315bbbaa7c
Introduce and use macro to make sure that MCDI buffers allocated on stack are rounded up properly. Submitted by: Gautam Dawar <gdawar at solarflare.com> Sponsored by: Solarflare Communications, Inc. MFC after: 1 week Differential Revision: https://reviews.freebsd.org/D18259
663 lines
16 KiB
C
663 lines
16 KiB
C
/*-
|
|
* Copyright (c) 2009-2016 Solarflare Communications Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* The views and conclusions contained in the software and documentation are
|
|
* those of the authors and should not be interpreted as representing official
|
|
* policies, either expressed or implied, of the FreeBSD Project.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "efx.h"
|
|
#include "efx_impl.h"
|
|
#include "mcdi_mon.h"
|
|
|
|
#if EFSYS_OPT_MON_MCDI
|
|
|
|
#if EFSYS_OPT_MON_STATS
|
|
|
|
/* Get port mask from one-based MCDI port number */
|
|
#define MCDI_MON_PORT_MASK(_emip) (1U << ((_emip)->emi_port - 1))
|
|
|
|
#define MCDI_STATIC_SENSOR_ASSERT(_field) \
|
|
EFX_STATIC_ASSERT(MC_CMD_SENSOR_STATE_ ## _field \
|
|
== EFX_MON_STAT_STATE_ ## _field)
|
|
|
|
static void
|
|
mcdi_mon_decode_stats(
|
|
__in efx_nic_t *enp,
|
|
__in_bcount(sensor_mask_size) uint32_t *sensor_mask,
|
|
__in size_t sensor_mask_size,
|
|
__in_opt efsys_mem_t *esmp,
|
|
__out_bcount_opt(sensor_mask_size) uint32_t *stat_maskp,
|
|
__inout_ecount_opt(EFX_MON_NSTATS) efx_mon_stat_value_t *stat)
|
|
{
|
|
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
|
|
efx_mon_stat_portmask_t port_mask;
|
|
uint16_t sensor;
|
|
size_t sensor_max;
|
|
uint32_t stat_mask[(EFX_MON_NSTATS + 31) / 32];
|
|
uint32_t idx = 0;
|
|
uint32_t page = 0;
|
|
|
|
/* Assert the MC_CMD_SENSOR and EFX_MON_STATE namespaces agree */
|
|
MCDI_STATIC_SENSOR_ASSERT(OK);
|
|
MCDI_STATIC_SENSOR_ASSERT(WARNING);
|
|
MCDI_STATIC_SENSOR_ASSERT(FATAL);
|
|
MCDI_STATIC_SENSOR_ASSERT(BROKEN);
|
|
MCDI_STATIC_SENSOR_ASSERT(NO_READING);
|
|
|
|
sensor_max = 8 * sensor_mask_size;
|
|
|
|
EFSYS_ASSERT(emip->emi_port > 0); /* MCDI port number is one-based */
|
|
port_mask = (efx_mon_stat_portmask_t)MCDI_MON_PORT_MASK(emip);
|
|
|
|
memset(stat_mask, 0, sizeof (stat_mask));
|
|
|
|
/*
|
|
* The MCDI sensor readings in the DMA buffer are a packed array of
|
|
* MC_CMD_SENSOR_VALUE_ENTRY structures, which only includes entries for
|
|
* supported sensors (bit set in sensor_mask). The sensor_mask and
|
|
* sensor readings do not include entries for the per-page NEXT_PAGE
|
|
* flag.
|
|
*
|
|
* sensor_mask may legitimately contain MCDI sensors that the driver
|
|
* does not understand.
|
|
*/
|
|
for (sensor = 0; sensor < sensor_max; ++sensor) {
|
|
efx_mon_stat_t id;
|
|
efx_mon_stat_portmask_t stat_portmask = 0;
|
|
boolean_t decode_ok;
|
|
efx_mon_stat_unit_t stat_unit;
|
|
|
|
if ((sensor % (MC_CMD_SENSOR_PAGE0_NEXT + 1)) ==
|
|
MC_CMD_SENSOR_PAGE0_NEXT) {
|
|
page++;
|
|
continue;
|
|
/* This sensor is one of the page boundary bits. */
|
|
}
|
|
|
|
if (~(sensor_mask[page]) & (1U << sensor))
|
|
continue;
|
|
/* This sensor not in DMA buffer */
|
|
|
|
idx++;
|
|
/*
|
|
* Valid stat in DMA buffer that we need to increment over, even
|
|
* if we couldn't look up the id
|
|
*/
|
|
|
|
decode_ok = efx_mon_mcdi_to_efx_stat(sensor, &id);
|
|
decode_ok =
|
|
decode_ok && efx_mon_get_stat_portmap(id, &stat_portmask);
|
|
|
|
if (!(decode_ok && (stat_portmask & port_mask)))
|
|
continue;
|
|
/* Either bad decode, or don't know what port stat is on */
|
|
|
|
EFSYS_ASSERT(id < EFX_MON_NSTATS);
|
|
|
|
/*
|
|
* stat_mask is a bitmask indexed by EFX_MON_* monitor statistic
|
|
* identifiers from efx_mon_stat_t (without NEXT_PAGE bits).
|
|
*
|
|
* If there is an entry in the MCDI sensor to monitor statistic
|
|
* map then the sensor reading is used for the value of the
|
|
* monitor statistic.
|
|
*/
|
|
stat_mask[id / EFX_MON_MASK_ELEMENT_SIZE] |=
|
|
(1U << (id % EFX_MON_MASK_ELEMENT_SIZE));
|
|
|
|
if (stat != NULL && esmp != NULL && !EFSYS_MEM_IS_NULL(esmp)) {
|
|
efx_dword_t dword;
|
|
|
|
/* Get MCDI sensor reading from DMA buffer */
|
|
EFSYS_MEM_READD(esmp, 4 * (idx - 1), &dword);
|
|
|
|
/* Update EFX monitor stat from MCDI sensor reading */
|
|
stat[id].emsv_value = (uint16_t)EFX_DWORD_FIELD(dword,
|
|
MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE);
|
|
|
|
stat[id].emsv_state = (uint16_t)EFX_DWORD_FIELD(dword,
|
|
MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE);
|
|
|
|
stat[id].emsv_unit =
|
|
efx_mon_get_stat_unit(id, &stat_unit) ?
|
|
stat_unit : EFX_MON_STAT_UNIT_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
if (stat_maskp != NULL) {
|
|
memcpy(stat_maskp, stat_mask, sizeof (stat_mask));
|
|
}
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
mcdi_mon_ev(
|
|
__in efx_nic_t *enp,
|
|
__in efx_qword_t *eqp,
|
|
__out efx_mon_stat_t *idp,
|
|
__out efx_mon_stat_value_t *valuep)
|
|
{
|
|
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
|
|
efx_mon_stat_portmask_t port_mask, sensor_port_mask;
|
|
uint16_t sensor;
|
|
uint16_t state;
|
|
uint16_t value;
|
|
efx_mon_stat_t id;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(emip->emi_port > 0); /* MCDI port number is one-based */
|
|
port_mask = MCDI_MON_PORT_MASK(emip);
|
|
|
|
sensor = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_MONITOR);
|
|
state = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_STATE);
|
|
value = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_VALUE);
|
|
|
|
/* Hardware must support this MCDI sensor */
|
|
EFSYS_ASSERT3U(sensor, <,
|
|
(8 * enp->en_nic_cfg.enc_mcdi_sensor_mask_size));
|
|
EFSYS_ASSERT((sensor % (MC_CMD_SENSOR_PAGE0_NEXT + 1)) !=
|
|
MC_CMD_SENSOR_PAGE0_NEXT);
|
|
EFSYS_ASSERT(enp->en_nic_cfg.enc_mcdi_sensor_maskp != NULL);
|
|
EFSYS_ASSERT((enp->en_nic_cfg.enc_mcdi_sensor_maskp[
|
|
sensor / (MC_CMD_SENSOR_PAGE0_NEXT + 1)] &
|
|
(1U << (sensor % (MC_CMD_SENSOR_PAGE0_NEXT + 1)))) != 0);
|
|
|
|
/* And we need to understand it, to get port-map */
|
|
if (!efx_mon_mcdi_to_efx_stat(sensor, &id)) {
|
|
rc = ENOTSUP;
|
|
goto fail1;
|
|
}
|
|
if (!(efx_mon_get_stat_portmap(id, &sensor_port_mask) &&
|
|
(port_mask && sensor_port_mask))) {
|
|
return (ENODEV);
|
|
}
|
|
EFSYS_ASSERT(id < EFX_MON_NSTATS);
|
|
|
|
*idp = id;
|
|
valuep->emsv_value = value;
|
|
valuep->emsv_state = state;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_read_sensors(
|
|
__in efx_nic_t *enp,
|
|
__in efsys_mem_t *esmp,
|
|
__in uint32_t size)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_READ_SENSORS_EXT_IN_LEN,
|
|
MC_CMD_READ_SENSORS_EXT_OUT_LEN);
|
|
uint32_t addr_lo, addr_hi;
|
|
efx_rc_t rc;
|
|
|
|
if (EFSYS_MEM_SIZE(esmp) < size) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
req.emr_cmd = MC_CMD_READ_SENSORS;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_READ_SENSORS_EXT_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_READ_SENSORS_EXT_OUT_LEN;
|
|
|
|
addr_lo = (uint32_t)(EFSYS_MEM_ADDR(esmp) & 0xffffffff);
|
|
addr_hi = (uint32_t)(EFSYS_MEM_ADDR(esmp) >> 32);
|
|
|
|
MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_LO, addr_lo);
|
|
MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_HI, addr_hi);
|
|
MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_LENGTH, size);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
return (req.emr_rc);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_sensor_info_npages(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *npagesp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SENSOR_INFO_EXT_IN_LEN,
|
|
MC_CMD_SENSOR_INFO_OUT_LENMAX);
|
|
int page;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(npagesp != NULL);
|
|
|
|
page = 0;
|
|
do {
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_SENSOR_INFO;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
|
|
|
|
MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page++);
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
} while (MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK) &
|
|
(1U << MC_CMD_SENSOR_PAGE0_NEXT));
|
|
|
|
*npagesp = page;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_sensor_info(
|
|
__in efx_nic_t *enp,
|
|
__out_ecount(npages) uint32_t *sensor_maskp,
|
|
__in size_t npages)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SENSOR_INFO_EXT_IN_LEN,
|
|
MC_CMD_SENSOR_INFO_OUT_LENMAX);
|
|
uint32_t page;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(sensor_maskp != NULL);
|
|
|
|
if (npages < 1) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
for (page = 0; page < npages; page++) {
|
|
uint32_t mask;
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_SENSOR_INFO;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
|
|
|
|
MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail2;
|
|
}
|
|
|
|
mask = MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK);
|
|
|
|
if ((page != (npages - 1)) &&
|
|
((mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) == 0)) {
|
|
rc = EINVAL;
|
|
goto fail3;
|
|
}
|
|
sensor_maskp[page] = mask;
|
|
}
|
|
|
|
if (sensor_maskp[npages - 1] & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) {
|
|
rc = EINVAL;
|
|
goto fail4;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_sensor_info_page(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t page,
|
|
__out uint32_t *mask_part,
|
|
__out_ecount((sizeof (*mask_part) * 8) - 1)
|
|
efx_mon_stat_limits_t *limits)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SENSOR_INFO_EXT_IN_LEN,
|
|
MC_CMD_SENSOR_INFO_OUT_LENMAX);
|
|
efx_rc_t rc;
|
|
uint32_t mask_copy;
|
|
efx_dword_t *maskp;
|
|
efx_qword_t *limit_info;
|
|
|
|
EFSYS_ASSERT(mask_part != NULL);
|
|
EFSYS_ASSERT(limits != NULL);
|
|
|
|
memset(limits, 0,
|
|
((sizeof (*mask_part) * 8) - 1) * sizeof (efx_mon_stat_limits_t));
|
|
|
|
req.emr_cmd = MC_CMD_SENSOR_INFO;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
|
|
|
|
MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
rc = req.emr_rc;
|
|
|
|
if (rc != 0)
|
|
goto fail1;
|
|
|
|
EFSYS_ASSERT(sizeof (*limit_info) ==
|
|
MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_LEN);
|
|
maskp = MCDI_OUT2(req, efx_dword_t, SENSOR_INFO_OUT_MASK);
|
|
limit_info = (efx_qword_t *)(maskp + 1);
|
|
|
|
*mask_part = maskp->ed_u32[0];
|
|
mask_copy = *mask_part;
|
|
|
|
/* Copy an entry for all but the highest bit set. */
|
|
while (mask_copy) {
|
|
|
|
if (mask_copy == (1U << MC_CMD_SENSOR_PAGE0_NEXT)) {
|
|
/* Only next page bit set. */
|
|
mask_copy = 0;
|
|
} else {
|
|
/* Clear lowest bit */
|
|
mask_copy = mask_copy & ~(mask_copy ^ (mask_copy - 1));
|
|
/* And copy out limit entry into buffer */
|
|
limits->emlv_warning_min = EFX_QWORD_FIELD(*limit_info,
|
|
MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN1);
|
|
|
|
limits->emlv_warning_max = EFX_QWORD_FIELD(*limit_info,
|
|
MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX1);
|
|
|
|
limits->emlv_fatal_min = EFX_QWORD_FIELD(*limit_info,
|
|
MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN2);
|
|
|
|
limits->emlv_fatal_max = EFX_QWORD_FIELD(*limit_info,
|
|
MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX2);
|
|
|
|
limits++;
|
|
limit_info++;
|
|
}
|
|
}
|
|
|
|
return (rc);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
mcdi_mon_stats_update(
|
|
__in efx_nic_t *enp,
|
|
__in efsys_mem_t *esmp,
|
|
__inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
uint32_t size = encp->enc_mon_stat_dma_buf_size;
|
|
efx_rc_t rc;
|
|
|
|
if ((rc = efx_mcdi_read_sensors(enp, esmp, size)) != 0)
|
|
goto fail1;
|
|
|
|
EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, size);
|
|
|
|
mcdi_mon_decode_stats(enp,
|
|
encp->enc_mcdi_sensor_maskp,
|
|
encp->enc_mcdi_sensor_mask_size,
|
|
esmp, NULL, values);
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static void
|
|
lowest_set_bit(
|
|
__in uint32_t input_mask,
|
|
__out uint32_t *lowest_bit_mask,
|
|
__out uint32_t *lowest_bit_num
|
|
)
|
|
{
|
|
uint32_t x;
|
|
uint32_t set_bit, bit_index;
|
|
|
|
x = (input_mask ^ (input_mask - 1));
|
|
set_bit = (x + 1) >> 1;
|
|
if (!set_bit)
|
|
set_bit = (1U << 31U);
|
|
|
|
bit_index = 0;
|
|
if (set_bit & 0xFFFF0000)
|
|
bit_index += 16;
|
|
if (set_bit & 0xFF00FF00)
|
|
bit_index += 8;
|
|
if (set_bit & 0xF0F0F0F0)
|
|
bit_index += 4;
|
|
if (set_bit & 0xCCCCCCCC)
|
|
bit_index += 2;
|
|
if (set_bit & 0xAAAAAAAA)
|
|
bit_index += 1;
|
|
|
|
*lowest_bit_mask = set_bit;
|
|
*lowest_bit_num = bit_index;
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
mcdi_mon_limits_update(
|
|
__in efx_nic_t *enp,
|
|
__inout_ecount(EFX_MON_NSTATS) efx_mon_stat_limits_t *values)
|
|
{
|
|
efx_rc_t rc;
|
|
uint32_t page;
|
|
uint32_t page_mask;
|
|
uint32_t limit_index;
|
|
efx_mon_stat_limits_t limits[sizeof (page_mask) * 8];
|
|
efx_mon_stat_t stat;
|
|
|
|
page = 0;
|
|
page--;
|
|
do {
|
|
page++;
|
|
|
|
rc = efx_mcdi_sensor_info_page(enp, page, &page_mask, limits);
|
|
if (rc != 0)
|
|
goto fail1;
|
|
|
|
limit_index = 0;
|
|
while (page_mask) {
|
|
uint32_t set_bit;
|
|
uint32_t page_index;
|
|
uint32_t mcdi_index;
|
|
|
|
if (page_mask == (1U << MC_CMD_SENSOR_PAGE0_NEXT))
|
|
break;
|
|
|
|
lowest_set_bit(page_mask, &set_bit, &page_index);
|
|
page_mask = page_mask & ~set_bit;
|
|
|
|
mcdi_index =
|
|
page_index + (sizeof (page_mask) * 8 * page);
|
|
|
|
/*
|
|
* This can fail if MCDI reports newer stats than the
|
|
* drivers understand, or the bit is the next page bit.
|
|
*
|
|
* Driver needs to be tolerant of this.
|
|
*/
|
|
if (!efx_mon_mcdi_to_efx_stat(mcdi_index, &stat))
|
|
continue;
|
|
|
|
values[stat] = limits[limit_index];
|
|
limit_index++;
|
|
}
|
|
|
|
} while (page_mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT));
|
|
|
|
return (rc);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
mcdi_mon_cfg_build(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
uint32_t npages;
|
|
efx_rc_t rc;
|
|
|
|
switch (enp->en_family) {
|
|
#if EFSYS_OPT_SIENA
|
|
case EFX_FAMILY_SIENA:
|
|
encp->enc_mon_type = EFX_MON_SFC90X0;
|
|
break;
|
|
#endif
|
|
#if EFSYS_OPT_HUNTINGTON
|
|
case EFX_FAMILY_HUNTINGTON:
|
|
encp->enc_mon_type = EFX_MON_SFC91X0;
|
|
break;
|
|
#endif
|
|
#if EFSYS_OPT_MEDFORD
|
|
case EFX_FAMILY_MEDFORD:
|
|
encp->enc_mon_type = EFX_MON_SFC92X0;
|
|
break;
|
|
#endif
|
|
#if EFSYS_OPT_MEDFORD2
|
|
case EFX_FAMILY_MEDFORD2:
|
|
encp->enc_mon_type = EFX_MON_SFC92X0;
|
|
break;
|
|
#endif
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
/* Get mc sensor mask size */
|
|
npages = 0;
|
|
if ((rc = efx_mcdi_sensor_info_npages(enp, &npages)) != 0)
|
|
goto fail2;
|
|
|
|
encp->enc_mon_stat_dma_buf_size = npages * EFX_MON_STATS_PAGE_SIZE;
|
|
encp->enc_mcdi_sensor_mask_size = npages * sizeof (uint32_t);
|
|
|
|
/* Allocate mc sensor mask */
|
|
EFSYS_KMEM_ALLOC(enp->en_esip,
|
|
encp->enc_mcdi_sensor_mask_size,
|
|
encp->enc_mcdi_sensor_maskp);
|
|
|
|
if (encp->enc_mcdi_sensor_maskp == NULL) {
|
|
rc = ENOMEM;
|
|
goto fail3;
|
|
}
|
|
|
|
/* Read mc sensor mask */
|
|
if ((rc = efx_mcdi_sensor_info(enp,
|
|
encp->enc_mcdi_sensor_maskp,
|
|
npages)) != 0)
|
|
goto fail4;
|
|
|
|
/* Build monitor statistics mask */
|
|
mcdi_mon_decode_stats(enp,
|
|
encp->enc_mcdi_sensor_maskp,
|
|
encp->enc_mcdi_sensor_mask_size,
|
|
NULL, encp->enc_mon_stat_mask, NULL);
|
|
|
|
return (0);
|
|
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
EFSYS_KMEM_FREE(enp->en_esip,
|
|
encp->enc_mcdi_sensor_mask_size,
|
|
encp->enc_mcdi_sensor_maskp);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
void
|
|
mcdi_mon_cfg_free(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
|
|
if (encp->enc_mcdi_sensor_maskp != NULL) {
|
|
EFSYS_KMEM_FREE(enp->en_esip,
|
|
encp->enc_mcdi_sensor_mask_size,
|
|
encp->enc_mcdi_sensor_maskp);
|
|
}
|
|
}
|
|
|
|
|
|
#endif /* EFSYS_OPT_MON_STATS */
|
|
|
|
#endif /* EFSYS_OPT_MON_MCDI */
|