freebsd-dev/sys/ufs/ufs/ufs_bmap.c
Kirk McKusick 7aca6291e3 Add support to UFS2 to provide storage for extended attributes.
As this code is not actually used by any of the existing
interfaces, it seems unlikely to break anything (famous
last words).

The internal kernel interface to manipulate these attributes
is invoked using two new IO_ flags: IO_NORMAL and IO_EXT.
These flags may be specified in the ioflags word of VOP_READ,
VOP_WRITE, and VOP_TRUNCATE. Specifying IO_NORMAL means that
you want to do I/O to the normal data part of the file and
IO_EXT means that you want to do I/O to the extended attributes
part of the file. IO_NORMAL and IO_EXT are mutually exclusive
for VOP_READ and VOP_WRITE, but may be specified individually
or together in the case of VOP_TRUNCATE. For example, when
removing a file, VOP_TRUNCATE is called with both IO_NORMAL
and IO_EXT set. For backward compatibility, if neither IO_NORMAL
nor IO_EXT is set, then IO_NORMAL is assumed.

Note that the BA_ and IO_ flags have been `merged' so that they
may both be used in the same flags word. This merger is possible
by assigning the IO_ flags to the low sixteen bits and the BA_
flags the high sixteen bits. This works because the high sixteen
bits of the IO_ word is reserved for read-ahead and help with
write clustering so will never be used for flags. This merge
lets us get away from code of the form:

        if (ioflags & IO_SYNC)
                flags |= BA_SYNC;

For the future, I have considered adding a new field to the
vattr structure, va_extsize. This addition could then be
exported through the stat structure to allow applications to
find out the size of the extended attribute storage and also
would provide a more standard interface for truncating them
(via VOP_SETATTR rather than VOP_TRUNCATE).

I am also contemplating adding a pathconf parameter (for
concreteness, lets call it _PC_MAX_EXTSIZE) which would
let an application determine the maximum size of the extended
atribute storage.

Sponsored by:	DARPA & NAI Labs.
2002-07-19 07:29:39 +00:00

383 lines
11 KiB
C

/*
* Copyright (c) 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ufs_bmap.c 8.7 (Berkeley) 3/21/95
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/resourcevar.h>
#include <sys/stat.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
/*
* Bmap converts a the logical block number of a file to its physical block
* number on the disk. The conversion is done by using the logical block
* number to index into the array of block pointers described by the dinode.
*/
int
ufs_bmap(ap)
struct vop_bmap_args /* {
struct vnode *a_vp;
daddr_t a_bn;
struct vnode **a_vpp;
daddr_t *a_bnp;
int *a_runp;
int *a_runb;
} */ *ap;
{
ufs2_daddr_t blkno;
int error;
/*
* Check for underlying vnode requests and ensure that logical
* to physical mapping is requested.
*/
if (ap->a_vpp != NULL)
*ap->a_vpp = VTOI(ap->a_vp)->i_devvp;
if (ap->a_bnp == NULL)
return (0);
error = ufs_bmaparray(ap->a_vp, ap->a_bn, &blkno, NULL,
ap->a_runp, ap->a_runb);
*ap->a_bnp = blkno;
return (error);
}
/*
* Indirect blocks are now on the vnode for the file. They are given negative
* logical block numbers. Indirect blocks are addressed by the negative
* address of the first data block to which they point. Double indirect blocks
* are addressed by one less than the address of the first indirect block to
* which they point. Triple indirect blocks are addressed by one less than
* the address of the first double indirect block to which they point.
*
* ufs_bmaparray does the bmap conversion, and if requested returns the
* array of logical blocks which must be traversed to get to a block.
* Each entry contains the offset into that block that gets you to the
* next block and the disk address of the block (if it is assigned).
*/
int
ufs_bmaparray(vp, bn, bnp, nbp, runp, runb)
struct vnode *vp;
ufs2_daddr_t bn;
ufs2_daddr_t *bnp;
struct buf *nbp;
int *runp;
int *runb;
{
struct inode *ip;
struct buf *bp;
struct ufsmount *ump;
struct mount *mp;
struct vnode *devvp;
struct indir a[NIADDR+1], *ap;
ufs2_daddr_t daddr;
ufs_lbn_t metalbn;
int error, num, maxrun = 0;
int *nump;
ap = NULL;
ip = VTOI(vp);
mp = vp->v_mount;
ump = VFSTOUFS(mp);
devvp = ump->um_devvp;
if (runp) {
maxrun = mp->mnt_iosize_max / mp->mnt_stat.f_iosize - 1;
*runp = 0;
}
if (runb) {
*runb = 0;
}
ap = a;
nump = &num;
error = ufs_getlbns(vp, bn, ap, nump);
if (error)
return (error);
num = *nump;
if (num == 0) {
if (bn >= 0 && bn < NDADDR) {
*bnp = blkptrtodb(ump, DIP(ip, i_db[bn]));
} else if (bn < 0 && bn >= -NXADDR) {
*bnp = blkptrtodb(ump, ip->i_din2->di_extb[-1 - bn]);
if (*bnp == 0)
*bnp = -1;
if (nbp == NULL)
panic("ufs_bmaparray: mapping ext data");
nbp->b_xflags |= BX_ALTDATA;
return (0);
} else {
panic("ufs_bmaparray: blkno out of range");
}
/*
* Since this is FFS independent code, we are out of
* scope for the definitions of BLK_NOCOPY and
* BLK_SNAP, but we do know that they will fall in
* the range 1..um_seqinc, so we use that test and
* return a request for a zeroed out buffer if attempts
* are made to read a BLK_NOCOPY or BLK_SNAP block.
*/
if ((ip->i_flags & SF_SNAPSHOT) && DIP(ip, i_db[bn]) > 0 &&
DIP(ip, i_db[bn]) < ump->um_seqinc) {
*bnp = -1;
} else if (*bnp == 0) {
if (ip->i_flags & SF_SNAPSHOT)
*bnp = blkptrtodb(ump, bn * ump->um_seqinc);
else
*bnp = -1;
} else if (runp) {
ufs2_daddr_t bnb = bn;
for (++bn; bn < NDADDR && *runp < maxrun &&
is_sequential(ump, DIP(ip, i_db[bn - 1]),
DIP(ip, i_db[bn]));
++bn, ++*runp);
bn = bnb;
if (runb && (bn > 0)) {
for (--bn; (bn >= 0) && (*runb < maxrun) &&
is_sequential(ump, DIP(ip, i_db[bn]),
DIP(ip, i_db[bn+1]));
--bn, ++*runb);
}
}
return (0);
}
/* Get disk address out of indirect block array */
daddr = DIP(ip, i_ib[ap->in_off]);
for (bp = NULL, ++ap; --num; ++ap) {
/*
* Exit the loop if there is no disk address assigned yet and
* the indirect block isn't in the cache, or if we were
* looking for an indirect block and we've found it.
*/
metalbn = ap->in_lbn;
if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
break;
/*
* If we get here, we've either got the block in the cache
* or we have a disk address for it, go fetch it.
*/
if (bp)
bqrelse(bp);
ap->in_exists = 1;
bp = getblk(vp, metalbn, mp->mnt_stat.f_iosize, 0, 0);
if ((bp->b_flags & B_CACHE) == 0) {
#ifdef DIAGNOSTIC
if (!daddr)
panic("ufs_bmaparray: indirect block not in cache");
#endif
bp->b_blkno = blkptrtodb(ump, daddr);
bp->b_iocmd = BIO_READ;
bp->b_flags &= ~B_INVAL;
bp->b_ioflags &= ~BIO_ERROR;
vfs_busy_pages(bp, 0);
BUF_STRATEGY(bp);
curproc->p_stats->p_ru.ru_inblock++; /* XXX */
error = bufwait(bp);
if (error) {
brelse(bp);
return (error);
}
}
if (ip->i_ump->um_fstype == UFS1) {
daddr = ((ufs1_daddr_t *)bp->b_data)[ap->in_off];
if (num == 1 && daddr && runp) {
for (bn = ap->in_off + 1;
bn < MNINDIR(ump) && *runp < maxrun &&
is_sequential(ump,
((ufs1_daddr_t *)bp->b_data)[bn - 1],
((ufs1_daddr_t *)bp->b_data)[bn]);
++bn, ++*runp);
bn = ap->in_off;
if (runb && bn) {
for (--bn; bn >= 0 && *runb < maxrun &&
is_sequential(ump,
((ufs1_daddr_t *)bp->b_data)[bn],
((ufs1_daddr_t *)bp->b_data)[bn+1]);
--bn, ++*runb);
}
}
continue;
}
daddr = ((ufs2_daddr_t *)bp->b_data)[ap->in_off];
if (num == 1 && daddr && runp) {
for (bn = ap->in_off + 1;
bn < MNINDIR(ump) && *runp < maxrun &&
is_sequential(ump,
((ufs2_daddr_t *)bp->b_data)[bn - 1],
((ufs2_daddr_t *)bp->b_data)[bn]);
++bn, ++*runp);
bn = ap->in_off;
if (runb && bn) {
for (--bn; bn >= 0 && *runb < maxrun &&
is_sequential(ump,
((ufs2_daddr_t *)bp->b_data)[bn],
((ufs2_daddr_t *)bp->b_data)[bn + 1]);
--bn, ++*runb);
}
}
}
if (bp)
bqrelse(bp);
/*
* Since this is FFS independent code, we are out of scope for the
* definitions of BLK_NOCOPY and BLK_SNAP, but we do know that they
* will fall in the range 1..um_seqinc, so we use that test and
* return a request for a zeroed out buffer if attempts are made
* to read a BLK_NOCOPY or BLK_SNAP block.
*/
if ((ip->i_flags & SF_SNAPSHOT) && daddr > 0 && daddr < ump->um_seqinc){
*bnp = -1;
return (0);
}
*bnp = blkptrtodb(ump, daddr);
if (*bnp == 0) {
if (ip->i_flags & SF_SNAPSHOT)
*bnp = blkptrtodb(ump, bn * ump->um_seqinc);
else
*bnp = -1;
}
return (0);
}
/*
* Create an array of logical block number/offset pairs which represent the
* path of indirect blocks required to access a data block. The first "pair"
* contains the logical block number of the appropriate single, double or
* triple indirect block and the offset into the inode indirect block array.
* Note, the logical block number of the inode single/double/triple indirect
* block appears twice in the array, once with the offset into the i_ib and
* once with the offset into the page itself.
*/
int
ufs_getlbns(vp, bn, ap, nump)
struct vnode *vp;
ufs2_daddr_t bn;
struct indir *ap;
int *nump;
{
ufs2_daddr_t blockcnt;
ufs_lbn_t metalbn, realbn;
struct ufsmount *ump;
int i, numlevels, off;
ump = VFSTOUFS(vp->v_mount);
if (nump)
*nump = 0;
numlevels = 0;
realbn = bn;
if (bn < 0)
bn = -bn;
/* The first NDADDR blocks are direct blocks. */
if (bn < NDADDR)
return (0);
/*
* Determine the number of levels of indirection. After this loop
* is done, blockcnt indicates the number of data blocks possible
* at the previous level of indirection, and NIADDR - i is the number
* of levels of indirection needed to locate the requested block.
*/
for (blockcnt = 1, i = NIADDR, bn -= NDADDR;; i--, bn -= blockcnt) {
if (i == 0)
return (EFBIG);
blockcnt *= MNINDIR(ump);
if (bn < blockcnt)
break;
}
/* Calculate the address of the first meta-block. */
if (realbn >= 0)
metalbn = -(realbn - bn + NIADDR - i);
else
metalbn = -(-realbn - bn + NIADDR - i);
/*
* At each iteration, off is the offset into the bap array which is
* an array of disk addresses at the current level of indirection.
* The logical block number and the offset in that block are stored
* into the argument array.
*/
ap->in_lbn = metalbn;
ap->in_off = off = NIADDR - i;
ap->in_exists = 0;
ap++;
for (++numlevels; i <= NIADDR; i++) {
/* If searching for a meta-data block, quit when found. */
if (metalbn == realbn)
break;
blockcnt /= MNINDIR(ump);
off = (bn / blockcnt) % MNINDIR(ump);
++numlevels;
ap->in_lbn = metalbn;
ap->in_off = off;
ap->in_exists = 0;
++ap;
metalbn -= -1 + off * blockcnt;
}
if (nump)
*nump = numlevels;
return (0);
}