freebsd-dev/sys/dev/sfxge/common/mcdi_mon.c
Andrew Rybchenko f634dfda66 sfxge(4): add new Emerald board sensors to common code
Submitted by:   Andy Moreton <amoreton at solarflare.com>
Sponsored by:   Solarflare Communications, Inc.
MFC after:      1 week
Differential Revision:  https://reviews.freebsd.org/D6292
2016-05-11 06:19:53 +00:00

566 lines
16 KiB
C

/*-
* Copyright (c) 2009-2015 Solarflare Communications Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_MON_MCDI
#if EFSYS_OPT_MON_STATS
#define MCDI_MON_NEXT_PAGE (uint16_t)0xfffe
#define MCDI_MON_INVALID_SENSOR (uint16_t)0xfffd
#define MCDI_MON_PAGE_SIZE 0x20
/* Bitmasks of valid port(s) for each sensor */
#define MCDI_MON_PORT_NONE (0x00)
#define MCDI_MON_PORT_P1 (0x01)
#define MCDI_MON_PORT_P2 (0x02)
#define MCDI_MON_PORT_P3 (0x04)
#define MCDI_MON_PORT_P4 (0x08)
#define MCDI_MON_PORT_Px (0xFFFF)
/* Entry for MCDI sensor in sensor map */
#define STAT(portmask, stat) \
{ (MCDI_MON_PORT_##portmask), (EFX_MON_STAT_##stat) }
/* Entry for sensor next page flag in sensor map */
#define STAT_NEXT_PAGE() \
{ MCDI_MON_PORT_NONE, MCDI_MON_NEXT_PAGE }
/* Placeholder for gaps in the array */
#define STAT_NO_SENSOR() \
{ MCDI_MON_PORT_NONE, MCDI_MON_INVALID_SENSOR }
/* Map from MC sensors to monitor statistics */
static const struct mcdi_sensor_map_s {
uint16_t msm_port_mask;
uint16_t msm_stat;
} mcdi_sensor_map[] = {
/* Sensor page 0 MC_CMD_SENSOR_xxx */
STAT(Px, INT_TEMP), /* 0x00 CONTROLLER_TEMP */
STAT(Px, EXT_TEMP), /* 0x01 PHY_COMMON_TEMP */
STAT(Px, INT_COOLING), /* 0x02 CONTROLLER_COOLING */
STAT(P1, EXT_TEMP), /* 0x03 PHY0_TEMP */
STAT(P1, EXT_COOLING), /* 0x04 PHY0_COOLING */
STAT(P2, EXT_TEMP), /* 0x05 PHY1_TEMP */
STAT(P2, EXT_COOLING), /* 0x06 PHY1_COOLING */
STAT(Px, 1V), /* 0x07 IN_1V0 */
STAT(Px, 1_2V), /* 0x08 IN_1V2 */
STAT(Px, 1_8V), /* 0x09 IN_1V8 */
STAT(Px, 2_5V), /* 0x0a IN_2V5 */
STAT(Px, 3_3V), /* 0x0b IN_3V3 */
STAT(Px, 12V), /* 0x0c IN_12V0 */
STAT(Px, 1_2VA), /* 0x0d IN_1V2A */
STAT(Px, VREF), /* 0x0e IN_VREF */
STAT(Px, VAOE), /* 0x0f OUT_VAOE */
STAT(Px, AOE_TEMP), /* 0x10 AOE_TEMP */
STAT(Px, PSU_AOE_TEMP), /* 0x11 PSU_AOE_TEMP */
STAT(Px, PSU_TEMP), /* 0x12 PSU_TEMP */
STAT(Px, FAN0), /* 0x13 FAN_0 */
STAT(Px, FAN1), /* 0x14 FAN_1 */
STAT(Px, FAN2), /* 0x15 FAN_2 */
STAT(Px, FAN3), /* 0x16 FAN_3 */
STAT(Px, FAN4), /* 0x17 FAN_4 */
STAT(Px, VAOE_IN), /* 0x18 IN_VAOE */
STAT(Px, IAOE), /* 0x19 OUT_IAOE */
STAT(Px, IAOE_IN), /* 0x1a IN_IAOE */
STAT(Px, NIC_POWER), /* 0x1b NIC_POWER */
STAT(Px, 0_9V), /* 0x1c IN_0V9 */
STAT(Px, I0_9V), /* 0x1d IN_I0V9 */
STAT(Px, I1_2V), /* 0x1e IN_I1V2 */
STAT_NEXT_PAGE(), /* 0x1f Next page flag (not a sensor) */
/* Sensor page 1 MC_CMD_SENSOR_xxx */
STAT(Px, 0_9V_ADC), /* 0x20 IN_0V9_ADC */
STAT(Px, INT_TEMP2), /* 0x21 CONTROLLER_2_TEMP */
STAT(Px, VREG_TEMP), /* 0x22 VREG_INTERNAL_TEMP */
STAT(Px, VREG_0_9V_TEMP), /* 0x23 VREG_0V9_TEMP */
STAT(Px, VREG_1_2V_TEMP), /* 0x24 VREG_1V2_TEMP */
STAT(Px, INT_VPTAT), /* 0x25 CTRLR. VPTAT */
STAT(Px, INT_ADC_TEMP), /* 0x26 CTRLR. INTERNAL_TEMP */
STAT(Px, EXT_VPTAT), /* 0x27 CTRLR. VPTAT_EXTADC */
STAT(Px, EXT_ADC_TEMP), /* 0x28 CTRLR. INTERNAL_TEMP_EXTADC */
STAT(Px, AMBIENT_TEMP), /* 0x29 AMBIENT_TEMP */
STAT(Px, AIRFLOW), /* 0x2a AIRFLOW */
STAT(Px, VDD08D_VSS08D_CSR), /* 0x2b VDD08D_VSS08D_CSR */
STAT(Px, VDD08D_VSS08D_CSR_EXTADC), /* 0x2c VDD08D_VSS08D_CSR_EXTADC */
STAT(Px, HOTPOINT_TEMP), /* 0x2d HOTPOINT_TEMP */
STAT(P1, PHY_POWER_SWITCH_PORT0), /* 0x2e PHY_POWER_SWITCH_PORT0 */
STAT(P2, PHY_POWER_SWITCH_PORT1), /* 0x2f PHY_POWER_SWITCH_PORT1 */
STAT(Px, MUM_VCC), /* 0x30 MUM_VCC */
STAT(Px, 0V9_A), /* 0x31 0V9_A */
STAT(Px, I0V9_A), /* 0x32 I0V9_A */
STAT(Px, 0V9_A_TEMP), /* 0x33 0V9_A_TEMP */
STAT(Px, 0V9_B), /* 0x34 0V9_B */
STAT(Px, I0V9_B), /* 0x35 I0V9_B */
STAT(Px, 0V9_B_TEMP), /* 0x36 0V9_B_TEMP */
STAT(Px, CCOM_AVREG_1V2_SUPPLY), /* 0x37 CCOM_AVREG_1V2_SUPPLY */
STAT(Px, CCOM_AVREG_1V2_SUPPLY_EXT_ADC),
/* 0x38 CCOM_AVREG_1V2_SUPPLY_EXT_ADC */
STAT(Px, CCOM_AVREG_1V8_SUPPLY), /* 0x39 CCOM_AVREG_1V8_SUPPLY */
STAT(Px, CCOM_AVREG_1V8_SUPPLY_EXT_ADC),
/* 0x3a CCOM_AVREG_1V8_SUPPLY_EXT_ADC */
STAT_NO_SENSOR(), /* 0x3b (no sensor) */
STAT_NO_SENSOR(), /* 0x3c (no sensor) */
STAT_NO_SENSOR(), /* 0x3d (no sensor) */
STAT_NO_SENSOR(), /* 0x3e (no sensor) */
STAT_NEXT_PAGE(), /* 0x3f Next page flag (not a sensor) */
/* Sensor page 2 MC_CMD_SENSOR_xxx */
STAT(Px, CONTROLLER_MASTER_VPTAT), /* 0x40 MASTER_VPTAT */
STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP), /* 0x41 MASTER_INT_TEMP */
STAT(Px, CONTROLLER_MASTER_VPTAT_EXT_ADC), /* 0x42 MAST_VPTAT_EXT_ADC */
STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC),
/* 0x43 MASTER_INTERNAL_TEMP_EXT_ADC */
STAT(Px, CONTROLLER_SLAVE_VPTAT), /* 0x44 SLAVE_VPTAT */
STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP), /* 0x45 SLAVE_INTERNAL_TEMP */
STAT(Px, CONTROLLER_SLAVE_VPTAT_EXT_ADC), /* 0x46 SLAVE_VPTAT_EXT_ADC */
STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC),
/* 0x47 SLAVE_INTERNAL_TEMP_EXT_ADC */
STAT_NO_SENSOR(), /* 0x48 (no sensor) */
STAT(Px, SODIMM_VOUT), /* 0x49 SODIMM_VOUT */
STAT(Px, SODIMM_0_TEMP), /* 0x4a SODIMM_0_TEMP */
STAT(Px, SODIMM_1_TEMP), /* 0x4b SODIMM_1_TEMP */
STAT(Px, PHY0_VCC), /* 0x4c PHY0_VCC */
STAT(Px, PHY1_VCC), /* 0x4d PHY1_VCC */
STAT(Px, CONTROLLER_TDIODE_TEMP), /* 0x4e CONTROLLER_TDIODE_TEMP */
STAT(Px, BOARD_FRONT_TEMP), /* 0x4f BOARD_FRONT_TEMP */
STAT(Px, BOARD_BACK_TEMP), /* 0x50 BOARD_BACK_TEMP */
};
#define MCDI_STATIC_SENSOR_ASSERT(_field) \
EFX_STATIC_ASSERT(MC_CMD_SENSOR_STATE_ ## _field \
== EFX_MON_STAT_STATE_ ## _field)
static void
mcdi_mon_decode_stats(
__in efx_nic_t *enp,
__in_ecount(sensor_mask_size) uint32_t *sensor_mask,
__in size_t sensor_mask_size,
__in_opt efsys_mem_t *esmp,
__out_ecount_opt(sensor_mask_size) uint32_t *stat_maskp,
__inout_ecount_opt(EFX_MON_NSTATS) efx_mon_stat_value_t *stat)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
uint16_t port_mask;
uint16_t sensor;
size_t sensor_max;
uint32_t stat_mask[(EFX_ARRAY_SIZE(mcdi_sensor_map) + 31) / 32];
uint32_t idx = 0;
uint32_t page = 0;
/* Assert the MC_CMD_SENSOR and EFX_MON_STATE namespaces agree */
MCDI_STATIC_SENSOR_ASSERT(OK);
MCDI_STATIC_SENSOR_ASSERT(WARNING);
MCDI_STATIC_SENSOR_ASSERT(FATAL);
MCDI_STATIC_SENSOR_ASSERT(BROKEN);
MCDI_STATIC_SENSOR_ASSERT(NO_READING);
EFX_STATIC_ASSERT(sizeof (stat_mask[0]) * 8 ==
EFX_MON_MASK_ELEMENT_SIZE);
sensor_max =
MIN((8 * sensor_mask_size), EFX_ARRAY_SIZE(mcdi_sensor_map));
port_mask = 1U << emip->emi_port;
memset(stat_mask, 0, sizeof (stat_mask));
/*
* The MCDI sensor readings in the DMA buffer are a packed array of
* MC_CMD_SENSOR_VALUE_ENTRY structures, which only includes entries for
* supported sensors (bit set in sensor_mask). The sensor_mask and
* sensor readings do not include entries for the per-page NEXT_PAGE
* flag.
*
* sensor_mask may legitimately contain MCDI sensors that the driver
* does not understand.
*/
for (sensor = 0; sensor < sensor_max; ++sensor) {
efx_mon_stat_t id = mcdi_sensor_map[sensor].msm_stat;
if ((sensor % MCDI_MON_PAGE_SIZE) == MC_CMD_SENSOR_PAGE0_NEXT) {
EFSYS_ASSERT3U(id, ==, MCDI_MON_NEXT_PAGE);
page++;
continue;
}
if (~(sensor_mask[page]) & (1U << sensor))
continue;
idx++;
if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0)
continue;
EFSYS_ASSERT(id < EFX_MON_NSTATS);
/*
* stat_mask is a bitmask indexed by EFX_MON_* monitor statistic
* identifiers from efx_mon_stat_t (without NEXT_PAGE bits).
*
* If there is an entry in the MCDI sensor to monitor statistic
* map then the sensor reading is used for the value of the
* monitor statistic.
*/
stat_mask[id / EFX_MON_MASK_ELEMENT_SIZE] |=
(1U << (id % EFX_MON_MASK_ELEMENT_SIZE));
if (stat != NULL && esmp != NULL && !EFSYS_MEM_IS_NULL(esmp)) {
efx_dword_t dword;
/* Get MCDI sensor reading from DMA buffer */
EFSYS_MEM_READD(esmp, 4 * (idx - 1), &dword);
/* Update EFX monitor stat from MCDI sensor reading */
stat[id].emsv_value = (uint16_t)EFX_DWORD_FIELD(dword,
MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE);
stat[id].emsv_state = (uint16_t)EFX_DWORD_FIELD(dword,
MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE);
}
}
if (stat_maskp != NULL) {
memcpy(stat_maskp, stat_mask, sizeof (stat_mask));
}
}
__checkReturn efx_rc_t
mcdi_mon_ev(
__in efx_nic_t *enp,
__in efx_qword_t *eqp,
__out efx_mon_stat_t *idp,
__out efx_mon_stat_value_t *valuep)
{
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint16_t port_mask;
uint16_t sensor;
uint16_t state;
uint16_t value;
efx_mon_stat_t id;
efx_rc_t rc;
port_mask = (emip->emi_port == 1)
? MCDI_MON_PORT_P1
: MCDI_MON_PORT_P2;
sensor = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_MONITOR);
state = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_STATE);
value = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_VALUE);
/* Hardware must support this MCDI sensor */
EFSYS_ASSERT3U(sensor, <, (8 * encp->enc_mcdi_sensor_mask_size));
EFSYS_ASSERT((sensor % MCDI_MON_PAGE_SIZE) != MC_CMD_SENSOR_PAGE0_NEXT);
EFSYS_ASSERT(encp->enc_mcdi_sensor_maskp != NULL);
EFSYS_ASSERT((encp->enc_mcdi_sensor_maskp[sensor / MCDI_MON_PAGE_SIZE] &
(1U << (sensor % MCDI_MON_PAGE_SIZE))) != 0);
/* But we don't have to understand it */
if (sensor >= EFX_ARRAY_SIZE(mcdi_sensor_map)) {
rc = ENOTSUP;
goto fail1;
}
id = mcdi_sensor_map[sensor].msm_stat;
if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0)
return (ENODEV);
EFSYS_ASSERT(id < EFX_MON_NSTATS);
*idp = id;
valuep->emsv_value = value;
valuep->emsv_state = state;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_read_sensors(
__in efx_nic_t *enp,
__in efsys_mem_t *esmp,
__in uint32_t size)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_READ_SENSORS_EXT_IN_LEN,
MC_CMD_READ_SENSORS_EXT_OUT_LEN)];
uint32_t addr_lo, addr_hi;
req.emr_cmd = MC_CMD_READ_SENSORS;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_READ_SENSORS_EXT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_READ_SENSORS_EXT_OUT_LEN;
addr_lo = (uint32_t)(EFSYS_MEM_ADDR(esmp) & 0xffffffff);
addr_hi = (uint32_t)(EFSYS_MEM_ADDR(esmp) >> 32);
MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_LO, addr_lo);
MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_HI, addr_hi);
MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_LENGTH, size);
efx_mcdi_execute(enp, &req);
return (req.emr_rc);
}
static __checkReturn efx_rc_t
efx_mcdi_sensor_info_npages(
__in efx_nic_t *enp,
__out uint32_t *npagesp)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN,
MC_CMD_SENSOR_INFO_OUT_LENMAX)];
int page;
efx_rc_t rc;
EFSYS_ASSERT(npagesp != NULL);
page = 0;
do {
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_SENSOR_INFO;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page++);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
} while (MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK) &
(1 << MC_CMD_SENSOR_PAGE0_NEXT));
*npagesp = page;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_sensor_info(
__in efx_nic_t *enp,
__out_ecount(npages) uint32_t *sensor_maskp,
__in size_t npages)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN,
MC_CMD_SENSOR_INFO_OUT_LENMAX)];
uint32_t page;
efx_rc_t rc;
EFSYS_ASSERT(sensor_maskp != NULL);
for (page = 0; page < npages; page++) {
uint32_t mask;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_SENSOR_INFO;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX;
MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
mask = MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK);
if ((page != (npages - 1)) &&
((mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) == 0)) {
rc = EINVAL;
goto fail2;
}
sensor_maskp[page] = mask;
}
if (sensor_maskp[npages - 1] & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) {
rc = EINVAL;
goto fail3;
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
mcdi_mon_stats_update(
__in efx_nic_t *enp,
__in efsys_mem_t *esmp,
__inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t size = encp->enc_mon_stat_dma_buf_size;
efx_rc_t rc;
if ((rc = efx_mcdi_read_sensors(enp, esmp, size)) != 0)
goto fail1;
EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, size);
mcdi_mon_decode_stats(enp,
encp->enc_mcdi_sensor_maskp,
encp->enc_mcdi_sensor_mask_size,
esmp, NULL, values);
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
mcdi_mon_cfg_build(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t npages;
efx_rc_t rc;
switch (enp->en_family) {
#if EFSYS_OPT_SIENA
case EFX_FAMILY_SIENA:
encp->enc_mon_type = EFX_MON_SFC90X0;
break;
#endif
#if EFSYS_OPT_HUNTINGTON
case EFX_FAMILY_HUNTINGTON:
encp->enc_mon_type = EFX_MON_SFC91X0;
break;
#endif
#if EFSYS_OPT_MEDFORD
case EFX_FAMILY_MEDFORD:
encp->enc_mon_type = EFX_MON_SFC92X0;
break;
#endif
default:
rc = EINVAL;
goto fail1;
}
/* Get mc sensor mask size */
npages = 0;
if ((rc = efx_mcdi_sensor_info_npages(enp, &npages)) != 0)
goto fail2;
encp->enc_mon_stat_dma_buf_size = npages * EFX_MON_STATS_PAGE_SIZE;
encp->enc_mcdi_sensor_mask_size = npages * sizeof (uint32_t);
/* Allocate mc sensor mask */
EFSYS_KMEM_ALLOC(enp->en_esip,
encp->enc_mcdi_sensor_mask_size,
encp->enc_mcdi_sensor_maskp);
if (encp->enc_mcdi_sensor_maskp == NULL) {
rc = ENOMEM;
goto fail3;
}
/* Read mc sensor mask */
if ((rc = efx_mcdi_sensor_info(enp,
encp->enc_mcdi_sensor_maskp,
npages)) != 0)
goto fail4;
/* Build monitor statistics mask */
mcdi_mon_decode_stats(enp,
encp->enc_mcdi_sensor_maskp,
encp->enc_mcdi_sensor_mask_size,
NULL, encp->enc_mon_stat_mask, NULL);
return (0);
fail4:
EFSYS_PROBE(fail4);
EFSYS_KMEM_FREE(enp->en_esip,
encp->enc_mcdi_sensor_mask_size,
encp->enc_mcdi_sensor_maskp);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
mcdi_mon_cfg_free(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
if (encp->enc_mcdi_sensor_maskp != NULL) {
EFSYS_KMEM_FREE(enp->en_esip,
encp->enc_mcdi_sensor_mask_size,
encp->enc_mcdi_sensor_maskp);
}
}
#endif /* EFSYS_OPT_MON_STATS */
#endif /* EFSYS_OPT_MON_MCDI */