/
void
ice_free_vsi_qmaps(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
if (vsi->tx_qmap) {
ice_resmgr_release_map(&sc->tx_qmgr, vsi->tx_qmap,
vsi->num_tx_queues);
free(vsi->tx_qmap, M_ICE);
vsi->tx_qmap = NULL;
}
if (vsi->rx_qmap) {
ice_resmgr_release_map(&sc->rx_qmgr, vsi->rx_qmap,
vsi->num_rx_queues);
free(vsi->rx_qmap, M_ICE);
vsi->rx_qmap = NULL;
}
}
/**
* ice_set_default_vsi_ctx - Setup default VSI context parameters
* @ctx: the VSI context to initialize
*
* Initialize and prepare a default VSI context for configuring a new VSI.
*/
static void
ice_set_default_vsi_ctx(struct ice_vsi_ctx *ctx)
{
u32 table = 0;
memset(&ctx->info, 0, sizeof(ctx->info));
/* VSI will be allocated from shared pool */
ctx->alloc_from_pool = true;
/* Enable source pruning by default */
ctx->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
/* Traffic from VSI can be sent to LAN */
ctx->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
/* Allow all packets untagged/tagged */
ctx->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
ICE_AQ_VSI_VLAN_MODE_M) >>
ICE_AQ_VSI_VLAN_MODE_S);
/* Show VLAN/UP from packets in Rx descriptors */
ctx->info.vlan_flags |= ((ICE_AQ_VSI_VLAN_EMOD_STR_BOTH &
ICE_AQ_VSI_VLAN_EMOD_M) >>
ICE_AQ_VSI_VLAN_EMOD_S);
/* Have 1:1 UP mapping for both ingress/egress tables */
table |= ICE_UP_TABLE_TRANSLATE(0, 0);
table |= ICE_UP_TABLE_TRANSLATE(1, 1);
table |= ICE_UP_TABLE_TRANSLATE(2, 2);
table |= ICE_UP_TABLE_TRANSLATE(3, 3);
table |= ICE_UP_TABLE_TRANSLATE(4, 4);
table |= ICE_UP_TABLE_TRANSLATE(5, 5);
table |= ICE_UP_TABLE_TRANSLATE(6, 6);
table |= ICE_UP_TABLE_TRANSLATE(7, 7);
ctx->info.ingress_table = CPU_TO_LE32(table);
ctx->info.egress_table = CPU_TO_LE32(table);
/* Have 1:1 UP mapping for outer to inner UP table */
ctx->info.outer_up_table = CPU_TO_LE32(table);
/* No Outer tag support, so outer_tag_flags remains zero */
}
/**
* ice_set_rss_vsi_ctx - Setup VSI context parameters for RSS
* @ctx: the VSI context to configure
* @type: the VSI type
*
* Configures the VSI context for RSS, based on the VSI type.
*/
static void
ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctx, enum ice_vsi_type type)
{
u8 lut_type, hash_type;
switch (type) {
case ICE_VSI_PF:
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
break;
case ICE_VSI_VF:
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
break;
default:
/* Other VSI types do not support RSS */
return;
}
ctx->info.q_opt_rss = (((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
ICE_AQ_VSI_Q_OPT_RSS_HASH_M));
}
/**
* ice_setup_vsi_qmap - Setup the queue mapping for a VSI
* @vsi: the VSI to configure
* @ctx: the VSI context to configure
*
* Configures the context for the given VSI, setting up how the firmware
* should map the queues for this VSI.
*/
static int
ice_setup_vsi_qmap(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
{
int pow = 0;
u16 qmap;
MPASS(vsi->rx_qmap != NULL);
/* TODO:
* Handle multiple Traffic Classes
* Handle scattered queues (for VFs)
*/
if (vsi->qmap_type != ICE_RESMGR_ALLOC_CONTIGUOUS)
return (EOPNOTSUPP);
ctx->info.mapping_flags |= CPU_TO_LE16(ICE_AQ_VSI_Q_MAP_CONTIG);
ctx->info.q_mapping[0] = CPU_TO_LE16(vsi->rx_qmap[0]);
ctx->info.q_mapping[1] = CPU_TO_LE16(vsi->num_rx_queues);
/* Calculate the next power-of-2 of number of queues */
if (vsi->num_rx_queues)
pow = flsl(vsi->num_rx_queues - 1);
/* Assign all the queues to traffic class zero */
qmap = (pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M;
ctx->info.tc_mapping[0] = CPU_TO_LE16(qmap);
return 0;
}
/**
* ice_initialize_vsi - Initialize a VSI for use
* @vsi: the vsi to initialize
*
* Initialize a VSI over the adminq and prepare it for operation.
*/
int
ice_initialize_vsi(struct ice_vsi *vsi)
{
struct ice_vsi_ctx ctx = { 0 };
struct ice_hw *hw = &vsi->sc->hw;
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
enum ice_status status;
int err;
/* For now, we only have code supporting PF VSIs */
switch (vsi->type) {
case ICE_VSI_PF:
ctx.flags = ICE_AQ_VSI_TYPE_PF;
break;
default:
return (ENODEV);
}
ice_set_default_vsi_ctx(&ctx);
ice_set_rss_vsi_ctx(&ctx, vsi->type);
/* XXX: VSIs of other types may need different port info? */
ctx.info.sw_id = hw->port_info->sw_id;
/* Set some RSS parameters based on the VSI type */
ice_vsi_set_rss_params(vsi);
/* Initialize the Rx queue mapping for this VSI */
err = ice_setup_vsi_qmap(vsi, &ctx);
if (err) {
return err;
}
/* (Re-)add VSI to HW VSI handle list */
status = ice_add_vsi(hw, vsi->idx, &ctx, NULL);
if (status != 0) {
device_printf(vsi->sc->dev,
"Add VSI AQ call failed, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
vsi->info = ctx.info;
/* TODO: DCB traffic class support? */
max_txqs[0] = vsi->num_tx_queues;
status = ice_cfg_vsi_lan(hw->port_info, vsi->idx,
ICE_DFLT_TRAFFIC_CLASS, max_txqs);
if (status) {
device_printf(vsi->sc->dev,
"Failed VSI lan queue config, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
ice_deinit_vsi(vsi);
return (ENODEV);
}
/* Reset VSI stats */
ice_reset_vsi_stats(vsi);
return 0;
}
/**
* ice_deinit_vsi - Tell firmware to release resources for a VSI
* @vsi: the VSI to release
*
* Helper function which requests the firmware to release the hardware
* resources associated with a given VSI.
*/
void
ice_deinit_vsi(struct ice_vsi *vsi)
{
struct ice_vsi_ctx ctx = { 0 };
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* Assert that the VSI pointer matches in the list */
MPASS(vsi == sc->all_vsi[vsi->idx]);
ctx.info = vsi->info;
status = ice_rm_vsi_lan_cfg(hw->port_info, vsi->idx);
if (status) {
/*
* This should only fail if the VSI handle is invalid, or if
* any of the nodes have leaf nodes which are still in use.
*/
device_printf(sc->dev,
"Unable to remove scheduler nodes for VSI %d, err %s\n",
vsi->idx, ice_status_str(status));
}
/* Tell firmware to release the VSI resources */
status = ice_free_vsi(hw, vsi->idx, &ctx, false, NULL);
if (status != 0) {
device_printf(sc->dev,
"Free VSI %u AQ call failed, err %s aq_err %s\n",
vsi->idx, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_release_vsi - Release resources associated with a VSI
* @vsi: the VSI to release
*
* Release software and firmware resources associated with a VSI. Release the
* queue managers associated with this VSI. Also free the VSI structure memory
* if the VSI was allocated dynamically using ice_alloc_vsi().
*/
void
ice_release_vsi(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
int idx = vsi->idx;
/* Assert that the VSI pointer matches in the list */
MPASS(vsi == sc->all_vsi[idx]);
/* Cleanup RSS configuration */
if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_RSS))
ice_clean_vsi_rss_cfg(vsi);
ice_del_vsi_sysctl_ctx(vsi);
ice_deinit_vsi(vsi);
ice_free_vsi_qmaps(vsi);
if (vsi->dynamic) {
free(sc->all_vsi[idx], M_ICE);
}
sc->all_vsi[idx] = NULL;
}
/**
* ice_aq_speed_to_rate - Convert AdminQ speed enum to baudrate
* @pi: port info data
*
* Returns the baudrate value for the current link speed of a given port.
*/
uint64_t
ice_aq_speed_to_rate(struct ice_port_info *pi)
{
switch (pi->phy.link_info.link_speed) {
case ICE_AQ_LINK_SPEED_100GB:
return IF_Gbps(100);
case ICE_AQ_LINK_SPEED_50GB:
return IF_Gbps(50);
case ICE_AQ_LINK_SPEED_40GB:
return IF_Gbps(40);
case ICE_AQ_LINK_SPEED_25GB:
return IF_Gbps(25);
case ICE_AQ_LINK_SPEED_10GB:
return IF_Gbps(10);
case ICE_AQ_LINK_SPEED_5GB:
return IF_Gbps(5);
case ICE_AQ_LINK_SPEED_2500MB:
return IF_Mbps(2500);
case ICE_AQ_LINK_SPEED_1000MB:
return IF_Mbps(1000);
case ICE_AQ_LINK_SPEED_100MB:
return IF_Mbps(100);
case ICE_AQ_LINK_SPEED_10MB:
return IF_Mbps(10);
case ICE_AQ_LINK_SPEED_UNKNOWN:
default:
/* return 0 if we don't know the link speed */
return 0;
}
}
/**
* ice_aq_speed_to_str - Convert AdminQ speed enum to string representation
* @pi: port info data
*
* Returns the string representation of the current link speed for a given
* port.
*/
static const char *
ice_aq_speed_to_str(struct ice_port_info *pi)
{
switch (pi->phy.link_info.link_speed) {
case ICE_AQ_LINK_SPEED_100GB:
return "100 Gbps";
case ICE_AQ_LINK_SPEED_50GB:
return "50 Gbps";
case ICE_AQ_LINK_SPEED_40GB:
return "40 Gbps";
case ICE_AQ_LINK_SPEED_25GB:
return "25 Gbps";
case ICE_AQ_LINK_SPEED_20GB:
return "20 Gbps";
case ICE_AQ_LINK_SPEED_10GB:
return "10 Gbps";
case ICE_AQ_LINK_SPEED_5GB:
return "5 Gbps";
case ICE_AQ_LINK_SPEED_2500MB:
return "2.5 Gbps";
case ICE_AQ_LINK_SPEED_1000MB:
return "1 Gbps";
case ICE_AQ_LINK_SPEED_100MB:
return "100 Mbps";
case ICE_AQ_LINK_SPEED_10MB:
return "10 Mbps";
case ICE_AQ_LINK_SPEED_UNKNOWN:
default:
return "Unknown speed";
}
}
/**
* ice_get_phy_type_low - Get media associated with phy_type_low
* @phy_type_low: the low 64bits of phy_type from the AdminQ
*
* Given the lower 64bits of the phy_type from the hardware, return the
* ifm_active bit associated. Return IFM_UNKNOWN when phy_type_low is unknown.
* Note that only one of ice_get_phy_type_low or ice_get_phy_type_high should
* be called. If phy_type_low is zero, call ice_phy_type_high.
*/
int
ice_get_phy_type_low(uint64_t phy_type_low)
{
switch (phy_type_low) {
case ICE_PHY_TYPE_LOW_100BASE_TX:
return IFM_100_TX;
case ICE_PHY_TYPE_LOW_100M_SGMII:
return IFM_100_SGMII;
case ICE_PHY_TYPE_LOW_1000BASE_T:
return IFM_1000_T;
case ICE_PHY_TYPE_LOW_1000BASE_SX:
return IFM_1000_SX;
case ICE_PHY_TYPE_LOW_1000BASE_LX:
return IFM_1000_LX;
case ICE_PHY_TYPE_LOW_1000BASE_KX:
return IFM_1000_KX;
case ICE_PHY_TYPE_LOW_1G_SGMII:
return IFM_1000_SGMII;
case ICE_PHY_TYPE_LOW_2500BASE_T:
return IFM_2500_T;
case ICE_PHY_TYPE_LOW_2500BASE_X:
return IFM_2500_X;
case ICE_PHY_TYPE_LOW_2500BASE_KX:
return IFM_2500_KX;
case ICE_PHY_TYPE_LOW_5GBASE_T:
return IFM_5000_T;
case ICE_PHY_TYPE_LOW_5GBASE_KR:
return IFM_5000_KR;
case ICE_PHY_TYPE_LOW_10GBASE_T:
return IFM_10G_T;
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
return IFM_10G_TWINAX;
case ICE_PHY_TYPE_LOW_10GBASE_SR:
return IFM_10G_SR;
case ICE_PHY_TYPE_LOW_10GBASE_LR:
return IFM_10G_LR;
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
return IFM_10G_KR;
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
return IFM_10G_AOC;
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
return IFM_10G_SFI;
case ICE_PHY_TYPE_LOW_25GBASE_T:
return IFM_25G_T;
case ICE_PHY_TYPE_LOW_25GBASE_CR:
return IFM_25G_CR;
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
return IFM_25G_CR_S;
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
return IFM_25G_CR1;
case ICE_PHY_TYPE_LOW_25GBASE_SR:
return IFM_25G_SR;
case ICE_PHY_TYPE_LOW_25GBASE_LR:
return IFM_25G_LR;
case ICE_PHY_TYPE_LOW_25GBASE_KR:
return IFM_25G_KR;
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
return IFM_25G_KR_S;
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
return IFM_25G_KR1;
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
return IFM_25G_AOC;
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
return IFM_25G_AUI;
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
return IFM_40G_CR4;
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
return IFM_40G_SR4;
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
return IFM_40G_LR4;
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
return IFM_40G_KR4;
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
return IFM_40G_XLAUI_AC;
case ICE_PHY_TYPE_LOW_40G_XLAUI:
return IFM_40G_XLAUI;
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
return IFM_50G_CR2;
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
return IFM_50G_SR2;
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
return IFM_50G_LR2;
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
return IFM_50G_KR2;
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
return IFM_50G_LAUI2_AC;
case ICE_PHY_TYPE_LOW_50G_LAUI2:
return IFM_50G_LAUI2;
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
return IFM_50G_AUI2_AC;
case ICE_PHY_TYPE_LOW_50G_AUI2:
return IFM_50G_AUI2;
case ICE_PHY_TYPE_LOW_50GBASE_CP:
return IFM_50G_CP;
case ICE_PHY_TYPE_LOW_50GBASE_SR:
return IFM_50G_SR;
case ICE_PHY_TYPE_LOW_50GBASE_FR:
return IFM_50G_FR;
case ICE_PHY_TYPE_LOW_50GBASE_LR:
return IFM_50G_LR;
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
return IFM_50G_KR_PAM4;
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
return IFM_50G_AUI1_AC;
case ICE_PHY_TYPE_LOW_50G_AUI1:
return IFM_50G_AUI1;
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
return IFM_100G_CR4;
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
return IFM_100G_SR4;
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
return IFM_100G_LR4;
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
return IFM_100G_KR4;
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
return IFM_100G_CAUI4_AC;
case ICE_PHY_TYPE_LOW_100G_CAUI4:
return IFM_100G_CAUI4;
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
return IFM_100G_AUI4_AC;
case ICE_PHY_TYPE_LOW_100G_AUI4:
return IFM_100G_AUI4;
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
return IFM_100G_CR_PAM4;
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
return IFM_100G_KR_PAM4;
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
return IFM_100G_CP2;
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
return IFM_100G_SR2;
case ICE_PHY_TYPE_LOW_100GBASE_DR:
return IFM_100G_DR;
default:
return IFM_UNKNOWN;
}
}
/**
* ice_get_phy_type_high - Get media associated with phy_type_high
* @phy_type_high: the upper 64bits of phy_type from the AdminQ
*
* Given the upper 64bits of the phy_type from the hardware, return the
* ifm_active bit associated. Return IFM_UNKNOWN on an unknown value. Note
* that only one of ice_get_phy_type_low or ice_get_phy_type_high should be
* called. If phy_type_high is zero, call ice_get_phy_type_low.
*/
int
ice_get_phy_type_high(uint64_t phy_type_high)
{
switch (phy_type_high) {
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
return IFM_100G_KR2_PAM4;
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
return IFM_100G_CAUI2_AC;
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
return IFM_100G_CAUI2;
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
return IFM_100G_AUI2_AC;
case ICE_PHY_TYPE_HIGH_100G_AUI2:
return IFM_100G_AUI2;
default:
return IFM_UNKNOWN;
}
}
/**
* ice_phy_types_to_max_rate - Returns port's max supported baudrate
* @pi: port info struct
*
* ice_aq_get_phy_caps() w/ ICE_AQC_REPORT_TOPO_CAP parameter needs to have
* been called before this function for it to work.
*/
static uint64_t
ice_phy_types_to_max_rate(struct ice_port_info *pi)
{
uint64_t phy_low = pi->phy.phy_type_low;
uint64_t phy_high = pi->phy.phy_type_high;
uint64_t max_rate = 0;
int bit;
/*
* These are based on the indices used in the BIT() macros for
* ICE_PHY_TYPE_LOW_*
*/
static const uint64_t phy_rates[] = {
IF_Mbps(100),
IF_Mbps(100),
IF_Gbps(1ULL),
IF_Gbps(1ULL),
IF_Gbps(1ULL),
IF_Gbps(1ULL),
IF_Gbps(1ULL),
IF_Mbps(2500ULL),
IF_Mbps(2500ULL),
IF_Mbps(2500ULL),
IF_Gbps(5ULL),
IF_Gbps(5ULL),
IF_Gbps(10ULL),
IF_Gbps(10ULL),
IF_Gbps(10ULL),
IF_Gbps(10ULL),
IF_Gbps(10ULL),
IF_Gbps(10ULL),
IF_Gbps(10ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(25ULL),
IF_Gbps(40ULL),
IF_Gbps(40ULL),
IF_Gbps(40ULL),
IF_Gbps(40ULL),
IF_Gbps(40ULL),
IF_Gbps(40ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(50ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
/* These rates are for ICE_PHY_TYPE_HIGH_* */
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL),
IF_Gbps(100ULL)
};
/* coverity[address_of] */
for_each_set_bit(bit, &phy_high, 64)
if ((bit + 64) < (int)ARRAY_SIZE(phy_rates))
max_rate = uqmax(max_rate, phy_rates[(bit + 64)]);
/* coverity[address_of] */
for_each_set_bit(bit, &phy_low, 64)
max_rate = uqmax(max_rate, phy_rates[bit]);
return (max_rate);
}
/* The if_media type is split over the original 5 bit media variant field,
* along with extended types using up extra bits in the options section.
* We want to convert this split number into a bitmap index, so we reverse the
* calculation of IFM_X here.
*/
#define IFM_IDX(x) (((x) & IFM_TMASK) | \
(((x) & IFM_ETH_XTYPE) >> IFM_ETH_XSHIFT))
/**
* ice_add_media_types - Add supported media types to the media structure
* @sc: ice private softc structure
* @media: ifmedia structure to setup
*
* Looks up the supported phy types, and initializes the various media types
* available.
*
* @pre this function must be protected from being called while another thread
* is accessing the ifmedia types.
*/
enum ice_status
ice_add_media_types(struct ice_softc *sc, struct ifmedia *media)
{
enum ice_status status;
uint64_t phy_low, phy_high;
int bit;
ASSERT_CFG_LOCKED(sc);
/* the maximum possible media type index is 511. We probably don't
* need most of this space, but this ensures future compatibility when
* additional media types are used.
*/
ice_declare_bitmap(already_added, 511);
/* Remove all previous media types */
ifmedia_removeall(media);
status = ice_get_phy_types(sc, &phy_low, &phy_high);
if (status != ICE_SUCCESS) {
/* Function already prints appropriate error
* message
*/
return (status);
}
/* make sure the added bitmap is zero'd */
memset(already_added, 0, sizeof(already_added));
/* coverity[address_of] */
for_each_set_bit(bit, &phy_low, 64) {
uint64_t type = BIT_ULL(bit);
int ostype;
/* get the OS media type */
ostype = ice_get_phy_type_low(type);
/* don't bother adding the unknown type */
if (ostype == IFM_UNKNOWN)
continue;
/* only add each media type to the list once */
if (ice_is_bit_set(already_added, IFM_IDX(ostype)))
continue;
ifmedia_add(media, IFM_ETHER | ostype, 0, NULL);
ice_set_bit(IFM_IDX(ostype), already_added);
}
/* coverity[address_of] */
for_each_set_bit(bit, &phy_high, 64) {
uint64_t type = BIT_ULL(bit);
int ostype;
/* get the OS media type */
ostype = ice_get_phy_type_high(type);
/* don't bother adding the unknown type */
if (ostype == IFM_UNKNOWN)
continue;
/* only add each media type to the list once */
if (ice_is_bit_set(already_added, IFM_IDX(ostype)))
continue;
ifmedia_add(media, IFM_ETHER | ostype, 0, NULL);
ice_set_bit(IFM_IDX(ostype), already_added);
}
/* Use autoselect media by default */
ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(media, IFM_ETHER | IFM_AUTO);
return (ICE_SUCCESS);
}
/**
* ice_configure_rxq_interrupts - Configure HW Rx queues for MSI-X interrupts
* @vsi: the VSI to configure
*
* Called when setting up MSI-X interrupts to configure the Rx hardware queues.
*/
void
ice_configure_rxq_interrupts(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->sc->hw;
int i;
for (i = 0; i < vsi->num_rx_queues; i++) {
struct ice_rx_queue *rxq = &vsi->rx_queues[i];
u32 val;
val = (QINT_RQCTL_CAUSE_ENA_M |
(ICE_RX_ITR << QINT_RQCTL_ITR_INDX_S) |
(rxq->irqv->me << QINT_RQCTL_MSIX_INDX_S));
wr32(hw, QINT_RQCTL(vsi->rx_qmap[rxq->me]), val);
}
ice_flush(hw);
}
/**
* ice_configure_txq_interrupts - Configure HW Tx queues for MSI-X interrupts
* @vsi: the VSI to configure
*
* Called when setting up MSI-X interrupts to configure the Tx hardware queues.
*/
void
ice_configure_txq_interrupts(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->sc->hw;
int i;
for (i = 0; i < vsi->num_tx_queues; i++) {
struct ice_tx_queue *txq = &vsi->tx_queues[i];
u32 val;
val = (QINT_TQCTL_CAUSE_ENA_M |
(ICE_TX_ITR << QINT_TQCTL_ITR_INDX_S) |
(txq->irqv->me << QINT_TQCTL_MSIX_INDX_S));
wr32(hw, QINT_TQCTL(vsi->tx_qmap[txq->me]), val);
}
ice_flush(hw);
}
/**
* ice_flush_rxq_interrupts - Unconfigure Hw Rx queues MSI-X interrupt cause
* @vsi: the VSI to configure
*
* Unset the CAUSE_ENA flag of the TQCTL register for each queue, then trigger
* a software interrupt on that cause. This is required as part of the Rx
* queue disable logic to dissociate the Rx queue from the interrupt.
*
* Note: this function must be called prior to disabling Rx queues with
* ice_control_rx_queues, otherwise the Rx queue may not be disabled properly.
*/
void
ice_flush_rxq_interrupts(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->sc->hw;
int i;
for (i = 0; i < vsi->num_rx_queues; i++) {
struct ice_rx_queue *rxq = &vsi->rx_queues[i];
u32 reg, val;
/* Clear the CAUSE_ENA flag */
reg = vsi->rx_qmap[rxq->me];
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
ice_flush(hw);
/* Trigger a software interrupt to complete interrupt
* dissociation.
*/
wr32(hw, GLINT_DYN_CTL(rxq->irqv->me),
GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
}
}
/**
* ice_flush_txq_interrupts - Unconfigure Hw Tx queues MSI-X interrupt cause
* @vsi: the VSI to configure
*
* Unset the CAUSE_ENA flag of the TQCTL register for each queue, then trigger
* a software interrupt on that cause. This is required as part of the Tx
* queue disable logic to dissociate the Tx queue from the interrupt.
*
* Note: this function must be called prior to ice_vsi_disable_tx, otherwise
* the Tx queue disable may not complete properly.
*/
void
ice_flush_txq_interrupts(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->sc->hw;
int i;
for (i = 0; i < vsi->num_tx_queues; i++) {
struct ice_tx_queue *txq = &vsi->tx_queues[i];
u32 reg, val;
/* Clear the CAUSE_ENA flag */
reg = vsi->tx_qmap[txq->me];
val = rd32(hw, QINT_TQCTL(reg));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(reg), val);
ice_flush(hw);
/* Trigger a software interrupt to complete interrupt
* dissociation.
*/
wr32(hw, GLINT_DYN_CTL(txq->irqv->me),
GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
}
}
/**
* ice_configure_rx_itr - Configure the Rx ITR settings for this VSI
* @vsi: the VSI to configure
*
* Program the hardware ITR registers with the settings for this VSI.
*/
void
ice_configure_rx_itr(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->sc->hw;
int i;
/* TODO: Handle per-queue/per-vector ITR? */
for (i = 0; i < vsi->num_rx_queues; i++) {
struct ice_rx_queue *rxq = &vsi->rx_queues[i];
wr32(hw, GLINT_ITR(ICE_RX_ITR, rxq->irqv->me),
ice_itr_to_reg(hw, vsi->rx_itr));
}
ice_flush(hw);
}
/**
* ice_configure_tx_itr - Configure the Tx ITR settings for this VSI
* @vsi: the VSI to configure
*
* Program the hardware ITR registers with the settings for this VSI.
*/
void
ice_configure_tx_itr(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->sc->hw;
int i;
/* TODO: Handle per-queue/per-vector ITR? */
for (i = 0; i < vsi->num_tx_queues; i++) {
struct ice_tx_queue *txq = &vsi->tx_queues[i];
wr32(hw, GLINT_ITR(ICE_TX_ITR, txq->irqv->me),
ice_itr_to_reg(hw, vsi->tx_itr));
}
ice_flush(hw);
}
/**
* ice_setup_tx_ctx - Setup an ice_tlan_ctx structure for a queue
* @txq: the Tx queue to configure
* @tlan_ctx: the Tx LAN queue context structure to initialize
* @pf_q: real queue number
*/
static int
ice_setup_tx_ctx(struct ice_tx_queue *txq, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
struct ice_vsi *vsi = txq->vsi;
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
tlan_ctx->port_num = hw->port_info->lport;
/* number of descriptors in the queue */
tlan_ctx->qlen = txq->desc_count;
/* set the transmit queue base address, defined in 128 byte units */
tlan_ctx->base = txq->tx_paddr >> 7;
tlan_ctx->pf_num = hw->pf_id;
/* For now, we only have code supporting PF VSIs */
switch (vsi->type) {
case ICE_VSI_PF:
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
break;
default:
return (ENODEV);
}
tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
/* Enable TSO */
tlan_ctx->tso_ena = 1;
tlan_ctx->internal_usage_flag = 1;
tlan_ctx->tso_qnum = pf_q;
/*
* Stick with the older legacy Tx queue interface, instead of the new
* advanced queue interface.
*/
tlan_ctx->legacy_int = 1;
/* Descriptor WB mode */
tlan_ctx->wb_mode = 0;
return (0);
}
/**
* ice_cfg_vsi_for_tx - Configure the hardware for Tx
* @vsi: the VSI to configure
*
* Configure the device Tx queues through firmware AdminQ commands. After
* this, Tx queues will be ready for transmit.
*/
int
ice_cfg_vsi_for_tx(struct ice_vsi *vsi)
{
struct ice_aqc_add_tx_qgrp qg = { 0 };
struct ice_hw *hw = &vsi->sc->hw;
device_t dev = vsi->sc->dev;
enum ice_status status;
int i, err;
u16 pf_q;
qg.num_txqs = 1;
for (i = 0; i < vsi->num_tx_queues; i++) {
struct ice_tlan_ctx tlan_ctx = { 0 };
struct ice_tx_queue *txq = &vsi->tx_queues[i];
pf_q = vsi->tx_qmap[txq->me];
qg.txqs[0].txq_id = htole16(pf_q);
err = ice_setup_tx_ctx(txq, &tlan_ctx, pf_q);
if (err)
return err;
ice_set_ctx((u8 *)&tlan_ctx, qg.txqs[0].txq_ctx,
ice_tlan_ctx_info);
status = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0,
i, 1, &qg, sizeof(qg), NULL);
if (status) {
device_printf(dev,
"Failed to set LAN Tx queue context, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
return (ENODEV);
}
/* Keep track of the Tx queue TEID */
if (pf_q == le16toh(qg.txqs[0].txq_id))
txq->q_teid = le32toh(qg.txqs[0].q_teid);
}
return (0);
}
/**
* ice_setup_rx_ctx - Setup an Rx context structure for a receive queue
* @rxq: the receive queue to program
*
* Setup an Rx queue context structure and program it into the hardware
* registers. This is a necessary step for enabling the Rx queue.
*
* @pre the VSI associated with this queue must have initialized mbuf_sz
*/
static int
ice_setup_rx_ctx(struct ice_rx_queue *rxq)
{
struct ice_rlan_ctx rlan_ctx = {0};
struct ice_vsi *vsi = rxq->vsi;
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
u32 rxdid = ICE_RXDID_FLEX_NIC;
u32 regval;
u16 pf_q;
pf_q = vsi->rx_qmap[rxq->me];
/* set the receive queue base address, defined in 128 byte units */
rlan_ctx.base = rxq->rx_paddr >> 7;
rlan_ctx.qlen = rxq->desc_count;
rlan_ctx.dbuf = vsi->mbuf_sz >> ICE_RLAN_CTX_DBUF_S;
/* use 32 byte descriptors */
rlan_ctx.dsize = 1;
/* Strip the Ethernet CRC bytes before the packet is posted to the
* host memory.
*/
rlan_ctx.crcstrip = 1;
rlan_ctx.l2tsel = 1;
/* don't do header splitting */
rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
/* strip VLAN from inner headers */
rlan_ctx.showiv = 1;
rlan_ctx.rxmax = min(vsi->max_frame_size,
ICE_MAX_RX_SEGS * vsi->mbuf_sz);
rlan_ctx.lrxqthresh = 1;
if (vsi->type != ICE_VSI_VF) {
regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
regval &= ~QRXFLXP_CNTXT_RXDID_IDX_M;
regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
regval &= ~QRXFLXP_CNTXT_RXDID_PRIO_M;
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
}
status = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
if (status) {
device_printf(sc->dev,
"Failed to set LAN Rx queue context, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
wr32(hw, rxq->tail, 0);
return 0;
}
/**
* ice_cfg_vsi_for_rx - Configure the hardware for Rx
* @vsi: the VSI to configure
*
* Prepare an Rx context descriptor and configure the device to receive
* traffic.
*
* @pre the VSI must have initialized mbuf_sz
*/
int
ice_cfg_vsi_for_rx(struct ice_vsi *vsi)
{
int i, err;
for (i = 0; i < vsi->num_rx_queues; i++) {
MPASS(vsi->mbuf_sz > 0);
err = ice_setup_rx_ctx(&vsi->rx_queues[i]);
if (err)
return err;
}
return (0);
}
/**
* ice_is_rxq_ready - Check if an Rx queue is ready
* @hw: ice hw structure
* @pf_q: absolute PF queue index to check
* @reg: on successful return, contains qrx_ctrl contents
*
* Reads the QRX_CTRL register and verifies if the queue is in a consistent
* state. That is, QENA_REQ matches QENA_STAT. Used to check before making
* a request to change the queue, as well as to verify the request has
* finished. The queue should change status within a few microseconds, so we
* use a small delay while polling the register.
*
* Returns an error code if the queue does not update after a few retries.
*/
static int
ice_is_rxq_ready(struct ice_hw *hw, int pf_q, u32 *reg)
{
u32 qrx_ctrl, qena_req, qena_stat;
int i;
for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) {
qrx_ctrl = rd32(hw, QRX_CTRL(pf_q));
qena_req = (qrx_ctrl >> QRX_CTRL_QENA_REQ_S) & 1;
qena_stat = (qrx_ctrl >> QRX_CTRL_QENA_STAT_S) & 1;
/* if the request and status bits equal, then the queue is
* fully disabled or enabled.
*/
if (qena_req == qena_stat) {
*reg = qrx_ctrl;
return (0);
}
/* wait a few microseconds before we check again */
DELAY(10);
}
return (ETIMEDOUT);
}
/**
* ice_control_rx_queues - Configure hardware to start or stop the Rx queues
* @vsi: VSI to enable/disable queues
* @enable: true to enable queues, false to disable
*
* Control the Rx queues through the QRX_CTRL register, enabling or disabling
* them. Wait for the appropriate time to ensure that the queues have actually
* reached the expected state.
*/
int
ice_control_rx_queues(struct ice_vsi *vsi, bool enable)
{
struct ice_hw *hw = &vsi->sc->hw;
device_t dev = vsi->sc->dev;
u32 qrx_ctrl = 0;
int i, err;
/* TODO: amortize waits by changing all queues up front and then
* checking their status afterwards. This will become more necessary
* when we have a large number of queues.
*/
for (i = 0; i < vsi->num_rx_queues; i++) {
struct ice_rx_queue *rxq = &vsi->rx_queues[i];
int pf_q = vsi->rx_qmap[rxq->me];
err = ice_is_rxq_ready(hw, pf_q, &qrx_ctrl);
if (err) {
device_printf(dev,
"Rx queue %d is not ready\n",
pf_q);
return err;
}
/* Skip if the queue is already in correct state */
if (enable == !!(qrx_ctrl & QRX_CTRL_QENA_STAT_M))
continue;
if (enable)
qrx_ctrl |= QRX_CTRL_QENA_REQ_M;
else
qrx_ctrl &= ~QRX_CTRL_QENA_REQ_M;
wr32(hw, QRX_CTRL(pf_q), qrx_ctrl);
/* wait for the queue to finalize the request */
err = ice_is_rxq_ready(hw, pf_q, &qrx_ctrl);
if (err) {
device_printf(dev,
"Rx queue %d %sable timeout\n",
pf_q, (enable ? "en" : "dis"));
return err;
}
/* this should never happen */
if (enable != !!(qrx_ctrl & QRX_CTRL_QENA_STAT_M)) {
device_printf(dev,
"Rx queue %d invalid state\n",
pf_q);
return (EDOOFUS);
}
}
return (0);
}
/**
* ice_add_mac_to_list - Add MAC filter to a MAC filter list
* @vsi: the VSI to forward to
* @list: list which contains MAC filter entries
* @addr: the MAC address to be added
* @action: filter action to perform on match
*
* Adds a MAC address filter to the list which will be forwarded to firmware
* to add a series of MAC address filters.
*
* Returns 0 on success, and an error code on failure.
*
*/
static int
ice_add_mac_to_list(struct ice_vsi *vsi, struct ice_list_head *list,
const u8 *addr, enum ice_sw_fwd_act_type action)
{
struct ice_fltr_list_entry *entry;
entry = (__typeof(entry))malloc(sizeof(*entry), M_ICE, M_NOWAIT|M_ZERO);
if (!entry)
return (ENOMEM);
entry->fltr_info.flag = ICE_FLTR_TX;
entry->fltr_info.src_id = ICE_SRC_ID_VSI;
entry->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
entry->fltr_info.fltr_act = action;
entry->fltr_info.vsi_handle = vsi->idx;
bcopy(addr, entry->fltr_info.l_data.mac.mac_addr, ETHER_ADDR_LEN);
LIST_ADD(&entry->list_entry, list);
return 0;
}
/**
* ice_free_fltr_list - Free memory associated with a MAC address list
* @list: the list to free
*
* Free the memory of each entry associated with the list.
*/
static void
ice_free_fltr_list(struct ice_list_head *list)
{
struct ice_fltr_list_entry *e, *tmp;
LIST_FOR_EACH_ENTRY_SAFE(e, tmp, list, ice_fltr_list_entry, list_entry) {
LIST_DEL(&e->list_entry);
free(e, M_ICE);
}
}
/**
* ice_add_vsi_mac_filter - Add a MAC address filter for a VSI
* @vsi: the VSI to add the filter for
* @addr: MAC address to add a filter for
*
* Add a MAC address filter for a given VSI. This is a wrapper around
* ice_add_mac to simplify the interface. First, it only accepts a single
* address, so we don't have to mess around with the list setup in other
* functions. Second, it ignores the ICE_ERR_ALREADY_EXIST error, so that
* callers don't need to worry about attempting to add the same filter twice.
*/
int
ice_add_vsi_mac_filter(struct ice_vsi *vsi, const u8 *addr)
{
struct ice_list_head mac_addr_list;
struct ice_hw *hw = &vsi->sc->hw;
device_t dev = vsi->sc->dev;
enum ice_status status;
int err = 0;
INIT_LIST_HEAD(&mac_addr_list);
err = ice_add_mac_to_list(vsi, &mac_addr_list, addr, ICE_FWD_TO_VSI);
if (err)
goto free_mac_list;
status = ice_add_mac(hw, &mac_addr_list);
if (status == ICE_ERR_ALREADY_EXISTS) {
; /* Don't complain if we try to add a filter that already exists */
} else if (status) {
device_printf(dev,
"Failed to add a filter for MAC %6D, err %s aq_err %s\n",
addr, ":",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
err = (EIO);
}
free_mac_list:
ice_free_fltr_list(&mac_addr_list);
return err;
}
/**
* ice_cfg_pf_default_mac_filters - Setup default unicast and broadcast addrs
* @sc: device softc structure
*
* Program the default unicast and broadcast filters for the PF VSI.
*/
int
ice_cfg_pf_default_mac_filters(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
int err;
/* Add the LAN MAC address */
err = ice_add_vsi_mac_filter(vsi, hw->port_info->mac.lan_addr);
if (err)
return err;
/* Add the broadcast address */
err = ice_add_vsi_mac_filter(vsi, broadcastaddr);
if (err)
return err;
return (0);
}
/**
* ice_remove_vsi_mac_filter - Remove a MAC address filter for a VSI
* @vsi: the VSI to add the filter for
* @addr: MAC address to remove a filter for
*
* Remove a MAC address filter from a given VSI. This is a wrapper around
* ice_remove_mac to simplify the interface. First, it only accepts a single
* address, so we don't have to mess around with the list setup in other
* functions. Second, it ignores the ICE_ERR_DOES_NOT_EXIST error, so that
* callers don't need to worry about attempting to remove filters which
* haven't yet been added.
*/
int
ice_remove_vsi_mac_filter(struct ice_vsi *vsi, const u8 *addr)
{
struct ice_list_head mac_addr_list;
struct ice_hw *hw = &vsi->sc->hw;
device_t dev = vsi->sc->dev;
enum ice_status status;
int err = 0;
INIT_LIST_HEAD(&mac_addr_list);
err = ice_add_mac_to_list(vsi, &mac_addr_list, addr, ICE_FWD_TO_VSI);
if (err)
goto free_mac_list;
status = ice_remove_mac(hw, &mac_addr_list);
if (status == ICE_ERR_DOES_NOT_EXIST) {
; /* Don't complain if we try to remove a filter that doesn't exist */
} else if (status) {
device_printf(dev,
"Failed to remove a filter for MAC %6D, err %s aq_err %s\n",
addr, ":",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
err = (EIO);
}
free_mac_list:
ice_free_fltr_list(&mac_addr_list);
return err;
}
/**
* ice_rm_pf_default_mac_filters - Remove default unicast and broadcast addrs
* @sc: device softc structure
*
* Remove the default unicast and broadcast filters from the PF VSI.
*/
int
ice_rm_pf_default_mac_filters(struct ice_softc *sc)
{
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
int err;
/* Remove the LAN MAC address */
err = ice_remove_vsi_mac_filter(vsi, hw->port_info->mac.lan_addr);
if (err)
return err;
/* Remove the broadcast address */
err = ice_remove_vsi_mac_filter(vsi, broadcastaddr);
if (err)
return (EIO);
return (0);
}
/**
* ice_check_ctrlq_errors - Check for and report controlq errors
* @sc: device private structure
* @qname: name of the controlq
* @cq: the controlq to check
*
* Check and report controlq errors. Currently all we do is report them to the
* kernel message log, but we might want to improve this in the future, such
* as to keep track of statistics.
*/
static void
ice_check_ctrlq_errors(struct ice_softc *sc, const char *qname,
struct ice_ctl_q_info *cq)
{
struct ice_hw *hw = &sc->hw;
u32 val;
/* Check for error indications. Note that all the controlqs use the
* same register layout, so we use the PF_FW_AxQLEN defines only.
*/
val = rd32(hw, cq->rq.len);
if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M)) {
if (val & PF_FW_ARQLEN_ARQVFE_M)
device_printf(sc->dev,
"%s Receive Queue VF Error detected\n", qname);
if (val & PF_FW_ARQLEN_ARQOVFL_M)
device_printf(sc->dev,
"%s Receive Queue Overflow Error detected\n",
qname);
if (val & PF_FW_ARQLEN_ARQCRIT_M)
device_printf(sc->dev,
"%s Receive Queue Critical Error detected\n",
qname);
val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
PF_FW_ARQLEN_ARQCRIT_M);
wr32(hw, cq->rq.len, val);
}
val = rd32(hw, cq->sq.len);
if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M)) {
if (val & PF_FW_ATQLEN_ATQVFE_M)
device_printf(sc->dev,
"%s Send Queue VF Error detected\n", qname);
if (val & PF_FW_ATQLEN_ATQOVFL_M)
device_printf(sc->dev,
"%s Send Queue Overflow Error detected\n",
qname);
if (val & PF_FW_ATQLEN_ATQCRIT_M)
device_printf(sc->dev,
"%s Send Queue Critical Error detected\n",
qname);
val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
PF_FW_ATQLEN_ATQCRIT_M);
wr32(hw, cq->sq.len, val);
}
}
/**
* ice_process_link_event - Process a link event indication from firmware
* @sc: device softc structure
* @e: the received event data
*
* Gets the current link status from hardware, and may print a message if an
* unqualified is detected.
*/
static void
ice_process_link_event(struct ice_softc *sc,
struct ice_rq_event_info __invariant_only *e)
{
struct ice_port_info *pi = sc->hw.port_info;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
/* Sanity check that the data length matches */
MPASS(le16toh(e->desc.datalen) == sizeof(struct ice_aqc_get_link_status_data));
/*
* Even though the adapter gets link status information inside the
* event, it needs to send a Get Link Status AQ command in order
* to re-enable link events.
*/
pi->phy.get_link_info = true;
ice_get_link_status(pi, &sc->link_up);
if (pi->phy.link_info.topo_media_conflict &
(ICE_AQ_LINK_TOPO_CONFLICT | ICE_AQ_LINK_MEDIA_CONFLICT |
ICE_AQ_LINK_TOPO_CORRUPT))
device_printf(dev,
"Possible mis-configuration of the Ethernet port detected; please use the Intel (R) Ethernet Port Configuration Tool utility to address the issue.\n");
if ((pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) &&
!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
!(pi->phy.link_info.an_info & ICE_AQ_QUALIFIED_MODULE))
device_printf(dev,
"Link is disabled on this device because an unsupported module type was detected! Refer to the Intel (R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
if (!ice_testandset_state(&sc->state, ICE_STATE_NO_MEDIA)) {
status = ice_aq_set_link_restart_an(pi, false, NULL);
if (status != ICE_SUCCESS)
device_printf(dev,
"%s: ice_aq_set_link_restart_an: status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/* ICE_STATE_NO_MEDIA is cleared when polling task detects media */
/* Indicate that link status must be reported again */
ice_clear_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED);
/* OS link info is updated elsewhere */
}
/**
* ice_process_ctrlq_event - Respond to a controlq event
* @sc: device private structure
* @qname: the name for this controlq
* @event: the event to process
*
* Perform actions in response to various controlq event notifications.
*/
static void
ice_process_ctrlq_event(struct ice_softc *sc, const char *qname,
struct ice_rq_event_info *event)
{
u16 opcode;
opcode = le16toh(event->desc.opcode);
switch (opcode) {
case ice_aqc_opc_get_link_status:
ice_process_link_event(sc, event);
break;
case ice_mbx_opc_send_msg_to_pf:
/* TODO: handle IOV event */
break;
case ice_aqc_opc_lldp_set_mib_change:
ice_handle_mib_change_event(sc, event);
break;
case ice_aqc_opc_event_lan_overflow:
ice_handle_lan_overflow_event(sc, event);
break;
default:
device_printf(sc->dev,
"%s Receive Queue unhandled event 0x%04x ignored\n",
qname, opcode);
}
}
/**
* ice_process_ctrlq - helper function to process controlq rings
* @sc: device private structure
* @q_type: specific control queue type
* @pending: return parameter to track remaining events
*
* Process controlq events for a given control queue type. Returns zero on
* success, and an error code on failure. If successful, pending is the number
* of remaining events left in the queue.
*/
int
ice_process_ctrlq(struct ice_softc *sc, enum ice_ctl_q q_type, u16 *pending)
{
struct ice_rq_event_info event = { { 0 } };
struct ice_hw *hw = &sc->hw;
struct ice_ctl_q_info *cq;
enum ice_status status;
const char *qname;
int loop = 0;
switch (q_type) {
case ICE_CTL_Q_ADMIN:
cq = &hw->adminq;
qname = "Admin";
break;
case ICE_CTL_Q_MAILBOX:
cq = &hw->mailboxq;
qname = "Mailbox";
break;
default:
device_printf(sc->dev,
"Unknown control queue type 0x%x\n",
q_type);
return 0;
}
ice_check_ctrlq_errors(sc, qname, cq);
/*
* Control queue processing happens during the admin task which may be
* holding a non-sleepable lock, so we *must* use M_NOWAIT here.
*/
event.buf_len = cq->rq_buf_size;
event.msg_buf = (u8 *)malloc(event.buf_len, M_ICE, M_ZERO | M_NOWAIT);
if (!event.msg_buf) {
device_printf(sc->dev,
"Unable to allocate memory for %s Receive Queue event\n",
qname);
return (ENOMEM);
}
do {
status = ice_clean_rq_elem(hw, cq, &event, pending);
if (status == ICE_ERR_AQ_NO_WORK)
break;
if (status) {
if (q_type == ICE_CTL_Q_ADMIN)
device_printf(sc->dev,
"%s Receive Queue event error %s aq_err %s\n",
qname, ice_status_str(status),
ice_aq_str(cq->rq_last_status));
else
device_printf(sc->dev,
"%s Receive Queue event error %s cq_err %d\n",
qname, ice_status_str(status), cq->rq_last_status);
free(event.msg_buf, M_ICE);
return (EIO);
}
/* XXX should we separate this handler by controlq type? */
ice_process_ctrlq_event(sc, qname, &event);
} while (*pending && (++loop < ICE_CTRLQ_WORK_LIMIT));
free(event.msg_buf, M_ICE);
return 0;
}
/**
* pkg_ver_empty - Check if a package version is empty
* @pkg_ver: the package version to check
* @pkg_name: the package name to check
*
* Checks if the package version structure is empty. We consider a package
* version as empty if none of the versions are non-zero and the name string
* is null as well.
*
* This is used to check if the package version was initialized by the driver,
* as we do not expect an actual DDP package file to have a zero'd version and
* name.
*
* @returns true if the package version is valid, or false otherwise.
*/
static bool
pkg_ver_empty(struct ice_pkg_ver *pkg_ver, u8 *pkg_name)
{
return (pkg_name[0] == '\0' &&
pkg_ver->major == 0 &&
pkg_ver->minor == 0 &&
pkg_ver->update == 0 &&
pkg_ver->draft == 0);
}
/**
* pkg_ver_compatible - Check if the package version is compatible
* @pkg_ver: the package version to check
*
* Compares the package version number to the driver's expected major/minor
* version. Returns an integer indicating whether the version is older, newer,
* or compatible with the driver.
*
* @returns 0 if the package version is compatible, -1 if the package version
* is older, and 1 if the package version is newer than the driver version.
*/
static int
pkg_ver_compatible(struct ice_pkg_ver *pkg_ver)
{
if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ)
return (1); /* newer */
else if ((pkg_ver->major == ICE_PKG_SUPP_VER_MAJ) &&
(pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
return (1); /* newer */
else if ((pkg_ver->major == ICE_PKG_SUPP_VER_MAJ) &&
(pkg_ver->minor == ICE_PKG_SUPP_VER_MNR))
return (0); /* compatible */
else
return (-1); /* older */
}
/**
* ice_os_pkg_version_str - Format OS package version info into a sbuf
* @hw: device hw structure
* @buf: string buffer to store name/version string
*
* Formats the name and version of the OS DDP package as found in the ice_ddp
* module into a string.
*
* @remark This will almost always be the same as the active package, but
* could be different in some cases. Use ice_active_pkg_version_str to get the
* version of the active DDP package.
*/
static void
ice_os_pkg_version_str(struct ice_hw *hw, struct sbuf *buf)
{
char name_buf[ICE_PKG_NAME_SIZE];
/* If the OS DDP package info is empty, use "None" */
if (pkg_ver_empty(&hw->pkg_ver, hw->pkg_name)) {
sbuf_printf(buf, "None");
return;
}
/*
* This should already be null-terminated, but since this is a raw
* value from an external source, strlcpy() into a new buffer to
* make sure.
*/
bzero(name_buf, sizeof(name_buf));
strlcpy(name_buf, (char *)hw->pkg_name, ICE_PKG_NAME_SIZE);
sbuf_printf(buf, "%s version %u.%u.%u.%u",
name_buf,
hw->pkg_ver.major,
hw->pkg_ver.minor,
hw->pkg_ver.update,
hw->pkg_ver.draft);
}
/**
* ice_active_pkg_version_str - Format active package version info into a sbuf
* @hw: device hw structure
* @buf: string buffer to store name/version string
*
* Formats the name and version of the active DDP package info into a string
* buffer for use.
*/
static void
ice_active_pkg_version_str(struct ice_hw *hw, struct sbuf *buf)
{
char name_buf[ICE_PKG_NAME_SIZE];
/* If the active DDP package info is empty, use "None" */
if (pkg_ver_empty(&hw->active_pkg_ver, hw->active_pkg_name)) {
sbuf_printf(buf, "None");
return;
}
/*
* This should already be null-terminated, but since this is a raw
* value from an external source, strlcpy() into a new buffer to
* make sure.
*/
bzero(name_buf, sizeof(name_buf));
strlcpy(name_buf, (char *)hw->active_pkg_name, ICE_PKG_NAME_SIZE);
sbuf_printf(buf, "%s version %u.%u.%u.%u",
name_buf,
hw->active_pkg_ver.major,
hw->active_pkg_ver.minor,
hw->active_pkg_ver.update,
hw->active_pkg_ver.draft);
if (hw->active_track_id != 0)
sbuf_printf(buf, ", track id 0x%08x", hw->active_track_id);
}
/**
* ice_nvm_version_str - Format the NVM version information into a sbuf
* @hw: device hw structure
* @buf: string buffer to store version string
*
* Formats the NVM information including firmware version, API version, NVM
* version, the EETRACK id, and OEM specific version information into a string
* buffer.
*/
static void
ice_nvm_version_str(struct ice_hw *hw, struct sbuf *buf)
{
struct ice_nvm_info *nvm = &hw->nvm;
struct ice_orom_info *orom = &nvm->orom;
struct ice_netlist_ver_info *netlist_ver = &hw->netlist_ver;
/* Note that the netlist versions are stored in packed Binary Coded
* Decimal format. The use of '%x' will correctly display these as
* decimal numbers. This works because every 4 bits will be displayed
* as a hexadecimal digit, and the BCD format will only use the values
* 0-9.
*/
sbuf_printf(buf,
"fw %u.%u.%u api %u.%u nvm %x.%02x etid %08x netlist %x.%x.%x-%x.%x.%x.%04x oem %u.%u.%u",
hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch,
hw->api_maj_ver, hw->api_min_ver,
nvm->major_ver, nvm->minor_ver, nvm->eetrack,
netlist_ver->major, netlist_ver->minor,
netlist_ver->type >> 16, netlist_ver->type & 0xFFFF,
netlist_ver->rev, netlist_ver->cust_ver, netlist_ver->hash,
orom->major, orom->build, orom->patch);
}
/**
* ice_print_nvm_version - Print the NVM info to the kernel message log
* @sc: the device softc structure
*
* Format and print an NVM version string using ice_nvm_version_str().
*/
void
ice_print_nvm_version(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
struct sbuf *sbuf;
sbuf = sbuf_new_auto();
ice_nvm_version_str(hw, sbuf);
sbuf_finish(sbuf);
device_printf(dev, "%s\n", sbuf_data(sbuf));
sbuf_delete(sbuf);
}
/**
* ice_update_vsi_hw_stats - Update VSI-specific ethernet statistics counters
* @vsi: the VSI to be updated
*
* Reads hardware stats and updates the ice_vsi_hw_stats tracking structure with
* the updated values.
*/
void
ice_update_vsi_hw_stats(struct ice_vsi *vsi)
{
struct ice_eth_stats *prev_es, *cur_es;
struct ice_hw *hw = &vsi->sc->hw;
u16 vsi_num;
if (!ice_is_vsi_valid(hw, vsi->idx))
return;
vsi_num = ice_get_hw_vsi_num(hw, vsi->idx); /* HW absolute index of a VSI */
prev_es = &vsi->hw_stats.prev;
cur_es = &vsi->hw_stats.cur;
#define ICE_VSI_STAT40(name, location) \
ice_stat_update40(hw, name ## L(vsi_num), \
vsi->hw_stats.offsets_loaded, \
&prev_es->location, &cur_es->location)
#define ICE_VSI_STAT32(name, location) \
ice_stat_update32(hw, name(vsi_num), \
vsi->hw_stats.offsets_loaded, \
&prev_es->location, &cur_es->location)
ICE_VSI_STAT40(GLV_GORC, rx_bytes);
ICE_VSI_STAT40(GLV_UPRC, rx_unicast);
ICE_VSI_STAT40(GLV_MPRC, rx_multicast);
ICE_VSI_STAT40(GLV_BPRC, rx_broadcast);
ICE_VSI_STAT32(GLV_RDPC, rx_discards);
ICE_VSI_STAT40(GLV_GOTC, tx_bytes);
ICE_VSI_STAT40(GLV_UPTC, tx_unicast);
ICE_VSI_STAT40(GLV_MPTC, tx_multicast);
ICE_VSI_STAT40(GLV_BPTC, tx_broadcast);
ICE_VSI_STAT32(GLV_TEPC, tx_errors);
ice_stat_update_repc(hw, vsi->idx, vsi->hw_stats.offsets_loaded,
cur_es);
#undef ICE_VSI_STAT40
#undef ICE_VSI_STAT32
vsi->hw_stats.offsets_loaded = true;
}
/**
* ice_reset_vsi_stats - Reset VSI statistics counters
* @vsi: VSI structure
*
* Resets the software tracking counters for the VSI statistics, and indicate
* that the offsets haven't been loaded. This is intended to be called
* post-reset so that VSI statistics count from zero again.
*/
void
ice_reset_vsi_stats(struct ice_vsi *vsi)
{
/* Reset HW stats */
memset(&vsi->hw_stats.prev, 0, sizeof(vsi->hw_stats.prev));
memset(&vsi->hw_stats.cur, 0, sizeof(vsi->hw_stats.cur));
vsi->hw_stats.offsets_loaded = false;
}
/**
* ice_update_pf_stats - Update port stats counters
* @sc: device private softc structure
*
* Reads hardware statistics registers and updates the software tracking
* structure with new values.
*/
void
ice_update_pf_stats(struct ice_softc *sc)
{
struct ice_hw_port_stats *prev_ps, *cur_ps;
struct ice_hw *hw = &sc->hw;
u8 lport;
MPASS(hw->port_info);
prev_ps = &sc->stats.prev;
cur_ps = &sc->stats.cur;
lport = hw->port_info->lport;
#define ICE_PF_STAT40(name, location) \
ice_stat_update40(hw, name ## L(lport), \
sc->stats.offsets_loaded, \
&prev_ps->location, &cur_ps->location)
#define ICE_PF_STAT32(name, location) \
ice_stat_update32(hw, name(lport), \
sc->stats.offsets_loaded, \
&prev_ps->location, &cur_ps->location)
ICE_PF_STAT40(GLPRT_GORC, eth.rx_bytes);
ICE_PF_STAT40(GLPRT_UPRC, eth.rx_unicast);
ICE_PF_STAT40(GLPRT_MPRC, eth.rx_multicast);
ICE_PF_STAT40(GLPRT_BPRC, eth.rx_broadcast);
ICE_PF_STAT40(GLPRT_GOTC, eth.tx_bytes);
ICE_PF_STAT40(GLPRT_UPTC, eth.tx_unicast);
ICE_PF_STAT40(GLPRT_MPTC, eth.tx_multicast);
ICE_PF_STAT40(GLPRT_BPTC, eth.tx_broadcast);
ICE_PF_STAT32(GLPRT_TDOLD, tx_dropped_link_down);
ICE_PF_STAT40(GLPRT_PRC64, rx_size_64);
ICE_PF_STAT40(GLPRT_PRC127, rx_size_127);
ICE_PF_STAT40(GLPRT_PRC255, rx_size_255);
ICE_PF_STAT40(GLPRT_PRC511, rx_size_511);
ICE_PF_STAT40(GLPRT_PRC1023, rx_size_1023);
ICE_PF_STAT40(GLPRT_PRC1522, rx_size_1522);
ICE_PF_STAT40(GLPRT_PRC9522, rx_size_big);
ICE_PF_STAT40(GLPRT_PTC64, tx_size_64);
ICE_PF_STAT40(GLPRT_PTC127, tx_size_127);
ICE_PF_STAT40(GLPRT_PTC255, tx_size_255);
ICE_PF_STAT40(GLPRT_PTC511, tx_size_511);
ICE_PF_STAT40(GLPRT_PTC1023, tx_size_1023);
ICE_PF_STAT40(GLPRT_PTC1522, tx_size_1522);
ICE_PF_STAT40(GLPRT_PTC9522, tx_size_big);
ICE_PF_STAT32(GLPRT_LXONRXC, link_xon_rx);
ICE_PF_STAT32(GLPRT_LXOFFRXC, link_xoff_rx);
ICE_PF_STAT32(GLPRT_LXONTXC, link_xon_tx);
ICE_PF_STAT32(GLPRT_LXOFFTXC, link_xoff_tx);
ICE_PF_STAT32(GLPRT_CRCERRS, crc_errors);
ICE_PF_STAT32(GLPRT_ILLERRC, illegal_bytes);
ICE_PF_STAT32(GLPRT_MLFC, mac_local_faults);
ICE_PF_STAT32(GLPRT_MRFC, mac_remote_faults);
ICE_PF_STAT32(GLPRT_RLEC, rx_len_errors);
ICE_PF_STAT32(GLPRT_RUC, rx_undersize);
ICE_PF_STAT32(GLPRT_RFC, rx_fragments);
ICE_PF_STAT32(GLPRT_ROC, rx_oversize);
ICE_PF_STAT32(GLPRT_RJC, rx_jabber);
#undef ICE_PF_STAT40
#undef ICE_PF_STAT32
sc->stats.offsets_loaded = true;
}
/**
* ice_reset_pf_stats - Reset port stats counters
* @sc: Device private softc structure
*
* Reset software tracking values for statistics to zero, and indicate that
* offsets haven't been loaded. Intended to be called after a device reset so
* that statistics count from zero again.
*/
void
ice_reset_pf_stats(struct ice_softc *sc)
{
memset(&sc->stats.prev, 0, sizeof(sc->stats.prev));
memset(&sc->stats.cur, 0, sizeof(sc->stats.cur));
sc->stats.offsets_loaded = false;
}
/**
* ice_sysctl_show_fw - sysctl callback to show firmware information
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for the fw_version sysctl, to display the current firmware
* information found at hardware init time.
*/
static int
ice_sysctl_show_fw(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
struct sbuf *sbuf;
UNREFERENCED_PARAMETER(oidp);
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
ice_nvm_version_str(hw, sbuf);
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_sysctl_pba_number - sysctl callback to show PBA number
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for the pba_number sysctl, used to read the Product Board Assembly
* number for this device.
*/
static int
ice_sysctl_pba_number(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
u8 pba_string[32] = "";
enum ice_status status;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
status = ice_read_pba_string(hw, pba_string, sizeof(pba_string));
if (status) {
device_printf(dev,
"%s: failed to read PBA string from NVM; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
return sysctl_handle_string(oidp, pba_string, sizeof(pba_string), req);
}
/**
* ice_sysctl_pkg_version - sysctl to show the active package version info
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for the pkg_version sysctl, to display the active DDP package name
* and version information.
*/
static int
ice_sysctl_pkg_version(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
struct sbuf *sbuf;
UNREFERENCED_PARAMETER(oidp);
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
ice_active_pkg_version_str(hw, sbuf);
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_sysctl_os_pkg_version - sysctl to show the OS package version info
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for the pkg_version sysctl, to display the OS DDP package name and
* version info found in the ice_ddp module.
*/
static int
ice_sysctl_os_pkg_version(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
struct sbuf *sbuf;
UNREFERENCED_PARAMETER(oidp);
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
ice_os_pkg_version_str(hw, sbuf);
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_sysctl_current_speed - sysctl callback to show current link speed
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for the current_speed sysctl, to display the string representing
* the current link speed.
*/
static int
ice_sysctl_current_speed(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
struct sbuf *sbuf;
UNREFERENCED_PARAMETER(oidp);
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
sbuf = sbuf_new_for_sysctl(NULL, NULL, 10, req);
sbuf_printf(sbuf, "%s", ice_aq_speed_to_str(hw->port_info));
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* @var phy_link_speeds
* @brief PHY link speed conversion array
*
* Array of link speeds to convert ICE_PHY_TYPE_LOW and ICE_PHY_TYPE_HIGH into
* link speeds used by the link speed sysctls.
*
* @remark these are based on the indices used in the BIT() macros for the
* ICE_PHY_TYPE_LOW_* and ICE_PHY_TYPE_HIGH_* definitions.
*/
static const uint16_t phy_link_speeds[] = {
ICE_AQ_LINK_SPEED_100MB,
ICE_AQ_LINK_SPEED_100MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_1000MB,
ICE_AQ_LINK_SPEED_2500MB,
ICE_AQ_LINK_SPEED_2500MB,
ICE_AQ_LINK_SPEED_2500MB,
ICE_AQ_LINK_SPEED_5GB,
ICE_AQ_LINK_SPEED_5GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_10GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_25GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_40GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_50GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
/* These rates are for ICE_PHY_TYPE_HIGH_* */
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB,
ICE_AQ_LINK_SPEED_100GB
};
#define ICE_SYSCTL_HELP_ADVERTISE_SPEED \
"\nControl advertised link speed." \
"\nFlags:" \
"\n\t 0x0 - Auto" \
"\n\t 0x1 - 10 Mb" \
"\n\t 0x2 - 100 Mb" \
"\n\t 0x4 - 1G" \
"\n\t 0x8 - 2.5G" \
"\n\t 0x10 - 5G" \
"\n\t 0x20 - 10G" \
"\n\t 0x40 - 20G" \
"\n\t 0x80 - 25G" \
"\n\t 0x100 - 40G" \
"\n\t 0x200 - 50G" \
"\n\t 0x400 - 100G" \
"\n\t0x8000 - Unknown" \
"\n\t" \
"\nUse \"sysctl -x\" to view flags properly."
#define ICE_PHYS_100MB \
(ICE_PHY_TYPE_LOW_100BASE_TX | \
ICE_PHY_TYPE_LOW_100M_SGMII)
#define ICE_PHYS_1000MB \
(ICE_PHY_TYPE_LOW_1000BASE_T | \
ICE_PHY_TYPE_LOW_1000BASE_SX | \
ICE_PHY_TYPE_LOW_1000BASE_LX | \
ICE_PHY_TYPE_LOW_1000BASE_KX | \
ICE_PHY_TYPE_LOW_1G_SGMII)
#define ICE_PHYS_2500MB \
(ICE_PHY_TYPE_LOW_2500BASE_T | \
ICE_PHY_TYPE_LOW_2500BASE_X | \
ICE_PHY_TYPE_LOW_2500BASE_KX)
#define ICE_PHYS_5GB \
(ICE_PHY_TYPE_LOW_5GBASE_T | \
ICE_PHY_TYPE_LOW_5GBASE_KR)
#define ICE_PHYS_10GB \
(ICE_PHY_TYPE_LOW_10GBASE_T | \
ICE_PHY_TYPE_LOW_10G_SFI_DA | \
ICE_PHY_TYPE_LOW_10GBASE_SR | \
ICE_PHY_TYPE_LOW_10GBASE_LR | \
ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \
ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \
ICE_PHY_TYPE_LOW_10G_SFI_C2C)
#define ICE_PHYS_25GB \
(ICE_PHY_TYPE_LOW_25GBASE_T | \
ICE_PHY_TYPE_LOW_25GBASE_CR | \
ICE_PHY_TYPE_LOW_25GBASE_CR_S | \
ICE_PHY_TYPE_LOW_25GBASE_CR1 | \
ICE_PHY_TYPE_LOW_25GBASE_SR | \
ICE_PHY_TYPE_LOW_25GBASE_LR | \
ICE_PHY_TYPE_LOW_25GBASE_KR | \
ICE_PHY_TYPE_LOW_25GBASE_KR_S | \
ICE_PHY_TYPE_LOW_25GBASE_KR1 | \
ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC | \
ICE_PHY_TYPE_LOW_25G_AUI_C2C)
#define ICE_PHYS_40GB \
(ICE_PHY_TYPE_LOW_40GBASE_CR4 | \
ICE_PHY_TYPE_LOW_40GBASE_SR4 | \
ICE_PHY_TYPE_LOW_40GBASE_LR4 | \
ICE_PHY_TYPE_LOW_40GBASE_KR4 | \
ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC | \
ICE_PHY_TYPE_LOW_40G_XLAUI)
#define ICE_PHYS_50GB \
(ICE_PHY_TYPE_LOW_50GBASE_CR2 | \
ICE_PHY_TYPE_LOW_50GBASE_SR2 | \
ICE_PHY_TYPE_LOW_50GBASE_LR2 | \
ICE_PHY_TYPE_LOW_50GBASE_KR2 | \
ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC | \
ICE_PHY_TYPE_LOW_50G_LAUI2 | \
ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC | \
ICE_PHY_TYPE_LOW_50G_AUI2 | \
ICE_PHY_TYPE_LOW_50GBASE_CP | \
ICE_PHY_TYPE_LOW_50GBASE_SR | \
ICE_PHY_TYPE_LOW_50GBASE_FR | \
ICE_PHY_TYPE_LOW_50GBASE_LR | \
ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4 | \
ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC | \
ICE_PHY_TYPE_LOW_50G_AUI1)
#define ICE_PHYS_100GB_LOW \
(ICE_PHY_TYPE_LOW_100GBASE_CR4 | \
ICE_PHY_TYPE_LOW_100GBASE_SR4 | \
ICE_PHY_TYPE_LOW_100GBASE_LR4 | \
ICE_PHY_TYPE_LOW_100GBASE_KR4 | \
ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \
ICE_PHY_TYPE_LOW_100G_CAUI4 | \
ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \
ICE_PHY_TYPE_LOW_100G_AUI4 | \
ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \
ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \
ICE_PHY_TYPE_LOW_100GBASE_CP2 | \
ICE_PHY_TYPE_LOW_100GBASE_SR2 | \
ICE_PHY_TYPE_LOW_100GBASE_DR)
#define ICE_PHYS_100GB_HIGH \
(ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \
ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC | \
ICE_PHY_TYPE_HIGH_100G_CAUI2 | \
ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \
ICE_PHY_TYPE_HIGH_100G_AUI2)
/**
* ice_aq_phy_types_to_sysctl_speeds - Convert the PHY Types to speeds
* @phy_type_low: lower 64-bit PHY Type bitmask
* @phy_type_high: upper 64-bit PHY Type bitmask
*
* Convert the PHY Type fields from Get PHY Abilities and Set PHY Config into
* link speed flags. If phy_type_high has an unknown PHY type, then the return
* value will include the "ICE_AQ_LINK_SPEED_UNKNOWN" flag as well.
*/
static u16
ice_aq_phy_types_to_sysctl_speeds(u64 phy_type_low, u64 phy_type_high)
{
u16 sysctl_speeds = 0;
int bit;
/* coverity[address_of] */
for_each_set_bit(bit, &phy_type_low, 64)
sysctl_speeds |= phy_link_speeds[bit];
/* coverity[address_of] */
for_each_set_bit(bit, &phy_type_high, 64) {
if ((bit + 64) < (int)ARRAY_SIZE(phy_link_speeds))
sysctl_speeds |= phy_link_speeds[bit + 64];
else
sysctl_speeds |= ICE_AQ_LINK_SPEED_UNKNOWN;
}
return (sysctl_speeds);
}
/**
* ice_sysctl_speeds_to_aq_phy_types - Convert sysctl speed flags to AQ PHY flags
* @sysctl_speeds: 16-bit sysctl speeds or AQ_LINK_SPEED flags
* @phy_type_low: output parameter for lower AQ PHY flags
* @phy_type_high: output parameter for higher AQ PHY flags
*
* Converts the given link speed flags into AQ PHY type flag sets appropriate
* for use in a Set PHY Config command.
*/
static void
ice_sysctl_speeds_to_aq_phy_types(u16 sysctl_speeds, u64 *phy_type_low,
u64 *phy_type_high)
{
*phy_type_low = 0, *phy_type_high = 0;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_100MB)
*phy_type_low |= ICE_PHYS_100MB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_1000MB)
*phy_type_low |= ICE_PHYS_1000MB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_2500MB)
*phy_type_low |= ICE_PHYS_2500MB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_5GB)
*phy_type_low |= ICE_PHYS_5GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_10GB)
*phy_type_low |= ICE_PHYS_10GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_25GB)
*phy_type_low |= ICE_PHYS_25GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_40GB)
*phy_type_low |= ICE_PHYS_40GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_50GB)
*phy_type_low |= ICE_PHYS_50GB;
if (sysctl_speeds & ICE_AQ_LINK_SPEED_100GB) {
*phy_type_low |= ICE_PHYS_100GB_LOW;
*phy_type_high |= ICE_PHYS_100GB_HIGH;
}
}
/**
* ice_intersect_media_types_with_caps - Restrict input AQ PHY flags
* @sc: driver private structure
* @phy_type_low: input/output flag set for low PHY types
* @phy_type_high: input/output flag set for high PHY types
*
* Intersects the input PHY flags with PHY flags retrieved from the adapter to
* ensure the flags are compatible.
*
* @returns 0 on success, EIO if an AQ command fails, or EINVAL if input PHY
* types have no intersection with TOPO_CAPS and the adapter is in non-lenient
* mode
*/
static int
ice_intersect_media_types_with_caps(struct ice_softc *sc, u64 *phy_type_low,
u64 *phy_type_high)
{
device_t dev = sc->dev;
enum ice_status status;
u64 new_phy_low, new_phy_high;
status = ice_get_phy_types(sc, &new_phy_low, &new_phy_high);
if (status != ICE_SUCCESS) {
/* Function already prints appropriate error message */
return (EIO);
}
ice_apply_supported_speed_filter(&new_phy_low, &new_phy_high);
new_phy_low &= *phy_type_low;
new_phy_high &= *phy_type_high;
if (new_phy_low == 0 && new_phy_high == 0) {
device_printf(dev,
"The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
return (EINVAL);
}
/* Overwrite input phy_type values and return */
*phy_type_low = new_phy_low;
*phy_type_high = new_phy_high;
return (0);
}
/**
* ice_get_auto_speeds - Get PHY type flags for "auto" speed
* @sc: driver private structure
* @phy_type_low: output low PHY type flags
* @phy_type_high: output high PHY type flags
*
* Retrieves a suitable set of PHY type flags to use for an "auto" speed
* setting by either using the NVM default overrides for speed, or retrieving
* a default from the adapter using Get PHY capabilities in TOPO_CAPS mode.
*
* @returns 0 on success or EIO on AQ command failure
*/
static int
ice_get_auto_speeds(struct ice_softc *sc, u64 *phy_type_low,
u64 *phy_type_high)
{
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_hw *hw = &sc->hw;
struct ice_port_info *pi = hw->port_info;
device_t dev = sc->dev;
enum ice_status status;
if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_DEFAULT_OVERRIDE)) {
/* copy over speed settings from LDO TLV */
*phy_type_low = CPU_TO_LE64(sc->ldo_tlv.phy_type_low);
*phy_type_high = CPU_TO_LE64(sc->ldo_tlv.phy_type_high);
} else {
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps (TOPO_CAP) failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
*phy_type_low = le64toh(pcaps.phy_type_low);
*phy_type_high = le64toh(pcaps.phy_type_high);
}
return (0);
}
/**
* ice_sysctl_advertise_speed - Display/change link speeds supported by port
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays the currently supported speeds
* On write: Sets the device's supported speeds
* Valid input flags: see ICE_SYSCTL_HELP_ADVERTISE_SPEED
*/
static int
ice_sysctl_advertise_speed(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_hw *hw = &sc->hw;
struct ice_port_info *pi = hw->port_info;
device_t dev = sc->dev;
enum ice_status status;
u64 phy_low, phy_high;
u16 sysctl_speeds = 0;
int error = 0;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
/* Get the current speeds from the adapter's "active" configuration. */
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps (SW_CFG) failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
phy_low = le64toh(pcaps.phy_type_low);
phy_high = le64toh(pcaps.phy_type_high);
sysctl_speeds = ice_aq_phy_types_to_sysctl_speeds(phy_low, phy_high);
error = sysctl_handle_16(oidp, &sysctl_speeds, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
if (sysctl_speeds > 0x7FF) {
device_printf(dev,
"%s: \"%u\" is outside of the range of acceptable values.\n",
__func__, sysctl_speeds);
return (EINVAL);
}
/* 0 is treated as "Auto"; the driver will handle selecting the correct speeds,
* or apply an override if one is specified in the NVM.
*/
if (sysctl_speeds == 0) {
error = ice_get_auto_speeds(sc, &phy_low, &phy_high);
if (error)
/* Function already prints appropriate error message */
return (error);
} else {
ice_sysctl_speeds_to_aq_phy_types(sysctl_speeds, &phy_low, &phy_high);
error = ice_intersect_media_types_with_caps(sc, &phy_low, &phy_high);
if (error)
/* Function already prints appropriate error message */
return (error);
}
sysctl_speeds = ice_aq_phy_types_to_sysctl_speeds(phy_low, phy_high);
/* Cache new user setting for speeds */
pi->phy.curr_user_speed_req = sysctl_speeds;
/* Setup new PHY config with new input PHY types */
ice_copy_phy_caps_to_cfg(pi, &pcaps, &cfg);
cfg.phy_type_low = phy_low;
cfg.phy_type_high = phy_high;
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
if (status != ICE_SUCCESS) {
/* Don't indicate failure if there's no media in the port -- the sysctl
* handler has saved the value and will apply it when media is inserted.
*/
if (status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) {
device_printf(dev,
"%s: Setting will be applied when media is inserted\n", __func__);
return (0);
} else {
device_printf(dev,
"%s: ice_aq_set_phy_cfg failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
}
return (0);
}
#define ICE_SYSCTL_HELP_FEC_CONFIG \
"\nDisplay or set the port's requested FEC mode." \
"\n\tauto - " ICE_FEC_STRING_AUTO \
"\n\tfc - " ICE_FEC_STRING_BASER \
"\n\trs - " ICE_FEC_STRING_RS \
"\n\tnone - " ICE_FEC_STRING_NONE \
"\nEither of the left or right strings above can be used to set the requested mode."
/**
* ice_sysctl_fec_config - Display/change the configured FEC mode
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays the configured FEC mode
* On write: Sets the device's FEC mode to the input string, if it's valid.
* Valid input strings: see ICE_SYSCTL_HELP_FEC_CONFIG
*/
static int
ice_sysctl_fec_config(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_port_info *pi = sc->hw.port_info;
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_hw *hw = &sc->hw;
enum ice_fec_mode new_mode;
enum ice_status status;
device_t dev = sc->dev;
char req_fec[32];
int error = 0;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
bzero(req_fec, sizeof(req_fec));
strlcpy(req_fec, ice_requested_fec_mode(pi), sizeof(req_fec));
error = sysctl_handle_string(oidp, req_fec, sizeof(req_fec), req);
if ((error) || (req->newptr == NULL))
return (error);
if (strcmp(req_fec, "auto") == 0 ||
strcmp(req_fec, ice_fec_str(ICE_FEC_AUTO)) == 0) {
new_mode = ICE_FEC_AUTO;
} else if (strcmp(req_fec, "fc") == 0 ||
strcmp(req_fec, ice_fec_str(ICE_FEC_BASER)) == 0) {
new_mode = ICE_FEC_BASER;
} else if (strcmp(req_fec, "rs") == 0 ||
strcmp(req_fec, ice_fec_str(ICE_FEC_RS)) == 0) {
new_mode = ICE_FEC_RS;
} else if (strcmp(req_fec, "none") == 0 ||
strcmp(req_fec, ice_fec_str(ICE_FEC_NONE)) == 0) {
new_mode = ICE_FEC_NONE;
} else {
device_printf(dev,
"%s: \"%s\" is not a valid FEC mode\n",
__func__, req_fec);
return (EINVAL);
}
/* Cache user FEC mode for later link ups */
pi->phy.curr_user_fec_req = new_mode;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps failed (SW_CFG); status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
ice_copy_phy_caps_to_cfg(pi, &pcaps, &cfg);
/* Get link_fec_opt/AUTO_FEC mode from TOPO caps for base for new FEC mode */
memset(&pcaps, 0, sizeof(pcaps));
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps failed (TOPO_CAP); status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
/* Configure new FEC options using TOPO caps */
cfg.link_fec_opt = pcaps.link_fec_options;
cfg.caps &= ~ICE_AQ_PHY_ENA_AUTO_FEC;
if (pcaps.caps & ICE_AQC_PHY_EN_AUTO_FEC)
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_FEC;
if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_DEFAULT_OVERRIDE) &&
new_mode == ICE_FEC_AUTO) {
/* copy over FEC settings from LDO TLV */
cfg.link_fec_opt = sc->ldo_tlv.fec_options;
} else {
ice_cfg_phy_fec(pi, &cfg, new_mode);
/* Check if the new mode is valid, and exit with an error if not */
if (cfg.link_fec_opt &&
!(cfg.link_fec_opt & pcaps.link_fec_options)) {
device_printf(dev,
"%s: The requested FEC mode, %s, is not supported by current media\n",
__func__, ice_fec_str(new_mode));
return (ENOTSUP);
}
}
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
if (status != ICE_SUCCESS) {
/* Don't indicate failure if there's no media in the port -- the sysctl
* handler has saved the value and will apply it when media is inserted.
*/
if (status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) {
device_printf(dev,
"%s: Setting will be applied when media is inserted\n", __func__);
return (0);
} else {
device_printf(dev,
"%s: ice_aq_set_phy_cfg failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
}
return (0);
}
/**
* ice_sysctl_negotiated_fec - Display the negotiated FEC mode on the link
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays the negotiated FEC mode, in a string
*/
static int
ice_sysctl_negotiated_fec(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
char neg_fec[32];
int error;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
/* Copy const string into a buffer to drop const qualifier */
bzero(neg_fec, sizeof(neg_fec));
strlcpy(neg_fec, ice_negotiated_fec_mode(hw->port_info), sizeof(neg_fec));
error = sysctl_handle_string(oidp, neg_fec, 0, req);
if (req->newptr != NULL)
return (EPERM);
return (error);
}
#define ICE_SYSCTL_HELP_FC_CONFIG \
"\nDisplay or set the port's advertised flow control mode.\n" \
"\t0 - " ICE_FC_STRING_NONE \
"\n\t1 - " ICE_FC_STRING_RX \
"\n\t2 - " ICE_FC_STRING_TX \
"\n\t3 - " ICE_FC_STRING_FULL \
"\nEither the numbers or the strings above can be used to set the advertised mode."
/**
* ice_sysctl_fc_config - Display/change the advertised flow control mode
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays the configured flow control mode
* On write: Sets the device's flow control mode to the input, if it's valid.
* Valid input strings: see ICE_SYSCTL_HELP_FC_CONFIG
*/
static int
ice_sysctl_fc_config(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_port_info *pi = sc->hw.port_info;
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
enum ice_fc_mode old_mode, new_mode;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
int error = 0, fc_num;
bool mode_set = false;
struct sbuf buf;
char *fc_str_end;
char fc_str[32];
u8 aq_failures;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
/* Convert HW response format to SW enum value */
if ((pcaps.caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) &&
(pcaps.caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE))
old_mode = ICE_FC_FULL;
else if (pcaps.caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
old_mode = ICE_FC_TX_PAUSE;
else if (pcaps.caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
old_mode = ICE_FC_RX_PAUSE;
else
old_mode = ICE_FC_NONE;
/* Create "old" string for output */
bzero(fc_str, sizeof(fc_str));
sbuf_new_for_sysctl(&buf, fc_str, sizeof(fc_str), req);
sbuf_printf(&buf, "%d<%s>", old_mode, ice_fc_str(old_mode));
sbuf_finish(&buf);
sbuf_delete(&buf);
error = sysctl_handle_string(oidp, fc_str, sizeof(fc_str), req);
if ((error) || (req->newptr == NULL))
return (error);
/* Try to parse input as a string, first */
if (strcasecmp(ice_fc_str(ICE_FC_FULL), fc_str) == 0) {
new_mode = ICE_FC_FULL;
mode_set = true;
}
else if (strcasecmp(ice_fc_str(ICE_FC_TX_PAUSE), fc_str) == 0) {
new_mode = ICE_FC_TX_PAUSE;
mode_set = true;
}
else if (strcasecmp(ice_fc_str(ICE_FC_RX_PAUSE), fc_str) == 0) {
new_mode = ICE_FC_RX_PAUSE;
mode_set = true;
}
else if (strcasecmp(ice_fc_str(ICE_FC_NONE), fc_str) == 0) {
new_mode = ICE_FC_NONE;
mode_set = true;
}
/*
* Then check if it's an integer, for compatibility with the method
* used in older drivers.
*/
if (!mode_set) {
fc_num = strtol(fc_str, &fc_str_end, 0);
if (fc_str_end == fc_str)
fc_num = -1;
switch (fc_num) {
case 3:
new_mode = ICE_FC_FULL;
break;
case 2:
new_mode = ICE_FC_TX_PAUSE;
break;
case 1:
new_mode = ICE_FC_RX_PAUSE;
break;
case 0:
new_mode = ICE_FC_NONE;
break;
default:
device_printf(dev,
"%s: \"%s\" is not a valid flow control mode\n",
__func__, fc_str);
return (EINVAL);
}
}
/* Finally, set the flow control mode in FW */
hw->port_info->fc.req_mode = new_mode;
status = ice_set_fc(pi, &aq_failures, true);
if (status != ICE_SUCCESS) {
/* Don't indicate failure if there's no media in the port -- the sysctl
* handler has saved the value and will apply it when media is inserted.
*/
if (aq_failures == ICE_SET_FC_AQ_FAIL_SET &&
hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) {
device_printf(dev,
"%s: Setting will be applied when media is inserted\n", __func__);
return (0);
} else {
device_printf(dev,
"%s: ice_set_fc AQ failure = %d\n", __func__, aq_failures);
return (EIO);
}
}
return (0);
}
/**
* ice_sysctl_negotiated_fc - Display currently negotiated FC mode
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays the currently negotiated flow control settings.
*
* If link is not established, this will report ICE_FC_NONE, as no flow
* control is negotiated while link is down.
*/
static int
ice_sysctl_negotiated_fc(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_port_info *pi = sc->hw.port_info;
const char *negotiated_fc;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
negotiated_fc = ice_flowcontrol_mode(pi);
return sysctl_handle_string(oidp, __DECONST(char *, negotiated_fc), 0, req);
}
/**
* __ice_sysctl_phy_type_handler - Display/change supported PHY types/speeds
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
* @is_phy_type_high: if true, handle the high PHY type instead of the low PHY type
*
* Private handler for phy_type_high and phy_type_low sysctls.
*/
static int
__ice_sysctl_phy_type_handler(SYSCTL_HANDLER_ARGS, bool is_phy_type_high)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
uint64_t types;
int error = 0;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
status = ice_aq_get_phy_caps(hw->port_info, false, ICE_AQC_REPORT_SW_CFG,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
if (is_phy_type_high)
types = pcaps.phy_type_high;
else
types = pcaps.phy_type_low;
error = sysctl_handle_64(oidp, &types, sizeof(types), req);
if ((error) || (req->newptr == NULL))
return (error);
ice_copy_phy_caps_to_cfg(hw->port_info, &pcaps, &cfg);
if (is_phy_type_high)
cfg.phy_type_high = types & hw->port_info->phy.phy_type_high;
else
cfg.phy_type_low = types & hw->port_info->phy.phy_type_low;
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
status = ice_aq_set_phy_cfg(hw, hw->port_info, &cfg, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_set_phy_cfg failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
return (0);
}
/**
* ice_sysctl_phy_type_low - Display/change supported lower PHY types/speeds
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays the currently supported lower PHY types
* On write: Sets the device's supported low PHY types
*/
static int
ice_sysctl_phy_type_low(SYSCTL_HANDLER_ARGS)
{
return __ice_sysctl_phy_type_handler(oidp, arg1, arg2, req, false);
}
/**
* ice_sysctl_phy_type_high - Display/change supported higher PHY types/speeds
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays the currently supported higher PHY types
* On write: Sets the device's supported high PHY types
*/
static int
ice_sysctl_phy_type_high(SYSCTL_HANDLER_ARGS)
{
return __ice_sysctl_phy_type_handler(oidp, arg1, arg2, req, true);
}
/**
* ice_sysctl_phy_caps - Display response from Get PHY abililties
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
* @report_mode: the mode to report
*
* On read: Display the response from Get PHY abillities with the given report
* mode.
*/
static int
ice_sysctl_phy_caps(SYSCTL_HANDLER_ARGS, u8 report_mode)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_hw *hw = &sc->hw;
struct ice_port_info *pi = hw->port_info;
device_t dev = sc->dev;
enum ice_status status;
int error;
UNREFERENCED_PARAMETER(arg2);
error = priv_check(curthread, PRIV_DRIVER);
if (error)
return (error);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
status = ice_aq_get_phy_caps(pi, true, report_mode, &pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
error = sysctl_handle_opaque(oidp, &pcaps, sizeof(pcaps), req);
if (req->newptr != NULL)
return (EPERM);
return (error);
}
/**
* ice_sysctl_phy_sw_caps - Display response from Get PHY abililties
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Display the response from Get PHY abillities reporting the last
* software configuration.
*/
static int
ice_sysctl_phy_sw_caps(SYSCTL_HANDLER_ARGS)
{
return ice_sysctl_phy_caps(oidp, arg1, arg2, req,
ICE_AQC_REPORT_SW_CFG);
}
/**
* ice_sysctl_phy_nvm_caps - Display response from Get PHY abililties
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Display the response from Get PHY abillities reporting the NVM
* configuration.
*/
static int
ice_sysctl_phy_nvm_caps(SYSCTL_HANDLER_ARGS)
{
return ice_sysctl_phy_caps(oidp, arg1, arg2, req,
ICE_AQC_REPORT_NVM_CAP);
}
/**
* ice_sysctl_phy_topo_caps - Display response from Get PHY abililties
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Display the response from Get PHY abillities reporting the
* topology configuration.
*/
static int
ice_sysctl_phy_topo_caps(SYSCTL_HANDLER_ARGS)
{
return ice_sysctl_phy_caps(oidp, arg1, arg2, req,
ICE_AQC_REPORT_TOPO_CAP);
}
/**
* ice_sysctl_phy_link_status - Display response from Get Link Status
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Display the response from firmware for the Get Link Status
* request.
*/
static int
ice_sysctl_phy_link_status(SYSCTL_HANDLER_ARGS)
{
struct ice_aqc_get_link_status_data link_data = { 0 };
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
struct ice_port_info *pi = hw->port_info;
struct ice_aqc_get_link_status *resp;
struct ice_aq_desc desc;
device_t dev = sc->dev;
enum ice_status status;
int error;
UNREFERENCED_PARAMETER(arg2);
/*
* Ensure that only contexts with driver privilege are allowed to
* access this information
*/
error = priv_check(curthread, PRIV_DRIVER);
if (error)
return (error);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
resp = &desc.params.get_link_status;
resp->lport_num = pi->lport;
status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_send_cmd failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
error = sysctl_handle_opaque(oidp, &link_data, sizeof(link_data), req);
if (req->newptr != NULL)
return (EPERM);
return (error);
}
/**
* ice_sysctl_fw_cur_lldp_persist_status - Display current FW LLDP status
* @oidp: sysctl oid structure
* @arg1: pointer to private softc structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays current persistent LLDP status.
*/
static int
ice_sysctl_fw_cur_lldp_persist_status(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
struct sbuf *sbuf;
u32 lldp_state;
UNREFERENCED_PARAMETER(arg2);
UNREFERENCED_PARAMETER(oidp);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
status = ice_get_cur_lldp_persist_status(hw, &lldp_state);
if (status) {
device_printf(dev,
"Could not acquire current LLDP persistence status, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
sbuf_printf(sbuf, "%s", ice_fw_lldp_status(lldp_state));
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_sysctl_fw_dflt_lldp_persist_status - Display default FW LLDP status
* @oidp: sysctl oid structure
* @arg1: pointer to private softc structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays default persistent LLDP status.
*/
static int
ice_sysctl_fw_dflt_lldp_persist_status(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
struct sbuf *sbuf;
u32 lldp_state;
UNREFERENCED_PARAMETER(arg2);
UNREFERENCED_PARAMETER(oidp);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
status = ice_get_dflt_lldp_persist_status(hw, &lldp_state);
if (status) {
device_printf(dev,
"Could not acquire default LLDP persistence status, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
sbuf_printf(sbuf, "%s", ice_fw_lldp_status(lldp_state));
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
#define ICE_SYSCTL_HELP_FW_LLDP_AGENT \
"\nDisplay or change FW LLDP agent state:" \
"\n\t0 - disabled" \
"\n\t1 - enabled"
/**
* ice_sysctl_fw_lldp_agent - Display or change the FW LLDP agent status
* @oidp: sysctl oid structure
* @arg1: pointer to private softc structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays whether the FW LLDP agent is running
* On write: Persistently enables or disables the FW LLDP agent
*/
static int
ice_sysctl_fw_lldp_agent(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
int error = 0;
u32 old_state;
u8 fw_lldp_enabled;
bool retried_start_lldp = false;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
status = ice_get_cur_lldp_persist_status(hw, &old_state);
if (status) {
device_printf(dev,
"Could not acquire current LLDP persistence status, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
if (old_state > ICE_LLDP_ADMINSTATUS_ENA_RXTX) {
status = ice_get_dflt_lldp_persist_status(hw, &old_state);
if (status) {
device_printf(dev,
"Could not acquire default LLDP persistence status, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
}
if (old_state == 0)
fw_lldp_enabled = false;
else
fw_lldp_enabled = true;
error = sysctl_handle_bool(oidp, &fw_lldp_enabled, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
if (old_state == 0 && fw_lldp_enabled == false)
return (0);
if (old_state != 0 && fw_lldp_enabled == true)
return (0);
if (fw_lldp_enabled == false) {
status = ice_aq_stop_lldp(hw, true, true, NULL);
/* EPERM is returned if the LLDP agent is already shutdown */
if (status && hw->adminq.sq_last_status != ICE_AQ_RC_EPERM) {
device_printf(dev,
"%s: ice_aq_stop_lldp failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
ice_aq_set_dcb_parameters(hw, true, NULL);
hw->port_info->is_sw_lldp = true;
ice_add_rx_lldp_filter(sc);
} else {
retry_start_lldp:
status = ice_aq_start_lldp(hw, true, NULL);
if (status) {
switch (hw->adminq.sq_last_status) {
/* EEXIST is returned if the LLDP agent is already started */
case ICE_AQ_RC_EEXIST:
break;
case ICE_AQ_RC_EAGAIN:
/* Retry command after a 2 second wait */
if (retried_start_lldp == false) {
retried_start_lldp = true;
pause("slldp", ICE_START_LLDP_RETRY_WAIT);
goto retry_start_lldp;
}
/* Fallthrough */
default:
device_printf(dev,
"%s: ice_aq_start_lldp failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
}
hw->port_info->is_sw_lldp = false;
ice_del_rx_lldp_filter(sc);
}
return (error);
}
/**
* ice_add_device_sysctls - add device specific dynamic sysctls
* @sc: device private structure
*
* Add per-device dynamic sysctls which show device configuration or enable
* configuring device functionality. For tunable values which can be set prior
* to load, see ice_add_device_tunables.
*
* This function depends on the sysctl layout setup by ice_add_device_tunables,
* and likely should be called near the end of the attach process.
*/
void
ice_add_device_sysctls(struct ice_softc *sc)
{
struct sysctl_oid *hw_node;
device_t dev = sc->dev;
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
struct sysctl_oid_list *ctx_list =
SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
SYSCTL_ADD_PROC(ctx, ctx_list,
OID_AUTO, "fw_version", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_show_fw, "A", "Firmware version");
SYSCTL_ADD_PROC(ctx, ctx_list,
OID_AUTO, "pba_number", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_pba_number, "A", "Product Board Assembly Number");
SYSCTL_ADD_PROC(ctx, ctx_list,
OID_AUTO, "ddp_version", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_pkg_version, "A", "Active DDP package name and version");
SYSCTL_ADD_PROC(ctx, ctx_list,
OID_AUTO, "current_speed", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_current_speed, "A", "Current Port Link Speed");
SYSCTL_ADD_PROC(ctx, ctx_list,
OID_AUTO, "requested_fec", CTLTYPE_STRING | CTLFLAG_RW,
sc, 0, ice_sysctl_fec_config, "A", ICE_SYSCTL_HELP_FEC_CONFIG);
SYSCTL_ADD_PROC(ctx, ctx_list,
OID_AUTO, "negotiated_fec", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_negotiated_fec, "A", "Current Negotiated FEC mode");
SYSCTL_ADD_PROC(ctx, ctx_list,
OID_AUTO, "fc", CTLTYPE_STRING | CTLFLAG_RW,
sc, 0, ice_sysctl_fc_config, "A", ICE_SYSCTL_HELP_FC_CONFIG);
SYSCTL_ADD_PROC(ctx, ctx_list,
OID_AUTO, "advertise_speed", CTLTYPE_U16 | CTLFLAG_RW,
sc, 0, ice_sysctl_advertise_speed, "SU", ICE_SYSCTL_HELP_ADVERTISE_SPEED);
SYSCTL_ADD_PROC(ctx, ctx_list,
OID_AUTO, "fw_lldp_agent", CTLTYPE_U8 | CTLFLAG_RWTUN,
sc, 0, ice_sysctl_fw_lldp_agent, "CU", ICE_SYSCTL_HELP_FW_LLDP_AGENT);
/* Differentiate software and hardware statistics, by keeping hw stats
* in their own node. This isn't in ice_add_device_tunables, because
* we won't have any CTLFLAG_TUN sysctls under this node.
*/
hw_node = SYSCTL_ADD_NODE(ctx, ctx_list, OID_AUTO, "hw", CTLFLAG_RD,
NULL, "Port Hardware Statistics");
ice_add_sysctls_mac_stats(ctx, hw_node, &sc->stats.cur);
/* Add the main PF VSI stats now. Other VSIs will add their own stats
* during creation
*/
ice_add_vsi_sysctls(&sc->pf_vsi);
/* Add sysctls related to debugging the device driver. This includes
* sysctls which display additional internal driver state for use in
* understanding what is happening within the driver.
*/
ice_add_debug_sysctls(sc);
}
/**
* @enum hmc_error_type
* @brief enumeration of HMC errors
*
* Enumeration defining the possible HMC errors that might occur.
*/
enum hmc_error_type {
HMC_ERR_PMF_INVALID = 0,
HMC_ERR_VF_IDX_INVALID = 1,
HMC_ERR_VF_PARENT_PF_INVALID = 2,
/* 3 is reserved */
HMC_ERR_INDEX_TOO_BIG = 4,
HMC_ERR_ADDRESS_TOO_LARGE = 5,
HMC_ERR_SEGMENT_DESC_INVALID = 6,
HMC_ERR_SEGMENT_DESC_TOO_SMALL = 7,
HMC_ERR_PAGE_DESC_INVALID = 8,
HMC_ERR_UNSUPPORTED_REQUEST_COMPLETION = 9,
/* 10 is reserved */
HMC_ERR_INVALID_OBJECT_TYPE = 11,
/* 12 is reserved */
};
/**
* ice_log_hmc_error - Log an HMC error message
* @hw: device hw structure
* @dev: the device to pass to device_printf()
*
* Log a message when an HMC error interrupt is triggered.
*/
void
ice_log_hmc_error(struct ice_hw *hw, device_t dev)
{
u32 info, data;
u8 index, errtype, objtype;
bool isvf;
info = rd32(hw, PFHMC_ERRORINFO);
data = rd32(hw, PFHMC_ERRORDATA);
index = (u8)(info & PFHMC_ERRORINFO_PMF_INDEX_M);
errtype = (u8)((info & PFHMC_ERRORINFO_HMC_ERROR_TYPE_M) >>
PFHMC_ERRORINFO_HMC_ERROR_TYPE_S);
objtype = (u8)((info & PFHMC_ERRORINFO_HMC_OBJECT_TYPE_M) >>
PFHMC_ERRORINFO_HMC_OBJECT_TYPE_S);
isvf = info & PFHMC_ERRORINFO_PMF_ISVF_M;
device_printf(dev, "%s HMC Error detected on PMF index %d:\n",
isvf ? "VF" : "PF", index);
device_printf(dev, "error type %d, object type %d, data 0x%08x\n",
errtype, objtype, data);
switch (errtype) {
case HMC_ERR_PMF_INVALID:
device_printf(dev, "Private Memory Function is not valid\n");
break;
case HMC_ERR_VF_IDX_INVALID:
device_printf(dev, "Invalid Private Memory Function index for PE enabled VF\n");
break;
case HMC_ERR_VF_PARENT_PF_INVALID:
device_printf(dev, "Invalid parent PF for PE enabled VF\n");
break;
case HMC_ERR_INDEX_TOO_BIG:
device_printf(dev, "Object index too big\n");
break;
case HMC_ERR_ADDRESS_TOO_LARGE:
device_printf(dev, "Address extends beyond segment descriptor limit\n");
break;
case HMC_ERR_SEGMENT_DESC_INVALID:
device_printf(dev, "Segment descriptor is invalid\n");
break;
case HMC_ERR_SEGMENT_DESC_TOO_SMALL:
device_printf(dev, "Segment descriptor is too small\n");
break;
case HMC_ERR_PAGE_DESC_INVALID:
device_printf(dev, "Page descriptor is invalid\n");
break;
case HMC_ERR_UNSUPPORTED_REQUEST_COMPLETION:
device_printf(dev, "Unsupported Request completion received from PCIe\n");
break;
case HMC_ERR_INVALID_OBJECT_TYPE:
device_printf(dev, "Invalid object type\n");
break;
default:
device_printf(dev, "Unknown HMC error\n");
}
/* Clear the error indication */
wr32(hw, PFHMC_ERRORINFO, 0);
}
/**
* @struct ice_sysctl_info
* @brief sysctl information
*
* Structure used to simplify the process of defining the many similar
* statistics sysctls.
*/
struct ice_sysctl_info {
u64 *stat;
const char *name;
const char *description;
};
/**
* ice_add_sysctls_eth_stats - Add sysctls for ethernet statistics
* @ctx: sysctl ctx to use
* @parent: the parent node to add sysctls under
* @stats: the ethernet stats structure to source values from
*
* Adds statistics sysctls for the ethernet statistics of the MAC or a VSI.
* Will add them under the parent node specified.
*
* Note that rx_discards and tx_errors are only meaningful for VSIs and not
* the global MAC/PF statistics, so they are not included here.
*/
void
ice_add_sysctls_eth_stats(struct sysctl_ctx_list *ctx,
struct sysctl_oid *parent,
struct ice_eth_stats *stats)
{
const struct ice_sysctl_info ctls[] = {
/* Rx Stats */
{ &stats->rx_bytes, "good_octets_rcvd", "Good Octets Received" },
{ &stats->rx_unicast, "ucast_pkts_rcvd", "Unicast Packets Received" },
{ &stats->rx_multicast, "mcast_pkts_rcvd", "Multicast Packets Received" },
{ &stats->rx_broadcast, "bcast_pkts_rcvd", "Broadcast Packets Received" },
/* Tx Stats */
{ &stats->tx_bytes, "good_octets_txd", "Good Octets Transmitted" },
{ &stats->tx_unicast, "ucast_pkts_txd", "Unicast Packets Transmitted" },
{ &stats->tx_multicast, "mcast_pkts_txd", "Multicast Packets Transmitted" },
{ &stats->tx_broadcast, "bcast_pkts_txd", "Broadcast Packets Transmitted" },
/* End */
{ 0, 0, 0 }
};
struct sysctl_oid_list *parent_list = SYSCTL_CHILDREN(parent);
const struct ice_sysctl_info *entry = ctls;
while (entry->stat != 0) {
SYSCTL_ADD_U64(ctx, parent_list, OID_AUTO, entry->name,
CTLFLAG_RD | CTLFLAG_STATS, entry->stat, 0,
entry->description);
entry++;
}
}
/**
* ice_sysctl_tx_cso_stat - Display Tx checksum offload statistic
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: Tx CSO stat to read
* @req: sysctl request pointer
*
* On read: Sums the per-queue Tx CSO stat and displays it.
*/
static int
ice_sysctl_tx_cso_stat(SYSCTL_HANDLER_ARGS)
{
struct ice_vsi *vsi = (struct ice_vsi *)arg1;
enum ice_tx_cso_stat type = (enum ice_tx_cso_stat)arg2;
u64 stat = 0;
int i;
if (ice_driver_is_detaching(vsi->sc))
return (ESHUTDOWN);
/* Check that the type is valid */
if (type >= ICE_CSO_STAT_TX_COUNT)
return (EDOOFUS);
/* Sum the stat for each of the Tx queues */
for (i = 0; i < vsi->num_tx_queues; i++)
stat += vsi->tx_queues[i].stats.cso[type];
return sysctl_handle_64(oidp, NULL, stat, req);
}
/**
* ice_sysctl_rx_cso_stat - Display Rx checksum offload statistic
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: Rx CSO stat to read
* @req: sysctl request pointer
*
* On read: Sums the per-queue Rx CSO stat and displays it.
*/
static int
ice_sysctl_rx_cso_stat(SYSCTL_HANDLER_ARGS)
{
struct ice_vsi *vsi = (struct ice_vsi *)arg1;
enum ice_rx_cso_stat type = (enum ice_rx_cso_stat)arg2;
u64 stat = 0;
int i;
if (ice_driver_is_detaching(vsi->sc))
return (ESHUTDOWN);
/* Check that the type is valid */
if (type >= ICE_CSO_STAT_RX_COUNT)
return (EDOOFUS);
/* Sum the stat for each of the Rx queues */
for (i = 0; i < vsi->num_rx_queues; i++)
stat += vsi->rx_queues[i].stats.cso[type];
return sysctl_handle_64(oidp, NULL, stat, req);
}
/**
* @struct ice_rx_cso_stat_info
* @brief sysctl information for an Rx checksum offload statistic
*
* Structure used to simplify the process of defining the checksum offload
* statistics.
*/
struct ice_rx_cso_stat_info {
enum ice_rx_cso_stat type;
const char *name;
const char *description;
};
/**
* @struct ice_tx_cso_stat_info
* @brief sysctl information for a Tx checksum offload statistic
*
* Structure used to simplify the process of defining the checksum offload
* statistics.
*/
struct ice_tx_cso_stat_info {
enum ice_tx_cso_stat type;
const char *name;
const char *description;
};
/**
* ice_add_sysctls_sw_stats - Add sysctls for software statistics
* @vsi: pointer to the VSI to add sysctls for
* @ctx: sysctl ctx to use
* @parent: the parent node to add sysctls under
*
* Add statistics sysctls for software tracked statistics of a VSI.
*
* Currently this only adds checksum offload statistics, but more counters may
* be added in the future.
*/
static void
ice_add_sysctls_sw_stats(struct ice_vsi *vsi,
struct sysctl_ctx_list *ctx,
struct sysctl_oid *parent)
{
struct sysctl_oid *cso_node;
struct sysctl_oid_list *cso_list;
/* Tx CSO Stats */
const struct ice_tx_cso_stat_info tx_ctls[] = {
{ ICE_CSO_STAT_TX_TCP, "tx_tcp", "Transmit TCP Packets marked for HW checksum" },
{ ICE_CSO_STAT_TX_UDP, "tx_udp", "Transmit UDP Packets marked for HW checksum" },
{ ICE_CSO_STAT_TX_SCTP, "tx_sctp", "Transmit SCTP Packets marked for HW checksum" },
{ ICE_CSO_STAT_TX_IP4, "tx_ip4", "Transmit IPv4 Packets marked for HW checksum" },
{ ICE_CSO_STAT_TX_IP6, "tx_ip6", "Transmit IPv6 Packets marked for HW checksum" },
{ ICE_CSO_STAT_TX_L3_ERR, "tx_l3_err", "Transmit packets that driver failed to set L3 HW CSO bits for" },
{ ICE_CSO_STAT_TX_L4_ERR, "tx_l4_err", "Transmit packets that driver failed to set L4 HW CSO bits for" },
/* End */
{ ICE_CSO_STAT_TX_COUNT, 0, 0 }
};
/* Rx CSO Stats */
const struct ice_rx_cso_stat_info rx_ctls[] = {
{ ICE_CSO_STAT_RX_IP4_ERR, "rx_ip4_err", "Received packets with invalid IPv4 checksum indicated by HW" },
{ ICE_CSO_STAT_RX_IP6_ERR, "rx_ip6_err", "Received IPv6 packets with extension headers" },
{ ICE_CSO_STAT_RX_L3_ERR, "rx_l3_err", "Received packets with an unexpected invalid L3 checksum indicated by HW" },
{ ICE_CSO_STAT_RX_TCP_ERR, "rx_tcp_err", "Received packets with invalid TCP checksum indicated by HW" },
{ ICE_CSO_STAT_RX_UDP_ERR, "rx_udp_err", "Received packets with invalid UDP checksum indicated by HW" },
{ ICE_CSO_STAT_RX_SCTP_ERR, "rx_sctp_err", "Received packets with invalid SCTP checksum indicated by HW" },
{ ICE_CSO_STAT_RX_L4_ERR, "rx_l4_err", "Received packets with an unexpected invalid L4 checksum indicated by HW" },
/* End */
{ ICE_CSO_STAT_RX_COUNT, 0, 0 }
};
struct sysctl_oid_list *parent_list = SYSCTL_CHILDREN(parent);
/* Add a node for statistics tracked by software. */
cso_node = SYSCTL_ADD_NODE(ctx, parent_list, OID_AUTO, "cso", CTLFLAG_RD,
NULL, "Checksum offload Statistics");
cso_list = SYSCTL_CHILDREN(cso_node);
const struct ice_tx_cso_stat_info *tx_entry = tx_ctls;
while (tx_entry->name && tx_entry->description) {
SYSCTL_ADD_PROC(ctx, cso_list, OID_AUTO, tx_entry->name,
CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_STATS,
vsi, tx_entry->type, ice_sysctl_tx_cso_stat, "QU",
tx_entry->description);
tx_entry++;
}
const struct ice_rx_cso_stat_info *rx_entry = rx_ctls;
while (rx_entry->name && rx_entry->description) {
SYSCTL_ADD_PROC(ctx, cso_list, OID_AUTO, rx_entry->name,
CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_STATS,
vsi, rx_entry->type, ice_sysctl_rx_cso_stat, "QU",
rx_entry->description);
rx_entry++;
}
}
/**
* ice_add_vsi_sysctls - Add sysctls for a VSI
* @vsi: pointer to VSI structure
*
* Add various sysctls for a given VSI.
*/
void
ice_add_vsi_sysctls(struct ice_vsi *vsi)
{
struct sysctl_ctx_list *ctx = &vsi->ctx;
struct sysctl_oid *hw_node, *sw_node;
struct sysctl_oid_list *vsi_list, *hw_list, *sw_list;
vsi_list = SYSCTL_CHILDREN(vsi->vsi_node);
/* Keep hw stats in their own node. */
hw_node = SYSCTL_ADD_NODE(ctx, vsi_list, OID_AUTO, "hw", CTLFLAG_RD,
NULL, "VSI Hardware Statistics");
hw_list = SYSCTL_CHILDREN(hw_node);
/* Add the ethernet statistics for this VSI */
ice_add_sysctls_eth_stats(ctx, hw_node, &vsi->hw_stats.cur);
SYSCTL_ADD_U64(ctx, hw_list, OID_AUTO, "rx_discards",
CTLFLAG_RD | CTLFLAG_STATS, &vsi->hw_stats.cur.rx_discards,
0, "Discarded Rx Packets");
SYSCTL_ADD_U64(ctx, hw_list, OID_AUTO, "rx_errors",
CTLFLAG_RD | CTLFLAG_STATS, &vsi->hw_stats.cur.rx_errors,
0, "Rx Packets Discarded Due To Error");
SYSCTL_ADD_U64(ctx, hw_list, OID_AUTO, "rx_no_desc",
CTLFLAG_RD | CTLFLAG_STATS, &vsi->hw_stats.cur.rx_no_desc,
0, "Rx Packets Discarded Due To Lack Of Descriptors");
SYSCTL_ADD_U64(ctx, hw_list, OID_AUTO, "tx_errors",
CTLFLAG_RD | CTLFLAG_STATS, &vsi->hw_stats.cur.tx_errors,
0, "Tx Packets Discarded Due To Error");
/* Add a node for statistics tracked by software. */
sw_node = SYSCTL_ADD_NODE(ctx, vsi_list, OID_AUTO, "sw", CTLFLAG_RD,
NULL, "VSI Software Statistics");
sw_list = SYSCTL_CHILDREN(sw_node);
ice_add_sysctls_sw_stats(vsi, ctx, sw_node);
}
/**
* ice_add_sysctls_mac_stats - Add sysctls for global MAC statistics
* @ctx: the sysctl ctx to use
* @parent: parent node to add the sysctls under
* @stats: the hw ports stat structure to pull values from
*
* Add global MAC statistics sysctls.
*/
void
ice_add_sysctls_mac_stats(struct sysctl_ctx_list *ctx,
struct sysctl_oid *parent,
struct ice_hw_port_stats *stats)
{
struct sysctl_oid *mac_node;
struct sysctl_oid_list *parent_list, *mac_list;
parent_list = SYSCTL_CHILDREN(parent);
mac_node = SYSCTL_ADD_NODE(ctx, parent_list, OID_AUTO, "mac", CTLFLAG_RD,
NULL, "Mac Hardware Statistics");
mac_list = SYSCTL_CHILDREN(mac_node);
/* add the common ethernet statistics */
ice_add_sysctls_eth_stats(ctx, mac_node, &stats->eth);
const struct ice_sysctl_info ctls[] = {
/* Packet Reception Stats */
{&stats->rx_size_64, "rx_frames_64", "64 byte frames received"},
{&stats->rx_size_127, "rx_frames_65_127", "65-127 byte frames received"},
{&stats->rx_size_255, "rx_frames_128_255", "128-255 byte frames received"},
{&stats->rx_size_511, "rx_frames_256_511", "256-511 byte frames received"},
{&stats->rx_size_1023, "rx_frames_512_1023", "512-1023 byte frames received"},
{&stats->rx_size_1522, "rx_frames_1024_1522", "1024-1522 byte frames received"},
{&stats->rx_size_big, "rx_frames_big", "1523-9522 byte frames received"},
{&stats->rx_undersize, "rx_undersize", "Undersized packets received"},
{&stats->rx_fragments, "rx_fragmented", "Fragmented packets received"},
{&stats->rx_oversize, "rx_oversized", "Oversized packets received"},
{&stats->rx_jabber, "rx_jabber", "Received Jabber"},
{&stats->rx_len_errors, "rx_length_errors", "Receive Length Errors"},
/* Packet Transmission Stats */
{&stats->tx_size_64, "tx_frames_64", "64 byte frames transmitted"},
{&stats->tx_size_127, "tx_frames_65_127", "65-127 byte frames transmitted"},
{&stats->tx_size_255, "tx_frames_128_255", "128-255 byte frames transmitted"},
{&stats->tx_size_511, "tx_frames_256_511", "256-511 byte frames transmitted"},
{&stats->tx_size_1023, "tx_frames_512_1023", "512-1023 byte frames transmitted"},
{&stats->tx_size_1522, "tx_frames_1024_1522", "1024-1522 byte frames transmitted"},
{&stats->tx_size_big, "tx_frames_big", "1523-9522 byte frames transmitted"},
{&stats->tx_dropped_link_down, "tx_dropped", "Tx Dropped Due To Link Down"},
/* Flow control */
{&stats->link_xon_tx, "xon_txd", "Link XON transmitted"},
{&stats->link_xon_rx, "xon_recvd", "Link XON received"},
{&stats->link_xoff_tx, "xoff_txd", "Link XOFF transmitted"},
{&stats->link_xoff_rx, "xoff_recvd", "Link XOFF received"},
/* Other */
{&stats->crc_errors, "crc_errors", "CRC Errors"},
{&stats->illegal_bytes, "illegal_bytes", "Illegal Byte Errors"},
{&stats->mac_local_faults, "local_faults", "MAC Local Faults"},
{&stats->mac_remote_faults, "remote_faults", "MAC Remote Faults"},
/* End */
{ 0, 0, 0 }
};
const struct ice_sysctl_info *entry = ctls;
while (entry->stat != 0) {
SYSCTL_ADD_U64(ctx, mac_list, OID_AUTO, entry->name,
CTLFLAG_RD | CTLFLAG_STATS, entry->stat, 0,
entry->description);
entry++;
}
}
/**
* ice_configure_misc_interrupts - enable 'other' interrupt causes
* @sc: pointer to device private softc
*
* Enable various "other" interrupt causes, and associate them to interrupt 0,
* which is our administrative interrupt.
*/
void
ice_configure_misc_interrupts(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
u32 val;
/* Read the OICR register to clear it */
rd32(hw, PFINT_OICR);
/* Enable useful "other" interrupt causes */
val = (PFINT_OICR_ECC_ERR_M |
PFINT_OICR_MAL_DETECT_M |
PFINT_OICR_GRST_M |
PFINT_OICR_PCI_EXCEPTION_M |
PFINT_OICR_VFLR_M |
PFINT_OICR_HMC_ERR_M |
PFINT_OICR_PE_CRITERR_M);
wr32(hw, PFINT_OICR_ENA, val);
/* Note that since we're using MSI-X index 0, and ITR index 0, we do
* not explicitly program them when writing to the PFINT_*_CTL
* registers. Nevertheless, these writes are associating the
* interrupts with the ITR 0 vector
*/
/* Associate the OICR interrupt with ITR 0, and enable it */
wr32(hw, PFINT_OICR_CTL, PFINT_OICR_CTL_CAUSE_ENA_M);
/* Associate the Mailbox interrupt with ITR 0, and enable it */
wr32(hw, PFINT_MBX_CTL, PFINT_MBX_CTL_CAUSE_ENA_M);
/* Associate the AdminQ interrupt with ITR 0, and enable it */
wr32(hw, PFINT_FW_CTL, PFINT_FW_CTL_CAUSE_ENA_M);
}
/**
* ice_filter_is_mcast - Check if info is a multicast filter
* @vsi: vsi structure addresses are targeted towards
* @info: filter info
*
* @returns true if the provided info is a multicast filter, and false
* otherwise.
*/
static bool
ice_filter_is_mcast(struct ice_vsi *vsi, struct ice_fltr_info *info)
{
const u8 *addr = info->l_data.mac.mac_addr;
/*
* Check if this info matches a multicast filter added by
* ice_add_mac_to_list
*/
if ((info->flag == ICE_FLTR_TX) &&
(info->src_id == ICE_SRC_ID_VSI) &&
(info->lkup_type == ICE_SW_LKUP_MAC) &&
(info->vsi_handle == vsi->idx) &&
ETHER_IS_MULTICAST(addr) && !ETHER_IS_BROADCAST(addr))
return true;
return false;
}
/**
* @struct ice_mcast_sync_data
* @brief data used by ice_sync_one_mcast_filter function
*
* Structure used to store data needed for processing by the
* ice_sync_one_mcast_filter. This structure contains a linked list of filters
* to be added, an error indication, and a pointer to the device softc.
*/
struct ice_mcast_sync_data {
struct ice_list_head add_list;
struct ice_softc *sc;
int err;
};
/**
* ice_sync_one_mcast_filter - Check if we need to program the filter
* @p: void pointer to algorithm data
* @sdl: link level socket address
* @count: unused count value
*
* Called by if_foreach_llmaddr to operate on each filter in the ifp filter
* list. For the given address, search our internal list to see if we have
* found the filter. If not, add it to our list of filters that need to be
* programmed.
*
* @returns (1) if we've actually setup the filter to be added
*/
static u_int
ice_sync_one_mcast_filter(void *p, struct sockaddr_dl *sdl,
u_int __unused count)
{
struct ice_mcast_sync_data *data = (struct ice_mcast_sync_data *)p;
struct ice_softc *sc = data->sc;
struct ice_hw *hw = &sc->hw;
struct ice_switch_info *sw = hw->switch_info;
const u8 *sdl_addr = (const u8 *)LLADDR(sdl);
struct ice_fltr_mgmt_list_entry *itr;
struct ice_list_head *rules;
int err;
rules = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
/*
* If a previous filter already indicated an error, there is no need
* for us to finish processing the rest of the filters.
*/
if (data->err)
return (0);
/* See if this filter has already been programmed */
LIST_FOR_EACH_ENTRY(itr, rules, ice_fltr_mgmt_list_entry, list_entry) {
struct ice_fltr_info *info = &itr->fltr_info;
const u8 *addr = info->l_data.mac.mac_addr;
/* Only check multicast filters */
if (!ice_filter_is_mcast(&sc->pf_vsi, info))
continue;
/*
* If this filter matches, mark the internal filter as
* "found", and exit.
*/
if (bcmp(addr, sdl_addr, ETHER_ADDR_LEN) == 0) {
itr->marker = ICE_FLTR_FOUND;
return (1);
}
}
/*
* If we failed to locate the filter in our internal list, we need to
* place it into our add list.
*/
err = ice_add_mac_to_list(&sc->pf_vsi, &data->add_list, sdl_addr,
ICE_FWD_TO_VSI);
if (err) {
device_printf(sc->dev,
"Failed to place MAC %6D onto add list, err %s\n",
sdl_addr, ":", ice_err_str(err));
data->err = err;
return (0);
}
return (1);
}
/**
* ice_sync_multicast_filters - Synchronize OS and internal filter list
* @sc: device private structure
*
* Called in response to SIOCDELMULTI to synchronize the operating system
* multicast address list with the internal list of filters programmed to
* firmware.
*
* Works in one phase to find added and deleted filters using a marker bit on
* the internal list.
*
* First, a loop over the internal list clears the marker bit. Second, for
* each filter in the ifp list is checked. If we find it in the internal list,
* the marker bit is set. Otherwise, the filter is added to the add list.
* Third, a loop over the internal list determines if any filters have not
* been found. Each of these is added to the delete list. Finally, the add and
* delete lists are programmed to firmware to update the filters.
*
* @returns zero on success or an integer error code on failure.
*/
int
ice_sync_multicast_filters(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_mgmt_list_entry *itr;
struct ice_mcast_sync_data data = {};
struct ice_list_head *rules, remove_list;
enum ice_status status;
int err = 0;
INIT_LIST_HEAD(&data.add_list);
INIT_LIST_HEAD(&remove_list);
data.sc = sc;
data.err = 0;
rules = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
/* Acquire the lock for the entire duration */
ice_acquire_lock(&sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock);
/* (1) Reset the marker state for all filters */
LIST_FOR_EACH_ENTRY(itr, rules, ice_fltr_mgmt_list_entry, list_entry)
itr->marker = ICE_FLTR_NOT_FOUND;
/* (2) determine which filters need to be added and removed */
if_foreach_llmaddr(sc->ifp, ice_sync_one_mcast_filter, (void *)&data);
if (data.err) {
/* ice_sync_one_mcast_filter already prints an error */
err = data.err;
ice_release_lock(&sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock);
goto free_filter_lists;
}
LIST_FOR_EACH_ENTRY(itr, rules, ice_fltr_mgmt_list_entry, list_entry) {
struct ice_fltr_info *info = &itr->fltr_info;
const u8 *addr = info->l_data.mac.mac_addr;
/* Only check multicast filters */
if (!ice_filter_is_mcast(&sc->pf_vsi, info))
continue;
/*
* If the filter is not marked as found, then it must no
* longer be in the ifp address list, so we need to remove it.
*/
if (itr->marker == ICE_FLTR_NOT_FOUND) {
err = ice_add_mac_to_list(&sc->pf_vsi, &remove_list,
addr, ICE_FWD_TO_VSI);
if (err) {
device_printf(sc->dev,
"Failed to place MAC %6D onto remove list, err %s\n",
addr, ":", ice_err_str(err));
ice_release_lock(&sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock);
goto free_filter_lists;
}
}
}
ice_release_lock(&sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock);
status = ice_add_mac(hw, &data.add_list);
if (status) {
device_printf(sc->dev,
"Could not add new MAC filters, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
err = (EIO);
goto free_filter_lists;
}
status = ice_remove_mac(hw, &remove_list);
if (status) {
device_printf(sc->dev,
"Could not remove old MAC filters, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
err = (EIO);
goto free_filter_lists;
}
free_filter_lists:
ice_free_fltr_list(&data.add_list);
ice_free_fltr_list(&remove_list);
return (err);
}
/**
* ice_add_vlan_hw_filter - Add a VLAN filter for a given VSI
* @vsi: The VSI to add the filter for
* @vid: VLAN to add
*
* Programs a HW filter so that the given VSI will receive the specified VLAN.
*/
enum ice_status
ice_add_vlan_hw_filter(struct ice_vsi *vsi, u16 vid)
{
struct ice_hw *hw = &vsi->sc->hw;
struct ice_list_head vlan_list;
struct ice_fltr_list_entry vlan_entry;
INIT_LIST_HEAD(&vlan_list);
memset(&vlan_entry, 0, sizeof(vlan_entry));
vlan_entry.fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
vlan_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
vlan_entry.fltr_info.flag = ICE_FLTR_TX;
vlan_entry.fltr_info.src_id = ICE_SRC_ID_VSI;
vlan_entry.fltr_info.vsi_handle = vsi->idx;
vlan_entry.fltr_info.l_data.vlan.vlan_id = vid;
LIST_ADD(&vlan_entry.list_entry, &vlan_list);
return ice_add_vlan(hw, &vlan_list);
}
/**
* ice_remove_vlan_hw_filter - Remove a VLAN filter for a given VSI
* @vsi: The VSI to add the filter for
* @vid: VLAN to remove
*
* Removes a previously programmed HW filter for the specified VSI.
*/
enum ice_status
ice_remove_vlan_hw_filter(struct ice_vsi *vsi, u16 vid)
{
struct ice_hw *hw = &vsi->sc->hw;
struct ice_list_head vlan_list;
struct ice_fltr_list_entry vlan_entry;
INIT_LIST_HEAD(&vlan_list);
memset(&vlan_entry, 0, sizeof(vlan_entry));
vlan_entry.fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
vlan_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
vlan_entry.fltr_info.flag = ICE_FLTR_TX;
vlan_entry.fltr_info.src_id = ICE_SRC_ID_VSI;
vlan_entry.fltr_info.vsi_handle = vsi->idx;
vlan_entry.fltr_info.l_data.vlan.vlan_id = vid;
LIST_ADD(&vlan_entry.list_entry, &vlan_list);
return ice_remove_vlan(hw, &vlan_list);
}
#define ICE_SYSCTL_HELP_RX_ITR \
"\nControl Rx interrupt throttle rate." \
"\n\t0-8160 - sets interrupt rate in usecs" \
"\n\t -1 - reset the Rx itr to default"
/**
* ice_sysctl_rx_itr - Display or change the Rx ITR for a VSI
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays the current Rx ITR value
* on write: Sets the Rx ITR value, reconfiguring device if it is up
*/
static int
ice_sysctl_rx_itr(SYSCTL_HANDLER_ARGS)
{
struct ice_vsi *vsi = (struct ice_vsi *)arg1;
struct ice_softc *sc = vsi->sc;
int increment, error = 0;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
error = sysctl_handle_16(oidp, &vsi->rx_itr, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
if (vsi->rx_itr < 0)
vsi->rx_itr = ICE_DFLT_RX_ITR;
if (vsi->rx_itr > ICE_ITR_MAX)
vsi->rx_itr = ICE_ITR_MAX;
/* Assume 2usec increment if it hasn't been loaded yet */
increment = sc->hw.itr_gran ? : 2;
/* We need to round the value to the hardware's ITR granularity */
vsi->rx_itr = (vsi->rx_itr / increment ) * increment;
/* If the driver has finished initializing, then we need to reprogram
* the ITR registers now. Otherwise, they will be programmed during
* driver initialization.
*/
if (ice_test_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED))
ice_configure_rx_itr(vsi);
return (0);
}
#define ICE_SYSCTL_HELP_TX_ITR \
"\nControl Tx interrupt throttle rate." \
"\n\t0-8160 - sets interrupt rate in usecs" \
"\n\t -1 - reset the Tx itr to default"
/**
* ice_sysctl_tx_itr - Display or change the Tx ITR for a VSI
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* On read: Displays the current Tx ITR value
* on write: Sets the Tx ITR value, reconfiguring device if it is up
*/
static int
ice_sysctl_tx_itr(SYSCTL_HANDLER_ARGS)
{
struct ice_vsi *vsi = (struct ice_vsi *)arg1;
struct ice_softc *sc = vsi->sc;
int increment, error = 0;
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
error = sysctl_handle_16(oidp, &vsi->tx_itr, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
/* Allow configuring a negative value to reset to the default */
if (vsi->tx_itr < 0)
vsi->tx_itr = ICE_DFLT_TX_ITR;
if (vsi->tx_itr > ICE_ITR_MAX)
vsi->tx_itr = ICE_ITR_MAX;
/* Assume 2usec increment if it hasn't been loaded yet */
increment = sc->hw.itr_gran ? : 2;
/* We need to round the value to the hardware's ITR granularity */
vsi->tx_itr = (vsi->tx_itr / increment ) * increment;
/* If the driver has finished initializing, then we need to reprogram
* the ITR registers now. Otherwise, they will be programmed during
* driver initialization.
*/
if (ice_test_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED))
ice_configure_tx_itr(vsi);
return (0);
}
/**
* ice_add_vsi_tunables - Add tunables and nodes for a VSI
* @vsi: pointer to VSI structure
* @parent: parent node to add the tunables under
*
* Create a sysctl context for the VSI, so that sysctls for the VSI can be
* dynamically removed upon VSI removal.
*
* Add various tunables and set up the basic node structure for the VSI. Must
* be called *prior* to ice_add_vsi_sysctls. It should be called as soon as
* possible after the VSI memory is initialized.
*
* VSI specific sysctls with CTLFLAG_TUN should be initialized here so that
* their values can be read from loader.conf prior to their first use in the
* driver.
*/
void
ice_add_vsi_tunables(struct ice_vsi *vsi, struct sysctl_oid *parent)
{
struct sysctl_oid_list *vsi_list;
char vsi_name[32], vsi_desc[32];
struct sysctl_oid_list *parent_list = SYSCTL_CHILDREN(parent);
/* Initialize the sysctl context for this VSI */
sysctl_ctx_init(&vsi->ctx);
/* Add a node to collect this VSI's statistics together */
snprintf(vsi_name, sizeof(vsi_name), "%u", vsi->idx);
snprintf(vsi_desc, sizeof(vsi_desc), "VSI %u", vsi->idx);
vsi->vsi_node = SYSCTL_ADD_NODE(&vsi->ctx, parent_list, OID_AUTO, vsi_name,
CTLFLAG_RD, NULL, vsi_desc);
vsi_list = SYSCTL_CHILDREN(vsi->vsi_node);
vsi->rx_itr = ICE_DFLT_TX_ITR;
SYSCTL_ADD_PROC(&vsi->ctx, vsi_list, OID_AUTO, "rx_itr",
CTLTYPE_S16 | CTLFLAG_RWTUN,
vsi, 0, ice_sysctl_rx_itr, "S",
ICE_SYSCTL_HELP_RX_ITR);
vsi->tx_itr = ICE_DFLT_TX_ITR;
SYSCTL_ADD_PROC(&vsi->ctx, vsi_list, OID_AUTO, "tx_itr",
CTLTYPE_S16 | CTLFLAG_RWTUN,
vsi, 0, ice_sysctl_tx_itr, "S",
ICE_SYSCTL_HELP_TX_ITR);
}
/**
* ice_del_vsi_sysctl_ctx - Delete the sysctl context(s) of a VSI
* @vsi: the VSI to remove contexts for
*
* Free the context for the VSI sysctls. This includes the main context, as
* well as the per-queue sysctls.
*/
void
ice_del_vsi_sysctl_ctx(struct ice_vsi *vsi)
{
device_t dev = vsi->sc->dev;
int err;
if (vsi->vsi_node) {
err = sysctl_ctx_free(&vsi->ctx);
if (err)
device_printf(dev, "failed to free VSI %d sysctl context, err %s\n",
vsi->idx, ice_err_str(err));
vsi->vsi_node = NULL;
}
}
/**
* ice_add_device_tunables - Add early tunable sysctls and sysctl nodes
* @sc: device private structure
*
* Add per-device dynamic tunable sysctls, and setup the general sysctl trees
* for re-use by ice_add_device_sysctls.
*
* In order for the sysctl fields to be initialized before use, this function
* should be called as early as possible during attach activities.
*
* Any non-global sysctl marked as CTLFLAG_TUN should likely be initialized
* here in this function, rather than later in ice_add_device_sysctls.
*
* To make things easier, this function is also expected to setup the various
* sysctl nodes in addition to tunables so that other sysctls which can't be
* initialized early can hook into the same nodes.
*/
void
ice_add_device_tunables(struct ice_softc *sc)
{
device_t dev = sc->dev;
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
struct sysctl_oid_list *ctx_list =
SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
/* Add a node to track VSI sysctls. Keep track of the node in the
* softc so that we can hook other sysctls into it later. This
* includes both the VSI statistics, as well as potentially dynamic
* VSIs in the future.
*/
sc->vsi_sysctls = SYSCTL_ADD_NODE(ctx, ctx_list, OID_AUTO, "vsi",
CTLFLAG_RD, NULL, "VSI Configuration and Statistics");
/* Add debug tunables */
ice_add_debug_tunables(sc);
}
/**
* ice_sysctl_dump_mac_filters - Dump a list of all HW MAC Filters
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for "mac_filters" sysctl to dump the programmed MAC filters.
*/
static int
ice_sysctl_dump_mac_filters(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_mgmt_list_entry *fm_entry;
struct ice_list_head *rule_head;
struct ice_lock *rule_lock;
struct ice_fltr_info *fi;
struct sbuf *sbuf;
int ret;
UNREFERENCED_PARAMETER(oidp);
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
/* Wire the old buffer so we can take a non-sleepable lock */
ret = sysctl_wire_old_buffer(req, 0);
if (ret)
return (ret);
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
sbuf_printf(sbuf, "MAC Filter List");
ice_acquire_lock(rule_lock);
LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, list_entry) {
fi = &fm_entry->fltr_info;
sbuf_printf(sbuf,
"\nmac = %6D, vsi_handle = %3d, fw_act_flag = %5s, lb_en = %1d, lan_en = %1d, fltr_act = %15s, fltr_rule_id = %d",
fi->l_data.mac.mac_addr, ":", fi->vsi_handle,
ice_fltr_flag_str(fi->flag), fi->lb_en, fi->lan_en,
ice_fwd_act_str(fi->fltr_act), fi->fltr_rule_id);
/* if we have a vsi_list_info, print some information about that */
if (fm_entry->vsi_list_info) {
sbuf_printf(sbuf,
", vsi_count = %3d, vsi_list_id = %3d, ref_cnt = %3d",
fm_entry->vsi_count,
fm_entry->vsi_list_info->vsi_list_id,
fm_entry->vsi_list_info->ref_cnt);
}
}
ice_release_lock(rule_lock);
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_sysctl_dump_vlan_filters - Dump a list of all HW VLAN Filters
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for "vlan_filters" sysctl to dump the programmed VLAN filters.
*/
static int
ice_sysctl_dump_vlan_filters(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_mgmt_list_entry *fm_entry;
struct ice_list_head *rule_head;
struct ice_lock *rule_lock;
struct ice_fltr_info *fi;
struct sbuf *sbuf;
int ret;
UNREFERENCED_PARAMETER(oidp);
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
/* Wire the old buffer so we can take a non-sleepable lock */
ret = sysctl_wire_old_buffer(req, 0);
if (ret)
return (ret);
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
sbuf_printf(sbuf, "VLAN Filter List");
ice_acquire_lock(rule_lock);
LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, list_entry) {
fi = &fm_entry->fltr_info;
sbuf_printf(sbuf,
"\nvlan_id = %4d, vsi_handle = %3d, fw_act_flag = %5s, lb_en = %1d, lan_en = %1d, fltr_act = %15s, fltr_rule_id = %4d",
fi->l_data.vlan.vlan_id, fi->vsi_handle,
ice_fltr_flag_str(fi->flag), fi->lb_en, fi->lan_en,
ice_fwd_act_str(fi->fltr_act), fi->fltr_rule_id);
/* if we have a vsi_list_info, print some information about that */
if (fm_entry->vsi_list_info) {
sbuf_printf(sbuf,
", vsi_count = %3d, vsi_list_id = %3d, ref_cnt = %3d",
fm_entry->vsi_count,
fm_entry->vsi_list_info->vsi_list_id,
fm_entry->vsi_list_info->ref_cnt);
}
}
ice_release_lock(rule_lock);
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_sysctl_dump_ethertype_filters - Dump a list of all HW Ethertype filters
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for "ethertype_filters" sysctl to dump the programmed Ethertype
* filters.
*/
static int
ice_sysctl_dump_ethertype_filters(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_mgmt_list_entry *fm_entry;
struct ice_list_head *rule_head;
struct ice_lock *rule_lock;
struct ice_fltr_info *fi;
struct sbuf *sbuf;
int ret;
UNREFERENCED_PARAMETER(oidp);
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
/* Wire the old buffer so we can take a non-sleepable lock */
ret = sysctl_wire_old_buffer(req, 0);
if (ret)
return (ret);
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
rule_lock = &sw->recp_list[ICE_SW_LKUP_ETHERTYPE].filt_rule_lock;
rule_head = &sw->recp_list[ICE_SW_LKUP_ETHERTYPE].filt_rules;
sbuf_printf(sbuf, "Ethertype Filter List");
ice_acquire_lock(rule_lock);
LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, list_entry) {
fi = &fm_entry->fltr_info;
sbuf_printf(sbuf,
"\nethertype = 0x%04x, vsi_handle = %3d, fw_act_flag = %5s, lb_en = %1d, lan_en = %1d, fltr_act = %15s, fltr_rule_id = %4d",
fi->l_data.ethertype_mac.ethertype,
fi->vsi_handle, ice_fltr_flag_str(fi->flag),
fi->lb_en, fi->lan_en, ice_fwd_act_str(fi->fltr_act),
fi->fltr_rule_id);
/* if we have a vsi_list_info, print some information about that */
if (fm_entry->vsi_list_info) {
sbuf_printf(sbuf,
", vsi_count = %3d, vsi_list_id = %3d, ref_cnt = %3d",
fm_entry->vsi_count,
fm_entry->vsi_list_info->vsi_list_id,
fm_entry->vsi_list_info->ref_cnt);
}
}
ice_release_lock(rule_lock);
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_sysctl_dump_ethertype_mac_filters - Dump a list of all HW Ethertype/MAC filters
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for "ethertype_mac_filters" sysctl to dump the programmed
* Ethertype/MAC filters.
*/
static int
ice_sysctl_dump_ethertype_mac_filters(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
struct ice_switch_info *sw = hw->switch_info;
struct ice_fltr_mgmt_list_entry *fm_entry;
struct ice_list_head *rule_head;
struct ice_lock *rule_lock;
struct ice_fltr_info *fi;
struct sbuf *sbuf;
int ret;
UNREFERENCED_PARAMETER(oidp);
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
/* Wire the old buffer so we can take a non-sleepable lock */
ret = sysctl_wire_old_buffer(req, 0);
if (ret)
return (ret);
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
rule_lock = &sw->recp_list[ICE_SW_LKUP_ETHERTYPE_MAC].filt_rule_lock;
rule_head = &sw->recp_list[ICE_SW_LKUP_ETHERTYPE_MAC].filt_rules;
sbuf_printf(sbuf, "Ethertype/MAC Filter List");
ice_acquire_lock(rule_lock);
LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, list_entry) {
fi = &fm_entry->fltr_info;
sbuf_printf(sbuf,
"\nethertype = 0x%04x, mac = %6D, vsi_handle = %3d, fw_act_flag = %5s, lb_en = %1d, lan_en = %1d, fltr_act = %15s, fltr_rule_id = %4d",
fi->l_data.ethertype_mac.ethertype,
fi->l_data.ethertype_mac.mac_addr, ":",
fi->vsi_handle, ice_fltr_flag_str(fi->flag),
fi->lb_en, fi->lan_en, ice_fwd_act_str(fi->fltr_act),
fi->fltr_rule_id);
/* if we have a vsi_list_info, print some information about that */
if (fm_entry->vsi_list_info) {
sbuf_printf(sbuf,
", vsi_count = %3d, vsi_list_id = %3d, ref_cnt = %3d",
fm_entry->vsi_count,
fm_entry->vsi_list_info->vsi_list_id,
fm_entry->vsi_list_info->ref_cnt);
}
}
ice_release_lock(rule_lock);
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_sysctl_dump_state_flags - Dump device driver state flags
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for "state" sysctl to display currently set driver state flags.
*/
static int
ice_sysctl_dump_state_flags(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct sbuf *sbuf;
u32 copied_state;
unsigned int i;
bool at_least_one = false;
UNREFERENCED_PARAMETER(oidp);
UNREFERENCED_PARAMETER(arg2);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
/* Make a copy of the state to ensure we display coherent values */
copied_state = atomic_load_acq_32(&sc->state);
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
/* Add the string for each set state to the sbuf */
for (i = 0; i < 32; i++) {
if (copied_state & BIT(i)) {
const char *str = ice_state_to_str((enum ice_state)i);
at_least_one = true;
if (str)
sbuf_printf(sbuf, "\n%s", str);
else
sbuf_printf(sbuf, "\nBIT(%u)", i);
}
}
if (!at_least_one)
sbuf_printf(sbuf, "Nothing set");
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_add_debug_tunables - Add tunables helpful for debugging the device driver
* @sc: device private structure
*
* Add sysctl tunable values related to debugging the device driver. For now,
* this means a tunable to set the debug mask early during driver load.
*
* The debug node will be marked CTLFLAG_SKIP unless INVARIANTS is defined, so
* that in normal kernel builds, these will all be hidden, but on a debug
* kernel they will be more easily visible.
*/
static void
ice_add_debug_tunables(struct ice_softc *sc)
{
struct sysctl_oid_list *debug_list;
device_t dev = sc->dev;
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
struct sysctl_oid_list *ctx_list =
SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
sc->debug_sysctls = SYSCTL_ADD_NODE(ctx, ctx_list, OID_AUTO, "debug",
ICE_CTLFLAG_DEBUG | CTLFLAG_RD,
NULL, "Debug Sysctls");
debug_list = SYSCTL_CHILDREN(sc->debug_sysctls);
SYSCTL_ADD_U64(ctx, debug_list, OID_AUTO, "debug_mask",
CTLFLAG_RW | CTLFLAG_TUN, &sc->hw.debug_mask, 0,
"Debug message enable/disable mask");
/* Load the default value from the global sysctl first */
sc->enable_tx_fc_filter = ice_enable_tx_fc_filter;
SYSCTL_ADD_BOOL(ctx, debug_list, OID_AUTO, "enable_tx_fc_filter",
CTLFLAG_RDTUN, &sc->enable_tx_fc_filter, 0,
"Drop Ethertype 0x8808 control frames originating from software on this PF");
/* Load the default value from the global sysctl first */
sc->enable_tx_lldp_filter = ice_enable_tx_lldp_filter;
SYSCTL_ADD_BOOL(ctx, debug_list, OID_AUTO, "enable_tx_lldp_filter",
CTLFLAG_RDTUN, &sc->enable_tx_lldp_filter, 0,
"Drop Ethertype 0x88cc LLDP frames originating from software on this PF");
}
#define ICE_SYSCTL_HELP_REQUEST_RESET \
"\nRequest the driver to initiate a reset." \
"\n\tpfr - Initiate a PF reset" \
"\n\tcorer - Initiate a CORE reset" \
"\n\tglobr - Initiate a GLOBAL reset"
/**
* @var rl_sysctl_ticks
* @brief timestamp for latest reset request sysctl call
*
* Helps rate-limit the call to the sysctl which resets the device
*/
int rl_sysctl_ticks = 0;
/**
* ice_sysctl_request_reset - Request that the driver initiate a reset
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Callback for "request_reset" sysctl to request that the driver initiate
* a reset. Expects to be passed one of the following strings
*
* "pfr" - Initiate a PF reset
* "corer" - Initiate a CORE reset
* "globr" - Initiate a Global reset
*/
static int
ice_sysctl_request_reset(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
enum ice_reset_req reset_type = ICE_RESET_INVAL;
const char *reset_message;
int error = 0;
/* Buffer to store the requested reset string. Must contain enough
* space to store the largest expected reset string, which currently
* means 6 bytes of space.
*/
char reset[6] = "";
UNREFERENCED_PARAMETER(arg2);
error = priv_check(curthread, PRIV_DRIVER);
if (error)
return (error);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
/* Read in the requested reset type. */
error = sysctl_handle_string(oidp, reset, sizeof(reset), req);
if ((error) || (req->newptr == NULL))
return (error);
if (strcmp(reset, "pfr") == 0) {
reset_message = "Requesting a PF reset";
reset_type = ICE_RESET_PFR;
} else if (strcmp(reset, "corer") == 0) {
reset_message = "Initiating a CORE reset";
reset_type = ICE_RESET_CORER;
} else if (strcmp(reset, "globr") == 0) {
reset_message = "Initiating a GLOBAL reset";
reset_type = ICE_RESET_GLOBR;
} else if (strcmp(reset, "empr") == 0) {
device_printf(sc->dev, "Triggering an EMP reset via software is not currently supported\n");
return (EOPNOTSUPP);
}
if (reset_type == ICE_RESET_INVAL) {
device_printf(sc->dev, "%s is not a valid reset request\n", reset);
return (EINVAL);
}
/*
* Rate-limit the frequency at which this function is called.
* Assuming this is called successfully once, typically,
* everything should be handled within the allotted time frame.
* However, in the odd setup situations, we've also put in
* guards for when the reset has finished, but we're in the
* process of rebuilding. And instead of queueing an intent,
* simply error out and let the caller retry, if so desired.
*/
if (TICKS_2_MSEC(ticks - rl_sysctl_ticks) < 500) {
device_printf(sc->dev,
"Call frequency too high. Operation aborted.\n");
return (EBUSY);
}
rl_sysctl_ticks = ticks;
if (TICKS_2_MSEC(ticks - sc->rebuild_ticks) < 100) {
device_printf(sc->dev, "Device rebuilding. Operation aborted.\n");
return (EBUSY);
}
if (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) {
device_printf(sc->dev, "Device in reset. Operation aborted.\n");
return (EBUSY);
}
device_printf(sc->dev, "%s\n", reset_message);
/* Initiate the PF reset during the admin status task */
if (reset_type == ICE_RESET_PFR) {
ice_set_state(&sc->state, ICE_STATE_RESET_PFR_REQ);
return (0);
}
/*
* Other types of resets including CORE and GLOBAL resets trigger an
* interrupt on all PFs. Initiate the reset now. Preparation and
* rebuild logic will be handled by the admin status task.
*/
status = ice_reset(hw, reset_type);
/*
* Resets can take a long time and we still don't want another call
* to this function before we settle down.
*/
rl_sysctl_ticks = ticks;
if (status) {
device_printf(sc->dev, "failed to initiate device reset, err %s\n",
ice_status_str(status));
ice_set_state(&sc->state, ICE_STATE_RESET_FAILED);
return (EFAULT);
}
return (0);
}
/**
* ice_add_debug_sysctls - Add sysctls helpful for debugging the device driver
* @sc: device private structure
*
* Add sysctls related to debugging the device driver. Generally these should
* simply be sysctls which dump internal driver state, to aid in understanding
* what the driver is doing.
*/
static void
ice_add_debug_sysctls(struct ice_softc *sc)
{
struct sysctl_oid *sw_node;
struct sysctl_oid_list *debug_list, *sw_list;
device_t dev = sc->dev;
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
debug_list = SYSCTL_CHILDREN(sc->debug_sysctls);
SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "request_reset",
CTLTYPE_STRING | CTLFLAG_WR, sc, 0,
ice_sysctl_request_reset, "A",
ICE_SYSCTL_HELP_REQUEST_RESET);
SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "pfr_count", CTLFLAG_RD,
&sc->soft_stats.pfr_count, 0, "# of PF resets handled");
SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "corer_count", CTLFLAG_RD,
&sc->soft_stats.corer_count, 0, "# of CORE resets handled");
SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "globr_count", CTLFLAG_RD,
&sc->soft_stats.globr_count, 0, "# of Global resets handled");
SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "empr_count", CTLFLAG_RD,
&sc->soft_stats.empr_count, 0, "# of EMP resets handled");
SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "tx_mdd_count", CTLFLAG_RD,
&sc->soft_stats.tx_mdd_count, 0, "# of Tx MDD events detected");
SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "rx_mdd_count", CTLFLAG_RD,
&sc->soft_stats.rx_mdd_count, 0, "# of Rx MDD events detected");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "state", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_dump_state_flags, "A", "Driver State Flags");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "phy_type_low", CTLTYPE_U64 | CTLFLAG_RW,
sc, 0, ice_sysctl_phy_type_low, "QU",
"PHY type Low from Get PHY Caps/Set PHY Cfg");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "phy_type_high", CTLTYPE_U64 | CTLFLAG_RW,
sc, 0, ice_sysctl_phy_type_high, "QU",
"PHY type High from Get PHY Caps/Set PHY Cfg");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "phy_sw_caps", CTLTYPE_STRUCT | CTLFLAG_RD,
sc, 0, ice_sysctl_phy_sw_caps, "",
"Get PHY Capabilities (Software configuration)");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "phy_nvm_caps", CTLTYPE_STRUCT | CTLFLAG_RD,
sc, 0, ice_sysctl_phy_nvm_caps, "",
"Get PHY Capabilities (NVM configuration)");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "phy_topo_caps", CTLTYPE_STRUCT | CTLFLAG_RD,
sc, 0, ice_sysctl_phy_topo_caps, "",
"Get PHY Capabilities (Topology configuration)");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "phy_link_status", CTLTYPE_STRUCT | CTLFLAG_RD,
sc, 0, ice_sysctl_phy_link_status, "",
"Get PHY Link Status");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "read_i2c_diag_data", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_read_i2c_diag_data, "A",
"Dump selected diagnostic data from FW");
SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "fw_build", CTLFLAG_RD,
&sc->hw.fw_build, 0, "FW Build ID");
SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "os_ddp_version", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_os_pkg_version, "A",
"DDP package name and version found in ice_ddp");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "cur_lldp_persist_status", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_fw_cur_lldp_persist_status, "A", "Current LLDP persistent status");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "dflt_lldp_persist_status", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_fw_dflt_lldp_persist_status, "A", "Default LLDP persistent status");
SYSCTL_ADD_PROC(ctx, debug_list,
OID_AUTO, "negotiated_fc", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_negotiated_fc, "A", "Current Negotiated Flow Control mode");
sw_node = SYSCTL_ADD_NODE(ctx, debug_list, OID_AUTO, "switch",
CTLFLAG_RD, NULL, "Switch Configuration");
sw_list = SYSCTL_CHILDREN(sw_node);
SYSCTL_ADD_PROC(ctx, sw_list,
OID_AUTO, "mac_filters", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_dump_mac_filters, "A", "MAC Filters");
SYSCTL_ADD_PROC(ctx, sw_list,
OID_AUTO, "vlan_filters", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_dump_vlan_filters, "A", "VLAN Filters");
SYSCTL_ADD_PROC(ctx, sw_list,
OID_AUTO, "ethertype_filters", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_dump_ethertype_filters, "A", "Ethertype Filters");
SYSCTL_ADD_PROC(ctx, sw_list,
OID_AUTO, "ethertype_mac_filters", CTLTYPE_STRING | CTLFLAG_RD,
sc, 0, ice_sysctl_dump_ethertype_mac_filters, "A", "Ethertype/MAC Filters");
}
/**
* ice_vsi_disable_tx - Disable (unconfigure) Tx queues for a VSI
* @vsi: the VSI to disable
*
* Disables the Tx queues associated with this VSI. Essentially the opposite
* of ice_cfg_vsi_for_tx.
*/
int
ice_vsi_disable_tx(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
u32 *q_teids;
u16 *q_ids, *q_handles;
int i, err = 0;
if (vsi->num_tx_queues > 255)
return (ENOSYS);
q_teids = (u32 *)malloc(sizeof(*q_teids) * vsi->num_tx_queues,
M_ICE, M_NOWAIT|M_ZERO);
if (!q_teids)
return (ENOMEM);
q_ids = (u16 *)malloc(sizeof(*q_ids) * vsi->num_tx_queues,
M_ICE, M_NOWAIT|M_ZERO);
if (!q_ids) {
err = (ENOMEM);
goto free_q_teids;
}
q_handles = (u16 *)malloc(sizeof(*q_handles) * vsi->num_tx_queues,
M_ICE, M_NOWAIT|M_ZERO);
if (!q_handles) {
err = (ENOMEM);
goto free_q_ids;
}
for (i = 0; i < vsi->num_tx_queues; i++) {
struct ice_tx_queue *txq = &vsi->tx_queues[i];
q_ids[i] = vsi->tx_qmap[i];
q_handles[i] = i;
q_teids[i] = txq->q_teid;
}
status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, vsi->num_tx_queues,
q_handles, q_ids, q_teids, ICE_NO_RESET, 0, NULL);
if (status == ICE_ERR_DOES_NOT_EXIST) {
; /* Queues have already been disabled, no need to report this as an error */
} else if (status == ICE_ERR_RESET_ONGOING) {
device_printf(sc->dev,
"Reset in progress. LAN Tx queues already disabled\n");
} else if (status) {
device_printf(sc->dev,
"Failed to disable LAN Tx queues: err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
err = (ENODEV);
}
/* free_q_handles: */
free(q_handles, M_ICE);
free_q_ids:
free(q_ids, M_ICE);
free_q_teids:
free(q_teids, M_ICE);
return err;
}
/**
* ice_vsi_set_rss_params - Set the RSS parameters for the VSI
* @vsi: the VSI to configure
*
* Sets the RSS table size and lookup table type for the VSI based on its
* VSI type.
*/
static void
ice_vsi_set_rss_params(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw_common_caps *cap;
cap = &sc->hw.func_caps.common_cap;
switch (vsi->type) {
case ICE_VSI_PF:
/* The PF VSI inherits RSS instance of the PF */
vsi->rss_table_size = cap->rss_table_size;
vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
break;
case ICE_VSI_VF:
vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
break;
default:
device_printf(sc->dev,
"VSI %d: RSS not supported for VSI type %d\n",
vsi->idx, vsi->type);
break;
}
}
/**
* ice_vsi_add_txqs_ctx - Create a sysctl context and node to store txq sysctls
* @vsi: The VSI to add the context for
*
* Creates a sysctl context for storing txq sysctls. Additionally creates
* a node rooted at the given VSI's main sysctl node. This context will be
* used to store per-txq sysctls which may need to be released during the
* driver's lifetime.
*/
void
ice_vsi_add_txqs_ctx(struct ice_vsi *vsi)
{
struct sysctl_oid_list *vsi_list;
sysctl_ctx_init(&vsi->txqs_ctx);
vsi_list = SYSCTL_CHILDREN(vsi->vsi_node);
vsi->txqs_node = SYSCTL_ADD_NODE(&vsi->txqs_ctx, vsi_list, OID_AUTO, "txqs",
CTLFLAG_RD, NULL, "Tx Queues");
}
/**
* ice_vsi_add_rxqs_ctx - Create a sysctl context and node to store rxq sysctls
* @vsi: The VSI to add the context for
*
* Creates a sysctl context for storing rxq sysctls. Additionally creates
* a node rooted at the given VSI's main sysctl node. This context will be
* used to store per-rxq sysctls which may need to be released during the
* driver's lifetime.
*/
void
ice_vsi_add_rxqs_ctx(struct ice_vsi *vsi)
{
struct sysctl_oid_list *vsi_list;
sysctl_ctx_init(&vsi->rxqs_ctx);
vsi_list = SYSCTL_CHILDREN(vsi->vsi_node);
vsi->rxqs_node = SYSCTL_ADD_NODE(&vsi->rxqs_ctx, vsi_list, OID_AUTO, "rxqs",
CTLFLAG_RD, NULL, "Rx Queues");
}
/**
* ice_vsi_del_txqs_ctx - Delete the Tx queue sysctl context for this VSI
* @vsi: The VSI to delete from
*
* Frees the txq sysctl context created for storing the per-queue Tx sysctls.
* Must be called prior to freeing the Tx queue memory, in order to avoid
* having sysctls point at stale memory.
*/
void
ice_vsi_del_txqs_ctx(struct ice_vsi *vsi)
{
device_t dev = vsi->sc->dev;
int err;
if (vsi->txqs_node) {
err = sysctl_ctx_free(&vsi->txqs_ctx);
if (err)
device_printf(dev, "failed to free VSI %d txqs_ctx, err %s\n",
vsi->idx, ice_err_str(err));
vsi->txqs_node = NULL;
}
}
/**
* ice_vsi_del_rxqs_ctx - Delete the Rx queue sysctl context for this VSI
* @vsi: The VSI to delete from
*
* Frees the rxq sysctl context created for storing the per-queue Rx sysctls.
* Must be called prior to freeing the Rx queue memory, in order to avoid
* having sysctls point at stale memory.
*/
void
ice_vsi_del_rxqs_ctx(struct ice_vsi *vsi)
{
device_t dev = vsi->sc->dev;
int err;
if (vsi->rxqs_node) {
err = sysctl_ctx_free(&vsi->rxqs_ctx);
if (err)
device_printf(dev, "failed to free VSI %d rxqs_ctx, err %s\n",
vsi->idx, ice_err_str(err));
vsi->rxqs_node = NULL;
}
}
/**
* ice_add_txq_sysctls - Add per-queue sysctls for a Tx queue
* @txq: pointer to the Tx queue
*
* Add per-queue sysctls for a given Tx queue. Can't be called during
* ice_add_vsi_sysctls, since the queue memory has not yet been setup.
*/
void
ice_add_txq_sysctls(struct ice_tx_queue *txq)
{
struct ice_vsi *vsi = txq->vsi;
struct sysctl_ctx_list *ctx = &vsi->txqs_ctx;
struct sysctl_oid_list *txqs_list, *this_txq_list;
struct sysctl_oid *txq_node;
char txq_name[32], txq_desc[32];
const struct ice_sysctl_info ctls[] = {
{ &txq->stats.tx_packets, "tx_packets", "Queue Packets Transmitted" },
{ &txq->stats.tx_bytes, "tx_bytes", "Queue Bytes Transmitted" },
{ &txq->stats.mss_too_small, "mss_too_small", "TSO sends with an MSS less than 64" },
{ 0, 0, 0 }
};
const struct ice_sysctl_info *entry = ctls;
txqs_list = SYSCTL_CHILDREN(vsi->txqs_node);
snprintf(txq_name, sizeof(txq_name), "%u", txq->me);
snprintf(txq_desc, sizeof(txq_desc), "Tx Queue %u", txq->me);
txq_node = SYSCTL_ADD_NODE(ctx, txqs_list, OID_AUTO, txq_name,
CTLFLAG_RD, NULL, txq_desc);
this_txq_list = SYSCTL_CHILDREN(txq_node);
/* Add the Tx queue statistics */
while (entry->stat != 0) {
SYSCTL_ADD_U64(ctx, this_txq_list, OID_AUTO, entry->name,
CTLFLAG_RD | CTLFLAG_STATS, entry->stat, 0,
entry->description);
entry++;
}
}
/**
* ice_add_rxq_sysctls - Add per-queue sysctls for an Rx queue
* @rxq: pointer to the Rx queue
*
* Add per-queue sysctls for a given Rx queue. Can't be called during
* ice_add_vsi_sysctls, since the queue memory has not yet been setup.
*/
void
ice_add_rxq_sysctls(struct ice_rx_queue *rxq)
{
struct ice_vsi *vsi = rxq->vsi;
struct sysctl_ctx_list *ctx = &vsi->rxqs_ctx;
struct sysctl_oid_list *rxqs_list, *this_rxq_list;
struct sysctl_oid *rxq_node;
char rxq_name[32], rxq_desc[32];
const struct ice_sysctl_info ctls[] = {
{ &rxq->stats.rx_packets, "rx_packets", "Queue Packets Received" },
{ &rxq->stats.rx_bytes, "rx_bytes", "Queue Bytes Received" },
{ &rxq->stats.desc_errs, "rx_desc_errs", "Queue Rx Descriptor Errors" },
{ 0, 0, 0 }
};
const struct ice_sysctl_info *entry = ctls;
rxqs_list = SYSCTL_CHILDREN(vsi->rxqs_node);
snprintf(rxq_name, sizeof(rxq_name), "%u", rxq->me);
snprintf(rxq_desc, sizeof(rxq_desc), "Rx Queue %u", rxq->me);
rxq_node = SYSCTL_ADD_NODE(ctx, rxqs_list, OID_AUTO, rxq_name,
CTLFLAG_RD, NULL, rxq_desc);
this_rxq_list = SYSCTL_CHILDREN(rxq_node);
/* Add the Rx queue statistics */
while (entry->stat != 0) {
SYSCTL_ADD_U64(ctx, this_rxq_list, OID_AUTO, entry->name,
CTLFLAG_RD | CTLFLAG_STATS, entry->stat, 0,
entry->description);
entry++;
}
}
/**
* ice_get_default_rss_key - Obtain a default RSS key
* @seed: storage for the RSS key data
*
* Copies a pre-generated RSS key into the seed memory. The seed pointer must
* point to a block of memory that is at least 40 bytes in size.
*
* The key isn't randomly generated each time this function is called because
* that makes the RSS key change every time we reconfigure RSS. This does mean
* that we're hard coding a possibly 'well known' key. We might want to
* investigate randomly generating this key once during the first call.
*/
static void
ice_get_default_rss_key(u8 *seed)
{
const u8 default_seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE] = {
0x39, 0xed, 0xff, 0x4d, 0x43, 0x58, 0x42, 0xc3, 0x5f, 0xb8,
0xa5, 0x32, 0x95, 0x65, 0x81, 0xcd, 0x36, 0x79, 0x71, 0x97,
0xde, 0xa4, 0x41, 0x40, 0x6f, 0x27, 0xe9, 0x81, 0x13, 0xa0,
0x95, 0x93, 0x5b, 0x1e, 0x9d, 0x27, 0x9d, 0x24, 0x84, 0xb5,
};
bcopy(default_seed, seed, ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
}
/**
* ice_set_rss_key - Configure a given VSI with the default RSS key
* @vsi: the VSI to configure
*
* Program the hardware RSS key. We use rss_getkey to grab the kernel RSS key.
* If the kernel RSS interface is not available, this will fall back to our
* pre-generated hash seed from ice_get_default_rss_key().
*/
static int
ice_set_rss_key(struct ice_vsi *vsi)
{
struct ice_aqc_get_set_rss_keys keydata = { .standard_rss_key = {0} };
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/*
* If the RSS kernel interface is disabled, this will return the
* default RSS key above.
*/
rss_getkey(keydata.standard_rss_key);
status = ice_aq_set_rss_key(hw, vsi->idx, &keydata);
if (status) {
device_printf(sc->dev,
"ice_aq_set_rss_key status %s, error %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
return (0);
}
/**
* ice_set_rss_flow_flds - Program the RSS hash flows after package init
* @vsi: the VSI to configure
*
* If the package file is initialized, the default RSS flows are reset. We
* need to reprogram the expected hash configuration. We'll use
* rss_gethashconfig() to determine which flows to enable. If RSS kernel
* support is not enabled, this macro will fall back to suitable defaults.
*/
static void
ice_set_rss_flow_flds(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
u_int rss_hash_config;
rss_hash_config = rss_gethashconfig();
if (rss_hash_config & RSS_HASHTYPE_RSS_IPV4) {
status = ice_add_rss_cfg(hw, vsi->idx, ICE_FLOW_HASH_IPV4,
ICE_FLOW_SEG_HDR_IPV4);
if (status)
device_printf(dev,
"ice_add_rss_cfg on VSI %d failed for ipv4 flow, err %s aq_err %s\n",
vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
}
if (rss_hash_config & RSS_HASHTYPE_RSS_TCP_IPV4) {
status = ice_add_rss_cfg(hw, vsi->idx, ICE_HASH_TCP_IPV4,
ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
if (status)
device_printf(dev,
"ice_add_rss_cfg on VSI %d failed for tcp4 flow, err %s aq_err %s\n",
vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
}
if (rss_hash_config & RSS_HASHTYPE_RSS_UDP_IPV4) {
status = ice_add_rss_cfg(hw, vsi->idx, ICE_HASH_UDP_IPV4,
ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
if (status)
device_printf(dev,
"ice_add_rss_cfg on VSI %d failed for udp4 flow, err %s aq_err %s\n",
vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
}
if (rss_hash_config & (RSS_HASHTYPE_RSS_IPV6 | RSS_HASHTYPE_RSS_IPV6_EX)) {
status = ice_add_rss_cfg(hw, vsi->idx, ICE_FLOW_HASH_IPV6,
ICE_FLOW_SEG_HDR_IPV6);
if (status)
device_printf(dev,
"ice_add_rss_cfg on VSI %d failed for ipv6 flow, err %s aq_err %s\n",
vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
}
if (rss_hash_config & RSS_HASHTYPE_RSS_TCP_IPV6) {
status = ice_add_rss_cfg(hw, vsi->idx, ICE_HASH_TCP_IPV6,
ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
if (status)
device_printf(dev,
"ice_add_rss_cfg on VSI %d failed for tcp6 flow, err %s aq_err %s\n",
vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
}
if (rss_hash_config & RSS_HASHTYPE_RSS_UDP_IPV6) {
status = ice_add_rss_cfg(hw, vsi->idx, ICE_HASH_UDP_IPV6,
ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
if (status)
device_printf(dev,
"ice_add_rss_cfg on VSI %d failed for udp6 flow, err %s aq_err %s\n",
vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
}
/* Warn about RSS hash types which are not supported */
/* coverity[dead_error_condition] */
if (rss_hash_config & ~ICE_DEFAULT_RSS_HASH_CONFIG) {
device_printf(dev,
"ice_add_rss_cfg on VSI %d could not configure every requested hash type\n",
vsi->idx);
}
}
/**
* ice_set_rss_lut - Program the RSS lookup table for a VSI
* @vsi: the VSI to configure
*
* Programs the RSS lookup table for a given VSI. We use
* rss_get_indirection_to_bucket which will use the indirection table provided
* by the kernel RSS interface when available. If the kernel RSS interface is
* not available, we will fall back to a simple round-robin fashion queue
* assignment.
*/
static int
ice_set_rss_lut(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
int i, err = 0;
u8 *lut;
lut = (u8 *)malloc(vsi->rss_table_size, M_ICE, M_NOWAIT|M_ZERO);
if (!lut) {
device_printf(dev, "Failed to allocate RSS lut memory\n");
return (ENOMEM);
}
/* Populate the LUT with max no. of queues. If the RSS kernel
* interface is disabled, this will assign the lookup table in
* a simple round robin fashion
*/
for (i = 0; i < vsi->rss_table_size; i++) {
/* XXX: this needs to be changed if num_rx_queues ever counts
* more than just the RSS queues */
lut[i] = rss_get_indirection_to_bucket(i) % vsi->num_rx_queues;
}
status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
lut, vsi->rss_table_size);
if (status) {
device_printf(dev,
"Cannot set RSS lut, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
err = (EIO);
}
free(lut, M_ICE);
return err;
}
/**
* ice_config_rss - Configure RSS for a VSI
* @vsi: the VSI to configure
*
* If FEATURE_RSS is enabled, configures the RSS lookup table and hash key for
* a given VSI.
*/
int
ice_config_rss(struct ice_vsi *vsi)
{
int err;
/* Nothing to do, if RSS is not enabled */
if (!ice_is_bit_set(vsi->sc->feat_en, ICE_FEATURE_RSS))
return 0;
err = ice_set_rss_key(vsi);
if (err)
return err;
ice_set_rss_flow_flds(vsi);
return ice_set_rss_lut(vsi);
}
/**
* ice_log_pkg_init - Log a message about status of DDP initialization
* @sc: the device softc pointer
* @pkg_status: the status result of ice_copy_and_init_pkg
*
* Called by ice_load_pkg after an attempt to download the DDP package
* contents to the device. Determines whether the download was successful or
* not and logs an appropriate message for the system administrator.
*
* @post if a DDP package was previously downloaded on another port and it
* is not compatible with this driver, pkg_status will be updated to reflect
* this, and the driver will transition to safe mode.
*/
void
ice_log_pkg_init(struct ice_softc *sc, enum ice_status *pkg_status)
{
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
struct sbuf *active_pkg, *os_pkg;
active_pkg = sbuf_new_auto();
ice_active_pkg_version_str(hw, active_pkg);
sbuf_finish(active_pkg);
os_pkg = sbuf_new_auto();
ice_os_pkg_version_str(hw, os_pkg);
sbuf_finish(os_pkg);
switch (*pkg_status) {
case ICE_SUCCESS:
/* The package download AdminQ command returned success because
* this download succeeded or ICE_ERR_AQ_NO_WORK since there is
* already a package loaded on the device.
*/
if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
hw->pkg_ver.update == hw->active_pkg_ver.update &&
hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
!memcmp(hw->pkg_name, hw->active_pkg_name,
sizeof(hw->pkg_name))) {
switch (hw->pkg_dwnld_status) {
case ICE_AQ_RC_OK:
device_printf(dev,
"The DDP package was successfully loaded: %s.\n",
sbuf_data(active_pkg));
break;
case ICE_AQ_RC_EEXIST:
device_printf(dev,
"DDP package already present on device: %s.\n",
sbuf_data(active_pkg));
break;
default:
/* We do not expect this to occur, but the
* extra messaging is here in case something
* changes in the ice_init_pkg flow.
*/
device_printf(dev,
"DDP package already present on device: %s. An unexpected error occurred, pkg_dwnld_status %s.\n",
sbuf_data(active_pkg),
ice_aq_str(hw->pkg_dwnld_status));
break;
}
} else if (pkg_ver_compatible(&hw->active_pkg_ver) == 0) {
device_printf(dev,
"The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package %s. The ice_ddp module has package: %s.\n",
sbuf_data(active_pkg),
sbuf_data(os_pkg));
} else if (pkg_ver_compatible(&hw->active_pkg_ver) > 0) {
device_printf(dev,
"The device has a DDP package that is higher than the driver supports. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
sbuf_data(active_pkg),
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
*pkg_status = ICE_ERR_NOT_SUPPORTED;
} else {
device_printf(dev,
"The device has a DDP package that is lower than the driver supports. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
sbuf_data(active_pkg),
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
*pkg_status = ICE_ERR_NOT_SUPPORTED;
}
break;
case ICE_ERR_NOT_SUPPORTED:
/*
* This assumes that the active_pkg_ver will not be
* initialized if the ice_ddp package version is not
* supported.
*/
if (pkg_ver_empty(&hw->active_pkg_ver, hw->active_pkg_name)) {
/* The ice_ddp version is not supported */
if (pkg_ver_compatible(&hw->pkg_ver) > 0) {
device_printf(dev,
"The DDP package in the ice_ddp module is higher than the driver supports. The ice_ddp module has package %s. The driver requires version %d.%d.x.x. Please use an updated driver. Entering Safe Mode.\n",
sbuf_data(os_pkg),
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
} else if (pkg_ver_compatible(&hw->pkg_ver) < 0) {
device_printf(dev,
"The DDP package in the ice_ddp module is lower than the driver supports. The ice_ddp module has package %s. The driver requires version %d.%d.x.x. Please use an updated ice_ddp module. Entering Safe Mode.\n",
sbuf_data(os_pkg),
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
} else {
device_printf(dev,
"An unknown error (%s aq_err %s) occurred when loading the DDP package. The ice_ddp module has package %s. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
ice_status_str(*pkg_status),
ice_aq_str(hw->pkg_dwnld_status),
sbuf_data(os_pkg),
sbuf_data(active_pkg),
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
}
} else {
if (pkg_ver_compatible(&hw->active_pkg_ver) > 0) {
device_printf(dev,
"The device has a DDP package that is higher than the driver supports. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
sbuf_data(active_pkg),
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
} else if (pkg_ver_compatible(&hw->active_pkg_ver) < 0) {
device_printf(dev,
"The device has a DDP package that is lower than the driver supports. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
sbuf_data(active_pkg),
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
} else {
device_printf(dev,
"An unknown error (%s aq_err %s) occurred when loading the DDP package. The ice_ddp module has package %s. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
ice_status_str(*pkg_status),
ice_aq_str(hw->pkg_dwnld_status),
sbuf_data(os_pkg),
sbuf_data(active_pkg),
ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
}
}
break;
case ICE_ERR_CFG:
case ICE_ERR_BUF_TOO_SHORT:
case ICE_ERR_PARAM:
device_printf(dev,
"The DDP package in the ice_ddp module is invalid. Entering Safe Mode\n");
break;
case ICE_ERR_FW_DDP_MISMATCH:
device_printf(dev,
"The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
break;
case ICE_ERR_AQ_ERROR:
switch (hw->pkg_dwnld_status) {
case ICE_AQ_RC_ENOSEC:
case ICE_AQ_RC_EBADSIG:
device_printf(dev,
"The DDP package in the ice_ddp module cannot be loaded because its signature is not valid. Please use a valid ice_ddp module. Entering Safe Mode.\n");
goto free_sbufs;
case ICE_AQ_RC_ESVN:
device_printf(dev,
"The DDP package in the ice_ddp module could not be loaded because its security revision is too low. Please use an updated ice_ddp module. Entering Safe Mode.\n");
goto free_sbufs;
case ICE_AQ_RC_EBADMAN:
case ICE_AQ_RC_EBADBUF:
device_printf(dev,
"An error occurred on the device while loading the DDP package. Entering Safe Mode.\n");
goto free_sbufs;
default:
break;
}
/* fall-through */
default:
device_printf(dev,
"An unknown error (%s aq_err %s) occurred when loading the DDP package. Entering Safe Mode.\n",
ice_status_str(*pkg_status),
ice_aq_str(hw->pkg_dwnld_status));
break;
}
free_sbufs:
sbuf_delete(active_pkg);
sbuf_delete(os_pkg);
}
/**
* ice_load_pkg_file - Load the DDP package file using firmware_get
* @sc: device private softc
*
* Use firmware_get to load the DDP package memory and then request that
* firmware download the package contents and program the relevant hardware
* bits.
*
* This function makes a copy of the DDP package memory which is tracked in
* the ice_hw structure. The copy will be managed and released by
* ice_deinit_hw(). This allows the firmware reference to be immediately
* released using firmware_put.
*/
void
ice_load_pkg_file(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
const struct firmware *pkg;
pkg = firmware_get("ice_ddp");
if (!pkg) {
device_printf(dev, "The DDP package module (ice_ddp) failed to load or could not be found. Entering Safe Mode.\n");
if (cold)
device_printf(dev,
"The DDP package module cannot be automatically loaded while booting. You may want to specify ice_ddp_load=\"YES\" in your loader.conf\n");
ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_cap);
ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_en);
return;
}
/* Copy and download the pkg contents */
status = ice_copy_and_init_pkg(hw, (const u8 *)pkg->data, pkg->datasize);
/* Release the firmware reference */
firmware_put(pkg, FIRMWARE_UNLOAD);
/* Check the active DDP package version and log a message */
ice_log_pkg_init(sc, &status);
/* Place the driver into safe mode */
if (status != ICE_SUCCESS) {
ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_cap);
ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_en);
}
}
/**
* ice_get_ifnet_counter - Retrieve counter value for a given ifnet counter
* @vsi: the vsi to retrieve the value for
* @counter: the counter type to retrieve
*
* Returns the value for a given ifnet counter. To do so, we calculate the
* value based on the matching hardware statistics.
*/
uint64_t
ice_get_ifnet_counter(struct ice_vsi *vsi, ift_counter counter)
{
struct ice_hw_port_stats *hs = &vsi->sc->stats.cur;
struct ice_eth_stats *es = &vsi->hw_stats.cur;
/* For some statistics, especially those related to error flows, we do
* not have per-VSI counters. In this case, we just report the global
* counters.
*/
switch (counter) {
case IFCOUNTER_IPACKETS:
return (es->rx_unicast + es->rx_multicast + es->rx_broadcast);
case IFCOUNTER_IERRORS:
return (hs->crc_errors + hs->illegal_bytes +
hs->mac_local_faults + hs->mac_remote_faults +
hs->rx_len_errors + hs->rx_undersize +
hs->rx_oversize + hs->rx_fragments + hs->rx_jabber);
case IFCOUNTER_OPACKETS:
return (es->tx_unicast + es->tx_multicast + es->tx_broadcast);
case IFCOUNTER_OERRORS:
return (es->tx_errors);
case IFCOUNTER_COLLISIONS:
return (0);
case IFCOUNTER_IBYTES:
return (es->rx_bytes);
case IFCOUNTER_OBYTES:
return (es->tx_bytes);
case IFCOUNTER_IMCASTS:
return (es->rx_multicast);
case IFCOUNTER_OMCASTS:
return (es->tx_multicast);
case IFCOUNTER_IQDROPS:
return (es->rx_discards);
case IFCOUNTER_OQDROPS:
return (hs->tx_dropped_link_down);
case IFCOUNTER_NOPROTO:
return (es->rx_unknown_protocol);
default:
return if_get_counter_default(vsi->sc->ifp, counter);
}
}
/**
* ice_save_pci_info - Save PCI configuration fields in HW struct
* @hw: the ice_hw struct to save the PCI information in
* @dev: the device to get the PCI information from
*
* This should only be called once, early in the device attach
* process.
*/
void
ice_save_pci_info(struct ice_hw *hw, device_t dev)
{
hw->vendor_id = pci_get_vendor(dev);
hw->device_id = pci_get_device(dev);
hw->subsystem_vendor_id = pci_get_subvendor(dev);
hw->subsystem_device_id = pci_get_subdevice(dev);
hw->revision_id = pci_get_revid(dev);
hw->bus.device = pci_get_slot(dev);
hw->bus.func = pci_get_function(dev);
}
/**
* ice_replay_all_vsi_cfg - Replace configuration for all VSIs after reset
* @sc: the device softc
*
* Replace the configuration for each VSI, and then cleanup replay
* information. Called after a hardware reset in order to reconfigure the
* active VSIs.
*/
int
ice_replay_all_vsi_cfg(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
int i;
for (i = 0 ; i < sc->num_available_vsi; i++) {
struct ice_vsi *vsi = sc->all_vsi[i];
if (!vsi)
continue;
status = ice_replay_vsi(hw, vsi->idx);
if (status) {
device_printf(sc->dev, "Failed to replay VSI %d, err %s aq_err %s\n",
vsi->idx, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
}
/* Cleanup replay filters after successful reconfiguration */
ice_replay_post(hw);
return (0);
}
/**
* ice_clean_vsi_rss_cfg - Cleanup RSS configuration for a given VSI
* @vsi: pointer to the VSI structure
*
* Cleanup the advanced RSS configuration for a given VSI. This is necessary
* during driver removal to ensure that all RSS resources are properly
* released.
*
* @remark this function doesn't report an error as it is expected to be
* called during driver reset and unload, and there isn't much the driver can
* do if freeing RSS resources fails.
*/
static void
ice_clean_vsi_rss_cfg(struct ice_vsi *vsi)
{
struct ice_softc *sc = vsi->sc;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
status = ice_rem_vsi_rss_cfg(hw, vsi->idx);
if (status)
device_printf(dev,
"Failed to remove RSS configuration for VSI %d, err %s\n",
vsi->idx, ice_status_str(status));
/* Remove this VSI from the RSS list */
ice_rem_vsi_rss_list(hw, vsi->idx);
}
/**
* ice_clean_all_vsi_rss_cfg - Cleanup RSS configuration for all VSIs
* @sc: the device softc pointer
*
* Cleanup the advanced RSS configuration for all VSIs on a given PF
* interface.
*
* @remark This should be called while preparing for a reset, to cleanup stale
* RSS configuration for all VSIs.
*/
void
ice_clean_all_vsi_rss_cfg(struct ice_softc *sc)
{
int i;
/* No need to cleanup if RSS is not enabled */
if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_RSS))
return;
for (i = 0; i < sc->num_available_vsi; i++) {
struct ice_vsi *vsi = sc->all_vsi[i];
if (vsi)
ice_clean_vsi_rss_cfg(vsi);
}
}
/**
* ice_requested_fec_mode - Return the requested FEC mode as a string
* @pi: The port info structure
*
* Return a string representing the requested FEC mode.
*/
static const char *
ice_requested_fec_mode(struct ice_port_info *pi)
{
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
enum ice_status status;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
&pcaps, NULL);
if (status)
/* Just report unknown if we can't get capabilities */
return "Unknown";
/* Check if RS-FEC has been requested first */
if (pcaps.link_fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
ICE_AQC_PHY_FEC_25G_RS_544_REQ))
return ice_fec_str(ICE_FEC_RS);
/* If RS FEC has not been requested, then check BASE-R */
if (pcaps.link_fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
ICE_AQC_PHY_FEC_25G_KR_REQ))
return ice_fec_str(ICE_FEC_BASER);
return ice_fec_str(ICE_FEC_NONE);
}
/**
* ice_negotiated_fec_mode - Return the negotiated FEC mode as a string
* @pi: The port info structure
*
* Return a string representing the current FEC mode.
*/
static const char *
ice_negotiated_fec_mode(struct ice_port_info *pi)
{
/* First, check if RS has been requested first */
if (pi->phy.link_info.fec_info & (ICE_AQ_LINK_25G_RS_528_FEC_EN |
ICE_AQ_LINK_25G_RS_544_FEC_EN))
return ice_fec_str(ICE_FEC_RS);
/* If RS FEC has not been requested, then check BASE-R */
if (pi->phy.link_info.fec_info & ICE_AQ_LINK_25G_KR_FEC_EN)
return ice_fec_str(ICE_FEC_BASER);
return ice_fec_str(ICE_FEC_NONE);
}
/**
* ice_autoneg_mode - Return string indicating of autoneg completed
* @pi: The port info structure
*
* Return "True" if autonegotiation is completed, "False" otherwise.
*/
static const char *
ice_autoneg_mode(struct ice_port_info *pi)
{
if (pi->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
return "True";
else
return "False";
}
/**
* ice_flowcontrol_mode - Return string indicating the Flow Control mode
* @pi: The port info structure
*
* Returns the current Flow Control mode as a string.
*/
static const char *
ice_flowcontrol_mode(struct ice_port_info *pi)
{
return ice_fc_str(pi->fc.current_mode);
}
/**
* ice_link_up_msg - Log a link up message with associated info
* @sc: the device private softc
*
* Log a link up message with LOG_NOTICE message level. Include information
* about the duplex, FEC mode, autonegotiation and flow control.
*/
void
ice_link_up_msg(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
struct ifnet *ifp = sc->ifp;
const char *speed, *req_fec, *neg_fec, *autoneg, *flowcontrol;
speed = ice_aq_speed_to_str(hw->port_info);
req_fec = ice_requested_fec_mode(hw->port_info);
neg_fec = ice_negotiated_fec_mode(hw->port_info);
autoneg = ice_autoneg_mode(hw->port_info);
flowcontrol = ice_flowcontrol_mode(hw->port_info);
log(LOG_NOTICE, "%s: Link is up, %s Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
ifp->if_xname, speed, req_fec, neg_fec, autoneg, flowcontrol);
}
/**
* ice_update_laa_mac - Update MAC address if Locally Administered
* @sc: the device softc
*
* Update the device MAC address when a Locally Administered Address is
* assigned.
*
* This function does *not* update the MAC filter list itself. Instead, it
* should be called after ice_rm_pf_default_mac_filters, so that the previous
* address filter will be removed, and before ice_cfg_pf_default_mac_filters,
* so that the new address filter will be assigned.
*/
int
ice_update_laa_mac(struct ice_softc *sc)
{
const u8 *lladdr = (const u8 *)IF_LLADDR(sc->ifp);
struct ice_hw *hw = &sc->hw;
enum ice_status status;
/* If the address is the same, then there is nothing to update */
if (!memcmp(lladdr, hw->port_info->mac.lan_addr, ETHER_ADDR_LEN))
return (0);
/* Reject Multicast addresses */
if (ETHER_IS_MULTICAST(lladdr))
return (EINVAL);
status = ice_aq_manage_mac_write(hw, lladdr, ICE_AQC_MAN_MAC_UPDATE_LAA_WOL, NULL);
if (status) {
device_printf(sc->dev, "Failed to write mac %6D to firmware, err %s aq_err %s\n",
lladdr, ":", ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return (EFAULT);
}
/* Copy the address into place of the LAN address. */
bcopy(lladdr, hw->port_info->mac.lan_addr, ETHER_ADDR_LEN);
return (0);
}
/**
* ice_get_and_print_bus_info - Save (PCI) bus info and print messages
* @sc: device softc
*
* This will potentially print out a warning message if bus bandwidth
* is insufficient for full-speed operation.
*
* This should only be called once, during the attach process, after
* hw->port_info has been filled out with port link topology information
* (from the Get PHY Capabilities Admin Queue command).
*/
void
ice_get_and_print_bus_info(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
u16 pci_link_status;
int offset;
pci_find_cap(dev, PCIY_EXPRESS, &offset);
pci_link_status = pci_read_config(dev, offset + PCIER_LINK_STA, 2);
/* Fill out hw struct with PCIE link status info */
ice_set_pci_link_status_data(hw, pci_link_status);
/* Use info to print out bandwidth messages */
ice_print_bus_link_data(dev, hw);
if (ice_pcie_bandwidth_check(sc)) {
device_printf(dev,
"PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n");
device_printf(dev,
"Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n");
}
}
/**
* ice_pcie_bus_speed_to_rate - Convert driver bus speed enum value to
* a 64-bit baudrate.
* @speed: enum value to convert
*
* This only goes up to PCIE Gen 4.
*/
static uint64_t
ice_pcie_bus_speed_to_rate(enum ice_pcie_bus_speed speed)
{
/* If the PCI-E speed is Gen1 or Gen2, then report
* only 80% of bus speed to account for encoding overhead.
*/
switch (speed) {
case ice_pcie_speed_2_5GT:
return IF_Gbps(2);
case ice_pcie_speed_5_0GT:
return IF_Gbps(4);
case ice_pcie_speed_8_0GT:
return IF_Gbps(8);
case ice_pcie_speed_16_0GT:
return IF_Gbps(16);
case ice_pcie_speed_unknown:
default:
return 0;
}
}
/**
* ice_pcie_lnk_width_to_int - Convert driver pci-e width enum value to
* a 32-bit number.
* @width: enum value to convert
*/
static int
ice_pcie_lnk_width_to_int(enum ice_pcie_link_width width)
{
switch (width) {
case ice_pcie_lnk_x1:
return (1);
case ice_pcie_lnk_x2:
return (2);
case ice_pcie_lnk_x4:
return (4);
case ice_pcie_lnk_x8:
return (8);
case ice_pcie_lnk_x12:
return (12);
case ice_pcie_lnk_x16:
return (16);
case ice_pcie_lnk_x32:
return (32);
case ice_pcie_lnk_width_resrv:
case ice_pcie_lnk_width_unknown:
default:
return (0);
}
}
/**
* ice_pcie_bandwidth_check - Check if PCI-E bandwidth is sufficient for
* full-speed device operation.
* @sc: adapter softc
*
* Returns 0 if sufficient; 1 if not.
*/
static uint8_t
ice_pcie_bandwidth_check(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
int num_ports, pcie_width;
u64 pcie_speed, port_speed;
MPASS(hw->port_info);
num_ports = bitcount32(hw->func_caps.common_cap.valid_functions);
port_speed = ice_phy_types_to_max_rate(hw->port_info);
pcie_speed = ice_pcie_bus_speed_to_rate(hw->bus.speed);
pcie_width = ice_pcie_lnk_width_to_int(hw->bus.width);
/*
* If 2x100, clamp ports to 1 -- 2nd port is intended for
* failover.
*/
if (port_speed == IF_Gbps(100))
num_ports = 1;
return !!((num_ports * port_speed) > pcie_speed * pcie_width);
}
/**
* ice_print_bus_link_data - Print PCI-E bandwidth information
* @dev: device to print string for
* @hw: hw struct with PCI-e link information
*/
static void
ice_print_bus_link_data(device_t dev, struct ice_hw *hw)
{
device_printf(dev, "PCI Express Bus: Speed %s %s\n",
((hw->bus.speed == ice_pcie_speed_16_0GT) ? "16.0GT/s" :
(hw->bus.speed == ice_pcie_speed_8_0GT) ? "8.0GT/s" :
(hw->bus.speed == ice_pcie_speed_5_0GT) ? "5.0GT/s" :
(hw->bus.speed == ice_pcie_speed_2_5GT) ? "2.5GT/s" : "Unknown"),
(hw->bus.width == ice_pcie_lnk_x32) ? "Width x32" :
(hw->bus.width == ice_pcie_lnk_x16) ? "Width x16" :
(hw->bus.width == ice_pcie_lnk_x12) ? "Width x12" :
(hw->bus.width == ice_pcie_lnk_x8) ? "Width x8" :
(hw->bus.width == ice_pcie_lnk_x4) ? "Width x4" :
(hw->bus.width == ice_pcie_lnk_x2) ? "Width x2" :
(hw->bus.width == ice_pcie_lnk_x1) ? "Width x1" : "Width Unknown");
}
/**
* ice_set_pci_link_status_data - store PCI bus info
* @hw: pointer to hardware structure
* @link_status: the link status word from PCI config space
*
* Stores the PCI bus info (speed, width, type) within the ice_hw structure
**/
static void
ice_set_pci_link_status_data(struct ice_hw *hw, u16 link_status)
{
u16 reg;
hw->bus.type = ice_bus_pci_express;
reg = (link_status & PCIEM_LINK_STA_WIDTH) >> 4;
switch (reg) {
case ice_pcie_lnk_x1:
case ice_pcie_lnk_x2:
case ice_pcie_lnk_x4:
case ice_pcie_lnk_x8:
case ice_pcie_lnk_x12:
case ice_pcie_lnk_x16:
case ice_pcie_lnk_x32:
hw->bus.width = (enum ice_pcie_link_width)reg;
break;
default:
hw->bus.width = ice_pcie_lnk_width_unknown;
break;
}
reg = (link_status & PCIEM_LINK_STA_SPEED) + 0x14;
switch (reg) {
case ice_pcie_speed_2_5GT:
case ice_pcie_speed_5_0GT:
case ice_pcie_speed_8_0GT:
case ice_pcie_speed_16_0GT:
hw->bus.speed = (enum ice_pcie_bus_speed)reg;
break;
default:
hw->bus.speed = ice_pcie_speed_unknown;
break;
}
}
/**
* ice_init_link_events - Initialize Link Status Events mask
* @sc: the device softc
*
* Initialize the Link Status Events mask to disable notification of link
* events we don't care about in software. Also request that link status
* events be enabled.
*/
int
ice_init_link_events(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
enum ice_status status;
u16 wanted_events;
/* Set the bits for the events that we want to be notified by */
wanted_events = (ICE_AQ_LINK_EVENT_UPDOWN |
ICE_AQ_LINK_EVENT_MEDIA_NA |
ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL);
/* request that every event except the wanted events be masked */
status = ice_aq_set_event_mask(hw, hw->port_info->lport, ~wanted_events, NULL);
if (status) {
device_printf(sc->dev,
"Failed to set link status event mask, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
/* Request link info with the LSE bit set to enable link status events */
status = ice_aq_get_link_info(hw->port_info, true, NULL, NULL);
if (status) {
device_printf(sc->dev,
"Failed to enable link status events, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
return (0);
}
/**
* ice_handle_mdd_event - Handle possibly malicious events
* @sc: the device softc
*
* Called by the admin task if an MDD detection interrupt is triggered.
* Identifies possibly malicious events coming from VFs. Also triggers for
* similar incorrect behavior from the PF as well.
*/
void
ice_handle_mdd_event(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
bool mdd_detected = false, request_reinit = false;
device_t dev = sc->dev;
u32 reg;
if (!ice_testandclear_state(&sc->state, ICE_STATE_MDD_PENDING))
return;
reg = rd32(hw, GL_MDET_TX_TCLAN);
if (reg & GL_MDET_TX_TCLAN_VALID_M) {
u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> GL_MDET_TX_TCLAN_PF_NUM_S;
u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> GL_MDET_TX_TCLAN_VF_NUM_S;
u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> GL_MDET_TX_TCLAN_MAL_TYPE_S;
u16 queue = (reg & GL_MDET_TX_TCLAN_QNUM_M) >> GL_MDET_TX_TCLAN_QNUM_S;
device_printf(dev, "Malicious Driver Detection Tx Descriptor check event '%s' on Tx queue %u PF# %u VF# %u\n",
ice_mdd_tx_tclan_str(event), queue, pf_num, vf_num);
/* Only clear this event if it matches this PF, that way other
* PFs can read the event and determine VF and queue number.
*/
if (pf_num == hw->pf_id)
wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
mdd_detected = true;
}
/* Determine what triggered the MDD event */
reg = rd32(hw, GL_MDET_TX_PQM);
if (reg & GL_MDET_TX_PQM_VALID_M) {
u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> GL_MDET_TX_PQM_PF_NUM_S;
u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> GL_MDET_TX_PQM_VF_NUM_S;
u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> GL_MDET_TX_PQM_MAL_TYPE_S;
u16 queue = (reg & GL_MDET_TX_PQM_QNUM_M) >> GL_MDET_TX_PQM_QNUM_S;
device_printf(dev, "Malicious Driver Detection Tx Quanta check event '%s' on Tx queue %u PF# %u VF# %u\n",
ice_mdd_tx_pqm_str(event), queue, pf_num, vf_num);
/* Only clear this event if it matches this PF, that way other
* PFs can read the event and determine VF and queue number.
*/
if (pf_num == hw->pf_id)
wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
mdd_detected = true;
}
reg = rd32(hw, GL_MDET_RX);
if (reg & GL_MDET_RX_VALID_M) {
u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> GL_MDET_RX_PF_NUM_S;
u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> GL_MDET_RX_VF_NUM_S;
u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> GL_MDET_RX_MAL_TYPE_S;
u16 queue = (reg & GL_MDET_RX_QNUM_M) >> GL_MDET_RX_QNUM_S;
device_printf(dev, "Malicious Driver Detection Rx event '%s' on Rx queue %u PF# %u VF# %u\n",
ice_mdd_rx_str(event), queue, pf_num, vf_num);
/* Only clear this event if it matches this PF, that way other
* PFs can read the event and determine VF and queue number.
*/
if (pf_num == hw->pf_id)
wr32(hw, GL_MDET_RX, 0xffffffff);
mdd_detected = true;
}
/* Now, confirm that this event actually affects this PF, by checking
* the PF registers.
*/
if (mdd_detected) {
reg = rd32(hw, PF_MDET_TX_TCLAN);
if (reg & PF_MDET_TX_TCLAN_VALID_M) {
wr32(hw, PF_MDET_TX_TCLAN, 0xffff);
sc->soft_stats.tx_mdd_count++;
request_reinit = true;
}
reg = rd32(hw, PF_MDET_TX_PQM);
if (reg & PF_MDET_TX_PQM_VALID_M) {
wr32(hw, PF_MDET_TX_PQM, 0xffff);
sc->soft_stats.tx_mdd_count++;
request_reinit = true;
}
reg = rd32(hw, PF_MDET_RX);
if (reg & PF_MDET_RX_VALID_M) {
wr32(hw, PF_MDET_RX, 0xffff);
sc->soft_stats.rx_mdd_count++;
request_reinit = true;
}
}
/* TODO: Implement logic to detect and handle events caused by VFs. */
/* request that the upper stack re-initialize the Tx/Rx queues */
if (request_reinit)
ice_request_stack_reinit(sc);
ice_flush(hw);
}
/**
* ice_init_dcb_setup - Initialize DCB settings for HW
* @sc: the device softc
*
* This needs to be called after the fw_lldp_agent sysctl is added, since that
* can update the device's LLDP agent status if a tunable value is set.
*
* Get and store the initial state of DCB settings on driver load. Print out
* informational messages as well.
*/
void
ice_init_dcb_setup(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
bool dcbx_agent_status;
enum ice_status status;
/* Don't do anything if DCB isn't supported */
if (!hw->func_caps.common_cap.dcb) {
device_printf(dev, "%s: No DCB support\n",
__func__);
return;
}
hw->port_info->dcbx_status = ice_get_dcbx_status(hw);
if (hw->port_info->dcbx_status != ICE_DCBX_STATUS_DONE &&
hw->port_info->dcbx_status != ICE_DCBX_STATUS_IN_PROGRESS) {
/*
* Start DCBX agent, but not LLDP. The return value isn't
* checked here because a more detailed dcbx agent status is
* retrieved and checked in ice_init_dcb() and below.
*/
ice_aq_start_stop_dcbx(hw, true, &dcbx_agent_status, NULL);
}
/* This sets hw->port_info->is_sw_lldp */
status = ice_init_dcb(hw, true);
/* If there is an error, then FW LLDP is not in a usable state */
if (status != 0 && status != ICE_ERR_NOT_READY) {
/* Don't print an error message if the return code from the AQ
* cmd performed in ice_init_dcb() is is EPERM; that means the
* FW LLDP engine is disabled, and that is a valid state.
*/
if (!(status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EPERM)) {
device_printf(dev, "DCB init failed, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
hw->port_info->dcbx_status = ICE_DCBX_STATUS_NOT_STARTED;
}
switch (hw->port_info->dcbx_status) {
case ICE_DCBX_STATUS_DIS:
ice_debug(hw, ICE_DBG_DCB, "DCBX disabled\n");
break;
case ICE_DCBX_STATUS_NOT_STARTED:
ice_debug(hw, ICE_DBG_DCB, "DCBX not started\n");
break;
case ICE_DCBX_STATUS_MULTIPLE_PEERS:
ice_debug(hw, ICE_DBG_DCB, "DCBX detected multiple peers\n");
break;
default:
break;
}
/* LLDP disabled in FW */
if (hw->port_info->is_sw_lldp) {
ice_add_rx_lldp_filter(sc);
device_printf(dev, "Firmware LLDP agent disabled\n");
} else {
ice_del_rx_lldp_filter(sc);
}
}
/**
* ice_handle_mib_change_event - helper function to log LLDP MIB change events
* @sc: device softc
* @event: event received on a control queue
*
* Prints out the type of an LLDP MIB change event in a DCB debug message.
*
* XXX: Should be extended to do more if the driver decides to notify other SW
* of LLDP MIB changes, or needs to extract info from the MIB.
*/
static void
ice_handle_mib_change_event(struct ice_softc *sc, struct ice_rq_event_info *event)
{
struct ice_aqc_lldp_get_mib *params =
(struct ice_aqc_lldp_get_mib *)&event->desc.params.lldp_get_mib;
u8 mib_type, bridge_type, tx_status;
/* XXX: To get the contents of the MIB that caused the event, set the
* ICE_DBG_AQ debug mask and read that output
*/
static const char* mib_type_strings[] = {
"Local MIB",
"Remote MIB",
"Reserved",
"Reserved"
};
static const char* bridge_type_strings[] = {
"Nearest Bridge",
"Non-TPMR Bridge",
"Reserved",
"Reserved"
};
static const char* tx_status_strings[] = {
"Port's TX active",
"Port's TX suspended and drained",
"Reserved",
"Port's TX suspended and srained; blocked TC pipe flushed"
};
mib_type = (params->type & ICE_AQ_LLDP_MIB_TYPE_M) >>
ICE_AQ_LLDP_MIB_TYPE_S;
bridge_type = (params->type & ICE_AQ_LLDP_BRID_TYPE_M) >>
ICE_AQ_LLDP_BRID_TYPE_S;
tx_status = (params->type & ICE_AQ_LLDP_TX_M) >>
ICE_AQ_LLDP_TX_S;
ice_debug(&sc->hw, ICE_DBG_DCB, "LLDP MIB Change Event (%s, %s, %s)\n",
mib_type_strings[mib_type], bridge_type_strings[bridge_type],
tx_status_strings[tx_status]);
}
/**
* ice_send_version - Send driver version to firmware
* @sc: the device private softc
*
* Send the driver version to the firmware. This must be called as early as
* possible after ice_init_hw().
*/
int
ice_send_version(struct ice_softc *sc)
{
struct ice_driver_ver driver_version = {0};
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
driver_version.major_ver = ice_major_version;
driver_version.minor_ver = ice_minor_version;
driver_version.build_ver = ice_patch_version;
driver_version.subbuild_ver = ice_rc_version;
strlcpy((char *)driver_version.driver_string, ice_driver_version,
sizeof(driver_version.driver_string));
status = ice_aq_send_driver_ver(hw, &driver_version, NULL);
if (status) {
device_printf(dev, "Unable to send driver version to firmware, err %s aq_err %s\n",
ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
return (EIO);
}
return (0);
}
/**
* ice_handle_lan_overflow_event - helper function to log LAN overflow events
* @sc: device softc
* @event: event received on a control queue
*
* Prints out a message when a LAN overflow event is detected on a receive
* queue.
*/
static void
ice_handle_lan_overflow_event(struct ice_softc *sc, struct ice_rq_event_info *event)
{
struct ice_aqc_event_lan_overflow *params =
(struct ice_aqc_event_lan_overflow *)&event->desc.params.lan_overflow;
struct ice_hw *hw = &sc->hw;
ice_debug(hw, ICE_DBG_DCB, "LAN overflow event detected, prtdcb_ruptq=0x%08x, qtx_ctl=0x%08x\n",
LE32_TO_CPU(params->prtdcb_ruptq),
LE32_TO_CPU(params->qtx_ctl));
}
/**
* ice_add_ethertype_to_list - Add an Ethertype filter to a filter list
* @vsi: the VSI to target packets to
* @list: the list to add the filter to
* @ethertype: the Ethertype to filter on
* @direction: The direction of the filter (Tx or Rx)
* @action: the action to take
*
* Add an Ethertype filter to a filter list. Used to forward a series of
* filters to the firmware for configuring the switch.
*
* Returns 0 on success, and an error code on failure.
*/
static int
ice_add_ethertype_to_list(struct ice_vsi *vsi, struct ice_list_head *list,
u16 ethertype, u16 direction,
enum ice_sw_fwd_act_type action)
{
struct ice_fltr_list_entry *entry;
MPASS((direction == ICE_FLTR_TX) || (direction == ICE_FLTR_RX));
entry = (__typeof(entry))malloc(sizeof(*entry), M_ICE, M_NOWAIT|M_ZERO);
if (!entry)
return (ENOMEM);
entry->fltr_info.flag = direction;
entry->fltr_info.src_id = ICE_SRC_ID_VSI;
entry->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
entry->fltr_info.fltr_act = action;
entry->fltr_info.vsi_handle = vsi->idx;
entry->fltr_info.l_data.ethertype_mac.ethertype = ethertype;
LIST_ADD(&entry->list_entry, list);
return 0;
}
#define ETHERTYPE_PAUSE_FRAMES 0x8808
#define ETHERTYPE_LLDP_FRAMES 0x88cc
/**
* ice_cfg_pf_ethertype_filters - Configure switch to drop ethertypes
* @sc: the device private softc
*
* Configure the switch to drop PAUSE frames and LLDP frames transmitted from
* the host. This prevents malicious VFs from sending these frames and being
* able to control or configure the network.
*/
int
ice_cfg_pf_ethertype_filters(struct ice_softc *sc)
{
struct ice_list_head ethertype_list;
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
int err = 0;
INIT_LIST_HEAD(&ethertype_list);
/*
* Note that the switch filters will ignore the VSI index for the drop
* action, so we only need to program drop filters once for the main
* VSI.
*/
/* Configure switch to drop all Tx pause frames coming from any VSI. */
if (sc->enable_tx_fc_filter) {
err = ice_add_ethertype_to_list(vsi, &ethertype_list,
ETHERTYPE_PAUSE_FRAMES,
ICE_FLTR_TX, ICE_DROP_PACKET);
if (err)
goto free_ethertype_list;
}
/* Configure switch to drop LLDP frames coming from any VSI */
if (sc->enable_tx_lldp_filter) {
err = ice_add_ethertype_to_list(vsi, &ethertype_list,
ETHERTYPE_LLDP_FRAMES,
ICE_FLTR_TX, ICE_DROP_PACKET);
if (err)
goto free_ethertype_list;
}
status = ice_add_eth_mac(hw, &ethertype_list);
if (status) {
device_printf(dev,
"Failed to add Tx Ethertype filters, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
err = (EIO);
}
free_ethertype_list:
ice_free_fltr_list(&ethertype_list);
return err;
}
/**
* ice_add_rx_lldp_filter - add ethertype filter for Rx LLDP frames
* @sc: the device private structure
*
* Add a switch ethertype filter which forwards the LLDP frames to the main PF
* VSI. Called when the fw_lldp_agent is disabled, to allow the LLDP frames to
* be forwarded to the stack.
*/
static void
ice_add_rx_lldp_filter(struct ice_softc *sc)
{
struct ice_list_head ethertype_list;
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
int err;
INIT_LIST_HEAD(&ethertype_list);
/* Forward Rx LLDP frames to the stack */
err = ice_add_ethertype_to_list(vsi, &ethertype_list,
ETHERTYPE_LLDP_FRAMES,
ICE_FLTR_RX, ICE_FWD_TO_VSI);
if (err) {
device_printf(dev,
"Failed to add Rx LLDP filter, err %s\n",
ice_err_str(err));
goto free_ethertype_list;
}
status = ice_add_eth_mac(hw, &ethertype_list);
if (status == ICE_ERR_ALREADY_EXISTS) {
; /* Don't complain if we try to add a filter that already exists */
} else if (status) {
device_printf(dev,
"Failed to add Rx LLDP filter, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
free_ethertype_list:
ice_free_fltr_list(&ethertype_list);
}
/**
* ice_del_rx_lldp_filter - Remove ethertype filter for Rx LLDP frames
* @sc: the device private structure
*
* Remove the switch filter forwarding LLDP frames to the main PF VSI, called
* when the firmware LLDP agent is enabled, to stop routing LLDP frames to the
* stack.
*/
static void
ice_del_rx_lldp_filter(struct ice_softc *sc)
{
struct ice_list_head ethertype_list;
struct ice_vsi *vsi = &sc->pf_vsi;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
int err;
INIT_LIST_HEAD(&ethertype_list);
/* Remove filter forwarding Rx LLDP frames to the stack */
err = ice_add_ethertype_to_list(vsi, &ethertype_list,
ETHERTYPE_LLDP_FRAMES,
ICE_FLTR_RX, ICE_FWD_TO_VSI);
if (err) {
device_printf(dev,
"Failed to remove Rx LLDP filter, err %s\n",
ice_err_str(err));
goto free_ethertype_list;
}
status = ice_remove_eth_mac(hw, &ethertype_list);
if (status == ICE_ERR_DOES_NOT_EXIST) {
; /* Don't complain if we try to remove a filter that doesn't exist */
} else if (status) {
device_printf(dev,
"Failed to remove Rx LLDP filter, err %s aq_err %s\n",
ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
free_ethertype_list:
ice_free_fltr_list(&ethertype_list);
}
/**
* ice_init_link_configuration -- Setup link in different ways depending
* on whether media is available or not.
* @sc: device private structure
*
* Called at the end of the attach process to either set default link
* parameters if there is media available, or force HW link down and
* set a state bit if there is no media.
*/
void
ice_init_link_configuration(struct ice_softc *sc)
{
struct ice_port_info *pi = sc->hw.port_info;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
pi->phy.get_link_info = true;
status = ice_get_link_status(pi, &sc->link_up);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_get_link_status failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return;
}
if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
ice_clear_state(&sc->state, ICE_STATE_NO_MEDIA);
/* Apply default link settings */
ice_apply_saved_phy_cfg(sc);
} else {
/* Set link down, and poll for media available in timer. This prevents the
* driver from receiving spurious link-related events.
*/
ice_set_state(&sc->state, ICE_STATE_NO_MEDIA);
status = ice_aq_set_link_restart_an(pi, false, NULL);
if (status != ICE_SUCCESS)
device_printf(dev,
"%s: ice_aq_set_link_restart_an: status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_apply_saved_phy_req_to_cfg -- Write saved user PHY settings to cfg data
* @pi: port info struct
* @pcaps: TOPO_CAPS capability data to use for defaults
* @cfg: new PHY config data to be modified
*
* Applies user settings for advertised speeds to the PHY type fields in the
* supplied PHY config struct. It uses the data from pcaps to check if the
* saved settings are invalid and uses the pcaps data instead if they are
* invalid.
*/
static void
ice_apply_saved_phy_req_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_aqc_set_phy_cfg_data *cfg)
{
u64 phy_low = 0, phy_high = 0;
ice_update_phy_type(&phy_low, &phy_high, pi->phy.curr_user_speed_req);
cfg->phy_type_low = pcaps->phy_type_low & htole64(phy_low);
cfg->phy_type_high = pcaps->phy_type_high & htole64(phy_high);
/* Can't use saved user speed request; use NVM default PHY capabilities */
if (!cfg->phy_type_low && !cfg->phy_type_high) {
cfg->phy_type_low = pcaps->phy_type_low;
cfg->phy_type_high = pcaps->phy_type_high;
}
}
/**
* ice_apply_saved_fec_req_to_cfg -- Write saved user FEC mode to cfg data
* @pi: port info struct
* @pcaps: TOPO_CAPS capability data to use for defaults
* @cfg: new PHY config data to be modified
*
* Applies user setting for FEC mode to PHY config struct. It uses the data
* from pcaps to check if the saved settings are invalid and uses the pcaps
* data instead if they are invalid.
*/
static void
ice_apply_saved_fec_req_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_aqc_set_phy_cfg_data *cfg)
{
ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
/* Can't use saved user FEC mode; use NVM default PHY capabilities */
if (cfg->link_fec_opt &&
!(cfg->link_fec_opt & pcaps->link_fec_options)) {
cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
cfg->link_fec_opt = pcaps->link_fec_options;
}
}
/**
* ice_apply_saved_fc_req_to_cfg -- Write saved user flow control mode to cfg data
* @pi: port info struct
* @cfg: new PHY config data to be modified
*
* Applies user setting for flow control mode to PHY config struct. There are
* no invalid flow control mode settings; if there are, then this function
* treats them like "ICE_FC_NONE".
*/
static void
ice_apply_saved_fc_req_to_cfg(struct ice_port_info *pi,
struct ice_aqc_set_phy_cfg_data *cfg)
{
cfg->caps &= ~(ICE_AQ_PHY_ENA_TX_PAUSE_ABILITY |
ICE_AQ_PHY_ENA_RX_PAUSE_ABILITY);
switch (pi->phy.curr_user_fc_req) {
case ICE_FC_FULL:
cfg->caps |= ICE_AQ_PHY_ENA_TX_PAUSE_ABILITY |
ICE_AQ_PHY_ENA_RX_PAUSE_ABILITY;
break;
case ICE_FC_RX_PAUSE:
cfg->caps |= ICE_AQ_PHY_ENA_RX_PAUSE_ABILITY;
break;
case ICE_FC_TX_PAUSE:
cfg->caps |= ICE_AQ_PHY_ENA_TX_PAUSE_ABILITY;
break;
default:
/* ICE_FC_NONE */
break;
}
}
/**
* ice_apply_saved_user_req_to_cfg -- Apply all saved user settings to AQ cfg data
* @pi: port info struct
* @pcaps: TOPO_CAPS capability data to use for defaults
* @cfg: new PHY config data to be modified
*
* Applies user settings for advertised speeds, FEC mode, and flow control
* mode to the supplied PHY config struct; it uses the data from pcaps to check
* if the saved settings are invalid and uses the pcaps data instead if they
* are invalid.
*/
static void
ice_apply_saved_user_req_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_aqc_set_phy_cfg_data *cfg)
{
ice_apply_saved_phy_req_to_cfg(pi, pcaps, cfg);
ice_apply_saved_fec_req_to_cfg(pi, pcaps, cfg);
ice_apply_saved_fc_req_to_cfg(pi, cfg);
}
/**
* ice_apply_saved_phy_cfg -- Re-apply user PHY config settings
* @sc: device private structure
*
* Takes the saved user PHY config settings, overwrites the NVM
* default with them if they're valid, and uses the Set PHY Config AQ command
* to apply them.
*
* Intended for use when media is inserted.
*
* @pre Port has media available
*/
void
ice_apply_saved_phy_cfg(struct ice_softc *sc)
{
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_port_info *pi = sc->hw.port_info;
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps (TOPO_CAP) failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return;
}
/* Setup new PHY config */
ice_copy_phy_caps_to_cfg(pi, &pcaps, &cfg);
/* Apply settings requested by user */
ice_apply_saved_user_req_to_cfg(pi, &pcaps, &cfg);
/* Enable link and re-negotiate it */
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
if (status != ICE_SUCCESS) {
if ((status == ICE_ERR_AQ_ERROR) &&
(hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY))
device_printf(dev,
"%s: User PHY cfg not applied; no media in port\n",
__func__);
else
device_printf(dev,
"%s: ice_aq_set_phy_cfg failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
}
}
/**
* ice_print_ldo_tlv - Print out LDO TLV information
* @sc: device private structure
* @tlv: LDO TLV information from the adapter NVM
*
* Dump out the information in tlv to the kernel message buffer; intended for
* debugging purposes.
*/
static void
ice_print_ldo_tlv(struct ice_softc *sc, struct ice_link_default_override_tlv *tlv)
{
device_t dev = sc->dev;
device_printf(dev, "TLV: -options 0x%02x\n", tlv->options);
device_printf(dev, " -phy_config 0x%02x\n", tlv->phy_config);
device_printf(dev, " -fec_options 0x%02x\n", tlv->fec_options);
device_printf(dev, " -phy_high 0x%016llx\n",
(unsigned long long)tlv->phy_type_high);
device_printf(dev, " -phy_low 0x%016llx\n",
(unsigned long long)tlv->phy_type_low);
}
/**
* ice_set_link_management_mode -- Strict or lenient link management
* @sc: device private structure
*
* Some NVMs give the adapter the option to advertise a superset of link
* configurations. This checks to see if that option is enabled.
* Further, the NVM could also provide a specific set of configurations
* to try; these are cached in the driver's private structure if they
* are available.
*/
void
ice_set_link_management_mode(struct ice_softc *sc)
{
struct ice_port_info *pi = sc->hw.port_info;
device_t dev = sc->dev;
struct ice_link_default_override_tlv tlv = { 0 };
enum ice_status status;
/* Port must be in strict mode if FW version is below a certain
* version. (i.e. Don't set lenient mode features)
*/
if (!(ice_fw_supports_link_override(&sc->hw)))
return;
status = ice_get_link_default_override(&tlv, pi);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_get_link_default_override failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(sc->hw.adminq.sq_last_status));
return;
}
if (sc->hw.debug_mask & ICE_DBG_LINK)
ice_print_ldo_tlv(sc, &tlv);
/* Set lenient link mode */
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_LENIENT_LINK_MODE) &&
(!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)))
ice_set_bit(ICE_FEATURE_LENIENT_LINK_MODE, sc->feat_en);
/* Default overrides only work if in lenient link mode */
if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_DEFAULT_OVERRIDE) &&
ice_is_bit_set(sc->feat_en, ICE_FEATURE_LENIENT_LINK_MODE) &&
(tlv.options & ICE_LINK_OVERRIDE_EN))
ice_set_bit(ICE_FEATURE_DEFAULT_OVERRIDE, sc->feat_en);
/* Cache the LDO TLV structure in the driver, since it won't change
* during the driver's lifetime.
*/
sc->ldo_tlv = tlv;
}
/**
* ice_init_saved_phy_cfg -- Set cached user PHY cfg settings with NVM defaults
* @sc: device private structure
*
* This should be called before the tunables for these link settings
* (e.g. advertise_speed) are added -- so that these defaults don't overwrite
* the cached values that the sysctl handlers will write.
*
* This also needs to be called before ice_init_link_configuration, to ensure
* that there are sane values that can be written if there is media available
* in the port.
*/
void
ice_init_saved_phy_cfg(struct ice_softc *sc)
{
struct ice_port_info *pi = sc->hw.port_info;
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
u64 phy_low, phy_high;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
&pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps (TOPO_CAP) failed; status %s, aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return;
}
phy_low = le64toh(pcaps.phy_type_low);
phy_high = le64toh(pcaps.phy_type_high);
/* Save off initial config parameters */
pi->phy.curr_user_speed_req =
ice_aq_phy_types_to_sysctl_speeds(phy_low, phy_high);
pi->phy.curr_user_fec_req = ice_caps_to_fec_mode(pcaps.caps,
pcaps.link_fec_options);
pi->phy.curr_user_fc_req = ice_caps_to_fc_mode(pcaps.caps);
}
/**
* ice_module_init - Driver callback to handle module load
*
* Callback for handling module load events. This function should initialize
* any data structures that are used for the life of the device driver.
*/
static int
ice_module_init(void)
{
return (0);
}
/**
* ice_module_exit - Driver callback to handle module exit
*
* Callback for handling module unload events. This function should release
* any resources initialized during ice_module_init.
*
* If this function returns non-zero, the module will not be unloaded. It
* should only return such a value if the module cannot be unloaded at all,
* such as due to outstanding memory references that cannot be revoked.
*/
static int
ice_module_exit(void)
{
return (0);
}
/**
* ice_module_event_handler - Callback for module events
* @mod: unused module_t parameter
* @what: the event requested
* @arg: unused event argument
*
* Callback used to handle module events from the stack. Used to allow the
* driver to define custom behavior that should happen at module load and
* unload.
*/
int
ice_module_event_handler(module_t __unused mod, int what, void __unused *arg)
{
switch (what) {
case MOD_LOAD:
return ice_module_init();
case MOD_UNLOAD:
return ice_module_exit();
default:
/* TODO: do we need to handle MOD_QUIESCE and MOD_SHUTDOWN? */
return (EOPNOTSUPP);
}
}
/**
* ice_handle_nvm_access_ioctl - Handle an NVM access ioctl request
* @sc: the device private softc
* @ifd: ifdrv ioctl request pointer
*/
int
ice_handle_nvm_access_ioctl(struct ice_softc *sc, struct ifdrv *ifd)
{
union ice_nvm_access_data *data;
struct ice_nvm_access_cmd *cmd;
size_t ifd_len = ifd->ifd_len, malloc_len;
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
enum ice_status status;
u8 *nvm_buffer;
int err;
/*
* ifioctl forwards SIOCxDRVSPEC to iflib without performing
* a privilege check. In turn, iflib forwards the ioctl to the driver
* without performing a privilege check. Perform one here to ensure
* that non-privileged threads cannot access this interface.
*/
err = priv_check(curthread, PRIV_DRIVER);
if (err)
return (err);
if (ifd_len < sizeof(struct ice_nvm_access_cmd)) {
device_printf(dev, "%s: ifdrv length is too small. Got %zu, but expected %zu\n",
__func__, ifd_len, sizeof(struct ice_nvm_access_cmd));
return (EINVAL);
}
if (ifd->ifd_data == NULL) {
device_printf(dev, "%s: ifd data buffer not present.\n",
__func__);
return (EINVAL);
}
/*
* If everything works correctly, ice_handle_nvm_access should not
* modify data past the size of the ioctl length. However, it could
* lead to memory corruption if it did. Make sure to allocate at least
* enough space for the command and data regardless. This
* ensures that any access to the data union will not access invalid
* memory.
*/
malloc_len = max(ifd_len, sizeof(*data) + sizeof(*cmd));
nvm_buffer = (u8 *)malloc(malloc_len, M_ICE, M_ZERO | M_WAITOK);
if (!nvm_buffer)
return (ENOMEM);
/* Copy the NVM access command and data in from user space */
/* coverity[tainted_data_argument] */
err = copyin(ifd->ifd_data, nvm_buffer, ifd_len);
if (err) {
device_printf(dev, "%s: Copying request from user space failed, err %s\n",
__func__, ice_err_str(err));
goto cleanup_free_nvm_buffer;
}
/*
* The NVM command structure is immediately followed by data which
* varies in size based on the command.
*/
cmd = (struct ice_nvm_access_cmd *)nvm_buffer;
data = (union ice_nvm_access_data *)(nvm_buffer + sizeof(struct ice_nvm_access_cmd));
/* Handle the NVM access request */
status = ice_handle_nvm_access(hw, cmd, data);
if (status)
ice_debug(hw, ICE_DBG_NVM,
"NVM access request failed, err %s\n",
ice_status_str(status));
/* Copy the possibly modified contents of the handled request out */
err = copyout(nvm_buffer, ifd->ifd_data, ifd_len);
if (err) {
device_printf(dev, "%s: Copying response back to user space failed, err %s\n",
__func__, ice_err_str(err));
goto cleanup_free_nvm_buffer;
}
/* Convert private status to an error code for proper ioctl response */
switch (status) {
case ICE_SUCCESS:
err = (0);
break;
case ICE_ERR_NO_MEMORY:
err = (ENOMEM);
break;
case ICE_ERR_OUT_OF_RANGE:
err = (ENOTTY);
break;
case ICE_ERR_PARAM:
default:
err = (EINVAL);
break;
}
cleanup_free_nvm_buffer:
free(nvm_buffer, M_ICE);
return err;
}
/**
* ice_read_sff_eeprom - Read data from SFF eeprom
* @sc: device softc
* @dev_addr: I2C device address (typically 0xA0 or 0xA2)
* @offset: offset into the eeprom
* @data: pointer to data buffer to store read data in
* @length: length to read; max length is 16
*
* Read from the SFF eeprom in the module for this PF's port. For more details
* on the contents of an SFF eeprom, refer to SFF-8724 (SFP), SFF-8636 (QSFP),
* and SFF-8024 (both).
*/
int
ice_read_sff_eeprom(struct ice_softc *sc, u16 dev_addr, u16 offset, u8* data, u16 length)
{
struct ice_hw *hw = &sc->hw;
int error = 0, retries = 0;
enum ice_status status;
u16 lport;
if (length > 16)
return (EINVAL);
if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
return (ENOSYS);
if (ice_test_state(&sc->state, ICE_STATE_NO_MEDIA))
return (ENXIO);
/* Set bit to indicate lport value is valid */
lport = hw->port_info->lport | (0x1 << 8);
do {
status = ice_aq_sff_eeprom(hw, lport, dev_addr,
offset, 0, 0, data, length,
false, NULL);
if (!status) {
error = 0;
break;
}
if (status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) {
error = EBUSY;
continue;
}
if (status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EACCES) {
/* FW says I2C access isn't supported */
error = EACCES;
break;
}
if (status == ICE_ERR_AQ_ERROR &&
hw->adminq.sq_last_status == ICE_AQ_RC_EPERM) {
device_printf(sc->dev,
"%s: Module pointer location specified in command does not permit the required operation.\n",
__func__);
error = EPERM;
break;
} else {
device_printf(sc->dev,
"%s: Error reading I2C data: err %s aq_err %s\n",
__func__, ice_status_str(status),
ice_aq_str(hw->adminq.sq_last_status));
error = EIO;
break;
}
} while (retries++ < ICE_I2C_MAX_RETRIES);
if (error == EBUSY)
device_printf(sc->dev,
"%s: Error reading I2C data after %d retries\n",
__func__, ICE_I2C_MAX_RETRIES);
return (error);
}
/**
* ice_handle_i2c_req - Driver independent I2C request handler
* @sc: device softc
* @req: The I2C parameters to use
*
* Read from the port's I2C eeprom using the parameters from the ioctl.
*/
int
ice_handle_i2c_req(struct ice_softc *sc, struct ifi2creq *req)
{
return ice_read_sff_eeprom(sc, req->dev_addr, req->offset, req->data, req->len);
}
/**
* ice_sysctl_read_i2c_diag_data - Read some module diagnostic data via i2c
* @oidp: sysctl oid structure
* @arg1: pointer to private data structure
* @arg2: unused
* @req: sysctl request pointer
*
* Read 8 bytes of diagnostic data from the SFF eeprom in the (Q)SFP module
* inserted into the port.
*
* | SFP A2 | QSFP Lower Page
* ------------|---------|----------------
* Temperature | 96-97 | 22-23
* Vcc | 98-99 | 26-27
* TX power | 102-103 | 34-35..40-41
* RX power | 104-105 | 50-51..56-57
*/
static int
ice_sysctl_read_i2c_diag_data(SYSCTL_HANDLER_ARGS)
{
struct ice_softc *sc = (struct ice_softc *)arg1;
device_t dev = sc->dev;
struct sbuf *sbuf;
int error = 0;
u8 data[16];
UNREFERENCED_PARAMETER(arg2);
UNREFERENCED_PARAMETER(oidp);
if (ice_driver_is_detaching(sc))
return (ESHUTDOWN);
if (req->oldptr == NULL) {
error = SYSCTL_OUT(req, 0, 128);
return (error);
}
error = ice_read_sff_eeprom(sc, 0xA0, 0, data, 1);
if (error)
return (error);
/* 0x3 for SFP; 0xD/0x11 for QSFP+/QSFP28 */
if (data[0] == 0x3) {
/*
* Check for:
* - Internally calibrated data
* - Diagnostic monitoring is implemented
*/
ice_read_sff_eeprom(sc, 0xA0, 92, data, 1);
if (!(data[0] & 0x60)) {
device_printf(dev, "Module doesn't support diagnostics: 0xA0[92] = %02X\n", data[0]);
return (ENODEV);
}
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
ice_read_sff_eeprom(sc, 0xA2, 96, data, 4);
for (int i = 0; i < 4; i++)
sbuf_printf(sbuf, "%02X ", data[i]);
ice_read_sff_eeprom(sc, 0xA2, 102, data, 4);
for (int i = 0; i < 4; i++)
sbuf_printf(sbuf, "%02X ", data[i]);
} else if (data[0] == 0xD || data[0] == 0x11) {
/*
* QSFP+ modules are always internally calibrated, and must indicate
* what types of diagnostic monitoring are implemented
*/
sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
ice_read_sff_eeprom(sc, 0xA0, 22, data, 2);
for (int i = 0; i < 2; i++)
sbuf_printf(sbuf, "%02X ", data[i]);
ice_read_sff_eeprom(sc, 0xA0, 26, data, 2);
for (int i = 0; i < 2; i++)
sbuf_printf(sbuf, "%02X ", data[i]);
ice_read_sff_eeprom(sc, 0xA0, 34, data, 2);
for (int i = 0; i < 2; i++)
sbuf_printf(sbuf, "%02X ", data[i]);
ice_read_sff_eeprom(sc, 0xA0, 50, data, 2);
for (int i = 0; i < 2; i++)
sbuf_printf(sbuf, "%02X ", data[i]);
} else {
device_printf(dev, "Module is not SFP/SFP+/SFP28/QSFP+ (%02X)\n", data[0]);
return (ENODEV);
}
sbuf_finish(sbuf);
sbuf_delete(sbuf);
return (0);
}
/**
* ice_alloc_intr_tracking - Setup interrupt tracking structures
* @sc: device softc structure
*
* Sets up the resource manager for keeping track of interrupt allocations,
* and initializes the tracking maps for the PF's interrupt allocations.
*
* Unlike the scheme for queues, this is done in one step since both the
* manager and the maps both have the same lifetime.
*
* @returns 0 on success, or an error code on failure.
*/
int
ice_alloc_intr_tracking(struct ice_softc *sc)
{
struct ice_hw *hw = &sc->hw;
device_t dev = sc->dev;
int err;
/* Initialize the interrupt allocation manager */
err = ice_resmgr_init_contig_only(&sc->imgr,
hw->func_caps.common_cap.num_msix_vectors);
if (err) {
device_printf(dev, "Unable to initialize PF interrupt manager: %s\n",
ice_err_str(err));
return (err);
}
/* Allocate PF interrupt mapping storage */
if (!(sc->pf_imap =
(u16 *)malloc(sizeof(u16) * hw->func_caps.common_cap.num_msix_vectors,
M_ICE, M_NOWAIT))) {
device_printf(dev, "Unable to allocate PF imap memory\n");
err = ENOMEM;
goto free_imgr;
}
for (u32 i = 0; i < hw->func_caps.common_cap.num_msix_vectors; i++) {
sc->pf_imap[i] = ICE_INVALID_RES_IDX;
}
return (0);
free_imgr:
ice_resmgr_destroy(&sc->imgr);
return (err);
}
/**
* ice_free_intr_tracking - Free PF interrupt tracking structures
* @sc: device softc structure
*
* Frees the interrupt resource allocation manager and the PF's owned maps.
*
* VF maps are released when the owning VF's are destroyed, which should always
* happen before this function is called.
*/
void
ice_free_intr_tracking(struct ice_softc *sc)
{
if (sc->pf_imap) {
ice_resmgr_release_map(&sc->imgr, sc->pf_imap,
sc->lan_vectors);
free(sc->pf_imap, M_ICE);
sc->pf_imap = NULL;
}
ice_resmgr_destroy(&sc->imgr);
}
/**
* ice_apply_supported_speed_filter - Mask off unsupported speeds
* @phy_type_low: bit-field for the low quad word of PHY types
* @phy_type_high: bit-field for the high quad word of PHY types
*
* Given the two quad words containing the supported PHY types,
* this function will mask off the speeds that are not currently
* supported by the device.
*/
static void
ice_apply_supported_speed_filter(u64 *phy_type_low, u64 *phy_type_high)
{
u64 phylow_mask;
/* We won't offer anything lower than 1G for any part,
* but we also won't offer anything under 25G for 100G
* parts.
*/
phylow_mask = ~(ICE_PHY_TYPE_LOW_1000BASE_T - 1);
if (*phy_type_high ||
*phy_type_low & ~(ICE_PHY_TYPE_LOW_100GBASE_CR4 - 1))
phylow_mask = ~(ICE_PHY_TYPE_LOW_25GBASE_T - 1);
*phy_type_low &= phylow_mask;
}
/**
* ice_get_phy_types - Report appropriate PHY types
* @sc: device softc structure
* @phy_type_low: bit-field for the low quad word of PHY types
* @phy_type_high: bit-field for the high quad word of PHY types
*
* Populate the two quad words with bits representing the PHY types
* supported by the device. This is really just a wrapper around
* the ice_aq_get_phy_caps() that chooses the appropriate report
* mode (lenient or strict) and reports back only the relevant PHY
* types. In lenient mode the capabilities are retrieved with the
* NVM_CAP report mode, otherwise they're retrieved using the
* TOPO_CAP report mode (NVM intersected with current media).
*
* @returns 0 on success, or an error code on failure.
*/
static enum ice_status
ice_get_phy_types(struct ice_softc *sc, u64 *phy_type_low, u64 *phy_type_high)
{
struct ice_aqc_get_phy_caps_data pcaps = { 0 };
struct ice_port_info *pi = sc->hw.port_info;
device_t dev = sc->dev;
enum ice_status status;
u8 report_mode;
if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_LENIENT_LINK_MODE))
report_mode = ICE_AQC_REPORT_NVM_CAP;
else
report_mode = ICE_AQC_REPORT_TOPO_CAP;
status = ice_aq_get_phy_caps(pi, false, report_mode, &pcaps, NULL);
if (status != ICE_SUCCESS) {
device_printf(dev,
"%s: ice_aq_get_phy_caps (%s) failed; status %s, aq_err %s\n",
__func__, (report_mode) ? "TOPO_CAP" : "NVM_CAP",
ice_status_str(status),
ice_aq_str(sc->hw.adminq.sq_last_status));
return (status);
}
*phy_type_low = le64toh(pcaps.phy_type_low);
*phy_type_high = le64toh(pcaps.phy_type_high);
return (ICE_SUCCESS);
}