1459 lines
45 KiB
C
1459 lines
45 KiB
C
/* refclock_ees - clock driver for the EES M201 receiver */
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
|
|
|
|
/* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
|
|
* were removed as the code was overly hairy, they weren't in use
|
|
* (hence probably didn't work). Still in RCS file at cl.cam.ac.uk
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#ifdef HAVE_SYS_TIME_H
|
|
# include <sys/time.h>
|
|
#endif
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_io.h"
|
|
#include "ntp_refclock.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_calendar.h"
|
|
#if defined(HAVE_BSD_TTYS)
|
|
#include <sgtty.h>
|
|
#endif /* HAVE_BSD_TTYS */
|
|
#if defined(HAVE_SYSV_TTYS)
|
|
#include <termio.h>
|
|
#endif /* HAVE_SYSV_TTYS */
|
|
#if defined(HAVE_TERMIOS)
|
|
#include <termios.h>
|
|
#endif
|
|
#if defined(STREAM)
|
|
#include <stropts.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_TERMIOS_H
|
|
# include <sys/termios.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_PPSCLOCK_H
|
|
# include <sys/ppsclock.h>
|
|
#endif
|
|
|
|
#include "ntp_stdlib.h"
|
|
|
|
/*
|
|
fudgefactor = fudgetime1;
|
|
os_delay = fudgetime2;
|
|
offset_fudge = os_delay + fudgefactor + inherent_delay;
|
|
stratumtouse = fudgeval1 & 0xf
|
|
debug = fudgeval2;
|
|
sloppyclockflag = flags & CLK_FLAG1;
|
|
1 log smoothing summary when processing sample
|
|
4 dump the buffer from the clock
|
|
8 EIOGETKD the last n uS time stamps
|
|
if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
|
|
ees->dump_vals = flags & CLK_FLAG3;
|
|
ees->usealldata = flags & CLK_FLAG4;
|
|
|
|
|
|
bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
|
|
bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
|
|
bug->values[2] = (u_long)ees->status;
|
|
bug->values[3] = (u_long)ees->lastevent;
|
|
bug->values[4] = (u_long)ees->reason;
|
|
bug->values[5] = (u_long)ees->nsamples;
|
|
bug->values[6] = (u_long)ees->codestate;
|
|
bug->values[7] = (u_long)ees->day;
|
|
bug->values[8] = (u_long)ees->hour;
|
|
bug->values[9] = (u_long)ees->minute;
|
|
bug->values[10] = (u_long)ees->second;
|
|
bug->values[11] = (u_long)ees->tz;
|
|
bug->values[12] = ees->yearstart;
|
|
bug->values[13] = (ees->leaphold > current_time) ?
|
|
ees->leaphold - current_time : 0;
|
|
bug->values[14] = inherent_delay[unit].l_uf;
|
|
bug->values[15] = offset_fudge[unit].l_uf;
|
|
|
|
bug->times[0] = ees->reftime;
|
|
bug->times[1] = ees->arrvtime;
|
|
bug->times[2] = ees->lastsampletime;
|
|
bug->times[3] = ees->offset;
|
|
bug->times[4] = ees->lowoffset;
|
|
bug->times[5] = ees->highoffset;
|
|
bug->times[6] = inherent_delay[unit];
|
|
bug->times[8] = os_delay[unit];
|
|
bug->times[7] = fudgefactor[unit];
|
|
bug->times[9] = offset_fudge[unit];
|
|
bug->times[10]= ees->yearstart, 0;
|
|
*/
|
|
|
|
/* This should support the use of an EES M201 receiver with RS232
|
|
* output (modified to transmit time once per second).
|
|
*
|
|
* For the format of the message sent by the clock, see the EESM_
|
|
* definitions below.
|
|
*
|
|
* It appears to run free for an integral number of minutes, until the error
|
|
* reaches 4mS, at which point it steps at second = 01.
|
|
* It appears that sometimes it steps 4mS (say at 7 min interval),
|
|
* then the next minute it decides that it was an error, so steps back.
|
|
* On the next minute it steps forward again :-(
|
|
* This is typically 16.5uS/S then 3975uS at the 4min re-sync,
|
|
* or 9.5uS/S then 3990.5uS at a 7min re-sync,
|
|
* at which point it may loose the "00" second time stamp.
|
|
* I assume that the most accurate time is just AFTER the re-sync.
|
|
* Hence remember the last cycle interval,
|
|
*
|
|
* Can run in any one of:
|
|
*
|
|
* PPSCD PPS signal sets CD which interupts, and grabs the current TOD
|
|
* (sun) *in the interupt code*, so as to avoid problems with
|
|
* the STREAMS scheduling.
|
|
*
|
|
* It appears that it goes 16.5 uS slow each second, then every 4 mins it
|
|
* generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
|
|
*/
|
|
|
|
/* Definitions */
|
|
#ifndef MAXUNITS
|
|
#define MAXUNITS 4 /* maximum number of EES units permitted */
|
|
#endif
|
|
|
|
#ifndef EES232
|
|
#define EES232 "/dev/ees%d" /* Device to open to read the data */
|
|
#endif
|
|
|
|
/* Other constant stuff */
|
|
#ifndef EESPRECISION
|
|
#define EESPRECISION (-10) /* what the heck - 2**-10 = 1ms */
|
|
#endif
|
|
#ifndef EESREFID
|
|
#define EESREFID "MSF\0" /* String to identify the clock */
|
|
#endif
|
|
#ifndef EESHSREFID
|
|
#define EESHSREFID (0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
|
|
#endif
|
|
|
|
/* Description of clock */
|
|
#define EESDESCRIPTION "EES M201 MSF Receiver"
|
|
|
|
/* Speed we run the clock port at. If this is changed the UARTDELAY
|
|
* value should be recomputed to suit.
|
|
*/
|
|
#ifndef SPEED232
|
|
#define SPEED232 B9600 /* 9600 baud */
|
|
#endif
|
|
|
|
/* What is the inherent delay for this mode of working, i.e. when is the
|
|
* data time stamped.
|
|
*/
|
|
#define SAFETY_SHIFT 10 /* Split the shift to avoid overflow */
|
|
#define BITS_TO_L_FP(bits, baud) \
|
|
(((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
|
|
#define INH_DELAY_CBREAK BITS_TO_L_FP(119, 9600)
|
|
#define INH_DELAY_PPS BITS_TO_L_FP( 0, 9600)
|
|
|
|
#ifndef STREAM_PP1
|
|
#define STREAM_PP1 "ppsclocd\0<-- patch space for module name1 -->"
|
|
#endif
|
|
#ifndef STREAM_PP2
|
|
#define STREAM_PP2 "ppsclock\0<-- patch space for module name2 -->"
|
|
#endif
|
|
|
|
/* Offsets of the bytes of the serial line code. The clock gives
|
|
* local time with a GMT/BST indication. The EESM_ definitions
|
|
* give offsets into ees->lastcode.
|
|
*/
|
|
#define EESM_CSEC 0 /* centiseconds - always zero in our clock */
|
|
#define EESM_SEC 1 /* seconds in BCD */
|
|
#define EESM_MIN 2 /* minutes in BCD */
|
|
#define EESM_HOUR 3 /* hours in BCD */
|
|
#define EESM_DAYWK 4 /* day of week (Sun = 0 etc) */
|
|
#define EESM_DAY 5 /* day of month in BCD */
|
|
#define EESM_MON 6 /* month in BCD */
|
|
#define EESM_YEAR 7 /* year MOD 100 in BCD */
|
|
#define EESM_LEAP 8 /* 0x0f if leap year, otherwise zero */
|
|
#define EESM_BST 9 /* 0x03 if BST, 0x00 if GMT */
|
|
#define EESM_MSFOK 10 /* 0x3f if radio good, otherwise zero */
|
|
/* followed by a frame alignment byte (0xff) /
|
|
/ which is not put into the lastcode buffer*/
|
|
|
|
/* Length of the serial time code, in characters. The first length
|
|
* is less the frame alignment byte.
|
|
*/
|
|
#define LENEESPRT (EESM_MSFOK+1)
|
|
#define LENEESCODE (LENEESPRT+1)
|
|
|
|
/* Code state. */
|
|
#define EESCS_WAIT 0 /* waiting for start of timecode */
|
|
#define EESCS_GOTSOME 1 /* have an incomplete time code buffered */
|
|
|
|
/* Default fudge factor and character to receive */
|
|
#define DEFFUDGETIME 0 /* Default user supplied fudge factor */
|
|
#ifndef DEFOSTIME
|
|
#define DEFOSTIME 0 /* Default OS delay -- passed by Make ? */
|
|
#endif
|
|
#define DEFINHTIME INH_DELAY_PPS /* inherent delay due to sample point*/
|
|
|
|
/* Limits on things. Reduce the number of samples to SAMPLEREDUCE by median
|
|
* elimination. If we're running with an accurate clock, chose the BESTSAMPLE
|
|
* as the estimated offset, otherwise average the remainder.
|
|
*/
|
|
#define FULLSHIFT 6 /* NCODES root 2 */
|
|
#define NCODES (1<< FULLSHIFT) /* 64 */
|
|
#define REDUCESHIFT (FULLSHIFT -1) /* SAMPLEREDUCE root 2 */
|
|
|
|
/* Towards the high ( Why ?) end of half */
|
|
#define BESTSAMPLE ((samplereduce * 3) /4) /* 24 */
|
|
|
|
/* Leap hold time. After a leap second the clock will no longer be
|
|
* reliable until it resynchronizes. Hope 40 minutes is enough. */
|
|
#define EESLEAPHOLD (40 * 60)
|
|
|
|
#define EES_STEP_F (1 << 24) /* the receiver steps in units of about 4ms */
|
|
#define EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
|
|
#define EES_STEP_NOTE (1 << 21)/* Log any unexpected jumps, say .5 ms .... */
|
|
#define EES_STEP_NOTES 50 /* Only do a limited number */
|
|
#define MAX_STEP 16 /* Max number of steps to remember */
|
|
|
|
/* debug is a bit mask of debugging that is wanted */
|
|
#define DB_SYSLOG_SMPLI 0x0001
|
|
#define DB_SYSLOG_SMPLE 0x0002
|
|
#define DB_SYSLOG_SMTHI 0x0004
|
|
#define DB_SYSLOG_NSMTHE 0x0008
|
|
#define DB_SYSLOG_NSMTHI 0x0010
|
|
#define DB_SYSLOG_SMTHE 0x0020
|
|
#define DB_PRINT_EV 0x0040
|
|
#define DB_PRINT_CDT 0x0080
|
|
#define DB_PRINT_CDTC 0x0100
|
|
#define DB_SYSLOG_KEEPD 0x0800
|
|
#define DB_SYSLOG_KEEPE 0x1000
|
|
#define DB_LOG_DELTAS 0x2000
|
|
#define DB_PRINT_DELTAS 0x4000
|
|
#define DB_LOG_AWAITMORE 0x8000
|
|
#define DB_LOG_SAMPLES 0x10000
|
|
#define DB_NO_PPS 0x20000
|
|
#define DB_INC_PPS 0x40000
|
|
#define DB_DUMP_DELTAS 0x80000
|
|
|
|
struct eesunit { /* EES unit control structure. */
|
|
struct peer *peer; /* associated peer structure */
|
|
struct refclockio io; /* given to the I/O handler */
|
|
l_fp reftime; /* reference time */
|
|
l_fp lastsampletime; /* time as in txt from last EES msg */
|
|
l_fp arrvtime; /* Time at which pkt arrived */
|
|
l_fp codeoffsets[NCODES]; /* the time of arrival of 232 codes */
|
|
l_fp offset; /* chosen offset (for clkbug) */
|
|
l_fp lowoffset; /* lowest sample offset (for clkbug) */
|
|
l_fp highoffset; /* highest " " (for clkbug) */
|
|
char lastcode[LENEESCODE+6]; /* last time code we received */
|
|
u_long lasttime; /* last time clock heard from */
|
|
u_long clocklastgood; /* last time good radio seen */
|
|
u_char lencode; /* length of code in buffer */
|
|
u_char nsamples; /* number of samples we've collected */
|
|
u_char codestate; /* state of 232 code reception */
|
|
u_char unit; /* unit number for this guy */
|
|
u_char status; /* clock status */
|
|
u_char lastevent; /* last clock event */
|
|
u_char reason; /* reason for last abort */
|
|
u_char hour; /* hour of day */
|
|
u_char minute; /* minute of hour */
|
|
u_char second; /* seconds of minute */
|
|
char tz; /* timezone from clock */
|
|
u_char ttytype; /* method used */
|
|
u_char dump_vals; /* Should clock values be dumped */
|
|
u_char usealldata; /* Use ALL samples */
|
|
u_short day; /* day of year from last code */
|
|
u_long yearstart; /* start of current year */
|
|
u_long leaphold; /* time of leap hold expiry */
|
|
u_long badformat; /* number of bad format codes */
|
|
u_long baddata; /* number of invalid time codes */
|
|
u_long timestarted; /* time we started this */
|
|
long last_pps_no; /* The serial # of the last PPS */
|
|
char fix_pending; /* Is a "sync to time" pending ? */
|
|
/* Fine tuning - compensate for 4 mS ramping .... */
|
|
l_fp last_l; /* last time stamp */
|
|
u_char last_steps[MAX_STEP]; /* Most recent n steps */
|
|
int best_av_step; /* Best guess at average step */
|
|
char best_av_step_count; /* # of steps over used above */
|
|
char this_step; /* Current pos in buffer */
|
|
int last_step_late; /* How late the last step was (0-59) */
|
|
long jump_fsecs; /* # of fractions of a sec last jump */
|
|
u_long last_step; /* time of last step */
|
|
int last_step_secs; /* Number of seconds in last step */
|
|
int using_ramp; /* 1 -> noemal, -1 -> over stepped */
|
|
};
|
|
#define last_sec last_l.l_ui
|
|
#define last_sfsec last_l.l_f
|
|
#define this_uisec ((ees->arrvtime).l_ui)
|
|
#define this_sfsec ((ees->arrvtime).l_f)
|
|
#define msec(x) ((x) / (1<<22))
|
|
#define LAST_STEPS (sizeof ees->last_steps / sizeof ees->last_steps[0])
|
|
#define subms(x) ((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
|
|
|
|
/* Bitmask for what methods to try to use -- currently only PPS enabled */
|
|
#define T_CBREAK 1
|
|
#define T_PPS 8
|
|
/* macros to test above */
|
|
#define is_cbreak(x) ((x)->ttytype & T_CBREAK)
|
|
#define is_pps(x) ((x)->ttytype & T_PPS)
|
|
#define is_any(x) ((x)->ttytype)
|
|
|
|
#define CODEREASON 20 /* reason codes */
|
|
|
|
/* Data space for the unit structures. Note that we allocate these on
|
|
* the fly, but never give them back. */
|
|
static struct eesunit *eesunits[MAXUNITS];
|
|
static u_char unitinuse[MAXUNITS];
|
|
|
|
/* Keep the fudge factors separately so they can be set even
|
|
* when no clock is configured. */
|
|
static l_fp inherent_delay[MAXUNITS]; /* when time stamp is taken */
|
|
static l_fp fudgefactor[MAXUNITS]; /* fudgetime1 */
|
|
static l_fp os_delay[MAXUNITS]; /* fudgetime2 */
|
|
static l_fp offset_fudge[MAXUNITS]; /* Sum of above */
|
|
static u_char stratumtouse[MAXUNITS];
|
|
static u_char sloppyclockflag[MAXUNITS];
|
|
|
|
static int deltas[60];
|
|
|
|
static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */
|
|
static l_fp onesec; /* = { 1, 0 }; */
|
|
|
|
#ifndef DUMP_BUF_SIZE /* Size of buffer to be used by dump_buf */
|
|
#define DUMP_BUF_SIZE 10112
|
|
#endif
|
|
|
|
/* ees_reset - reset the count back to zero */
|
|
#define ees_reset(ees) (ees)->nsamples = 0; \
|
|
(ees)->codestate = EESCS_WAIT
|
|
|
|
/* ees_event - record and report an event */
|
|
#define ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
|
|
ees_report_event((ees), (evcode))
|
|
|
|
/* Find the precision of the system clock by reading it */
|
|
#define USECS 1000000
|
|
#define MINSTEP 5 /* some systems increment uS on each call */
|
|
#define MAXLOOPS (USECS/9)
|
|
|
|
/*
|
|
* Function prototypes
|
|
*/
|
|
|
|
static int msfees_start P((int unit, struct peer *peer));
|
|
static void msfees_shutdown P((int unit, struct peer *peer));
|
|
static void msfees_poll P((int unit, struct peer *peer));
|
|
static void msfees_init P((void));
|
|
static void dump_buf P((l_fp *coffs, int from, int to, char *text));
|
|
static void ees_report_event P((struct eesunit *ees, int code));
|
|
static void ees_receive P((struct recvbuf *rbufp));
|
|
static void ees_process P((struct eesunit *ees));
|
|
#ifdef QSORT_USES_VOID_P
|
|
static int offcompare P((const void *va, const void *vb));
|
|
#else
|
|
static int offcompare P((const l_fp *a, const l_fp *b));
|
|
#endif /* QSORT_USES_VOID_P */
|
|
|
|
|
|
/*
|
|
* Transfer vector
|
|
*/
|
|
struct refclock refclock_msfees = {
|
|
msfees_start, /* start up driver */
|
|
msfees_shutdown, /* shut down driver */
|
|
msfees_poll, /* transmit poll message */
|
|
noentry, /* not used */
|
|
msfees_init, /* initialize driver */
|
|
noentry, /* not used */
|
|
NOFLAGS /* not used */
|
|
};
|
|
|
|
|
|
static void
|
|
dump_buf(
|
|
l_fp *coffs,
|
|
int from,
|
|
int to,
|
|
char *text
|
|
)
|
|
{
|
|
char buff[DUMP_BUF_SIZE + 80];
|
|
int i;
|
|
register char *ptr = buff;
|
|
|
|
sprintf(ptr, text);
|
|
for (i=from; i<to; i++)
|
|
{ while (*ptr) ptr++;
|
|
if ((ptr-buff) > DUMP_BUF_SIZE) msyslog(LOG_DEBUG, "D: %s", ptr=buff);
|
|
sprintf(ptr, " %06d", ((int)coffs[i].l_f) / 4295);
|
|
}
|
|
msyslog(LOG_DEBUG, "D: %s", buff);
|
|
}
|
|
|
|
/* msfees_init - initialize internal ees driver data */
|
|
static void
|
|
msfees_init(void)
|
|
{
|
|
register int i;
|
|
/* Just zero the data arrays */
|
|
memset((char *)eesunits, 0, sizeof eesunits);
|
|
memset((char *)unitinuse, 0, sizeof unitinuse);
|
|
|
|
acceptable_slop.l_ui = 0;
|
|
acceptable_slop.l_uf = 1 << (FRACTION_PREC -2);
|
|
|
|
onesec.l_ui = 1;
|
|
onesec.l_uf = 0;
|
|
|
|
/* Initialize fudge factors to default. */
|
|
for (i = 0; i < MAXUNITS; i++) {
|
|
fudgefactor[i].l_ui = 0;
|
|
fudgefactor[i].l_uf = DEFFUDGETIME;
|
|
os_delay[i].l_ui = 0;
|
|
os_delay[i].l_uf = DEFOSTIME;
|
|
inherent_delay[i].l_ui = 0;
|
|
inherent_delay[i].l_uf = DEFINHTIME;
|
|
offset_fudge[i] = os_delay[i];
|
|
L_ADD(&offset_fudge[i], &fudgefactor[i]);
|
|
L_ADD(&offset_fudge[i], &inherent_delay[i]);
|
|
stratumtouse[i] = 0;
|
|
sloppyclockflag[i] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* msfees_start - open the EES devices and initialize data for processing */
|
|
static int
|
|
msfees_start(
|
|
int unit,
|
|
struct peer *peer
|
|
)
|
|
{
|
|
register struct eesunit *ees;
|
|
register int i;
|
|
int fd232 = -1;
|
|
char eesdev[20];
|
|
struct termios ttyb, *ttyp;
|
|
struct refclockproc *pp;
|
|
pp = peer->procptr;
|
|
|
|
if (unit >= MAXUNITS) {
|
|
msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)",
|
|
unit, MAXUNITS-1);
|
|
return 0;
|
|
}
|
|
if (unitinuse[unit]) {
|
|
msyslog(LOG_ERR, "ees clock: unit number %d in use", unit);
|
|
return 0;
|
|
}
|
|
|
|
/* Unit okay, attempt to open the devices. We do them both at
|
|
* once to make sure we can */
|
|
(void) sprintf(eesdev, EES232, unit);
|
|
|
|
fd232 = open(eesdev, O_RDWR, 0777);
|
|
if (fd232 == -1) {
|
|
msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef TIOCEXCL
|
|
/* Set for exclusive use */
|
|
if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) {
|
|
msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev);
|
|
goto screwed;
|
|
}
|
|
#endif
|
|
|
|
/* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
|
|
|
|
/* Set port characteristics. If we don't have a STREAMS module or
|
|
* a clock line discipline, cooked mode is just usable, even though it
|
|
* strips the top bit. The only EES byte which uses the top
|
|
* bit is the year, and we don't use that anyway. If we do
|
|
* have the line discipline, we choose raw mode, and the
|
|
* line discipline code will block up the messages.
|
|
*/
|
|
|
|
/* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
|
|
|
|
ttyp = &ttyb;
|
|
if (tcgetattr(fd232, ttyp) < 0) {
|
|
msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev);
|
|
goto screwed;
|
|
}
|
|
|
|
ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL;
|
|
ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
|
|
ttyp->c_oflag = 0;
|
|
ttyp->c_lflag = ICANON;
|
|
ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
|
|
if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
|
|
msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev);
|
|
goto screwed;
|
|
}
|
|
|
|
if (tcflush(fd232, TCIOFLUSH) < 0) {
|
|
msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev);
|
|
goto screwed;
|
|
}
|
|
|
|
inherent_delay[unit].l_uf = INH_DELAY_PPS;
|
|
|
|
/* offset fudge (how *late* the timestamp is) = fudge + os delays */
|
|
offset_fudge[unit] = os_delay[unit];
|
|
L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
|
|
L_ADD(&offset_fudge[unit], &inherent_delay[unit]);
|
|
|
|
/* Looks like this might succeed. Find memory for the structure.
|
|
* Look to see if there are any unused ones, if not we malloc() one.
|
|
*/
|
|
if (eesunits[unit] != 0) /* The one we want is okay */
|
|
ees = eesunits[unit];
|
|
else {
|
|
/* Look for an unused, but allocated struct */
|
|
for (i = 0; i < MAXUNITS; i++) {
|
|
if (!unitinuse[i] && eesunits[i] != 0)
|
|
break;
|
|
}
|
|
|
|
if (i < MAXUNITS) { /* Reclaim this one */
|
|
ees = eesunits[i];
|
|
eesunits[i] = 0;
|
|
} /* no spare -- make a new one */
|
|
else ees = (struct eesunit *) emalloc(sizeof(struct eesunit));
|
|
}
|
|
memset((char *)ees, 0, sizeof(struct eesunit));
|
|
eesunits[unit] = ees;
|
|
|
|
/* Set up the structures */
|
|
ees->peer = peer;
|
|
ees->unit = (u_char)unit;
|
|
ees->timestarted= current_time;
|
|
ees->ttytype = 0;
|
|
ees->io.clock_recv= ees_receive;
|
|
ees->io.srcclock= (caddr_t)ees;
|
|
ees->io.datalen = 0;
|
|
ees->io.fd = fd232;
|
|
|
|
/* Okay. Push one of the two (linked into the kernel, or dynamically
|
|
* loaded) STREAMS module, and give it to the I/O code to start
|
|
* receiving stuff.
|
|
*/
|
|
|
|
#ifdef STREAM
|
|
{
|
|
int rc1;
|
|
/* Pop any existing onews first ... */
|
|
while (ioctl(fd232, I_POP, 0 ) >= 0) ;
|
|
|
|
/* Now try pushing either of the possible modules */
|
|
if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 &&
|
|
ioctl(fd232, I_PUSH, STREAM_PP2) < 0) {
|
|
msyslog(LOG_ERR,
|
|
"ees clock: Push of `%s' and `%s' to %s failed %m",
|
|
STREAM_PP1, STREAM_PP2, eesdev);
|
|
goto screwed;
|
|
}
|
|
else {
|
|
NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
|
|
msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s",
|
|
(rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev);
|
|
ees->ttytype |= T_PPS;
|
|
}
|
|
}
|
|
#endif /* STREAM */
|
|
|
|
/* Add the clock */
|
|
if (!io_addclock(&ees->io)) {
|
|
/* Oh shit. Just close and return. */
|
|
msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev);
|
|
goto screwed;
|
|
}
|
|
|
|
|
|
/* All done. Initialize a few random peer variables, then
|
|
* return success. */
|
|
peer->precision = sys_precision;
|
|
peer->stratum = stratumtouse[unit];
|
|
if (stratumtouse[unit] <= 1) {
|
|
memcpy((char *)&pp->refid, EESREFID, 4);
|
|
if (unit > 0 && unit < 10)
|
|
((char *)&pp->refid)[3] = '0' + unit;
|
|
} else {
|
|
peer->refid = htonl(EESHSREFID);
|
|
}
|
|
unitinuse[unit] = 1;
|
|
pp->unitptr = (caddr_t) &eesunits[unit];
|
|
pp->clockdesc = EESDESCRIPTION;
|
|
msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit);
|
|
return (1);
|
|
|
|
screwed:
|
|
if (fd232 != -1)
|
|
(void) close(fd232);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/* msfees_shutdown - shut down a EES clock */
|
|
static void
|
|
msfees_shutdown(
|
|
int unit,
|
|
struct peer *peer
|
|
)
|
|
{
|
|
register struct eesunit *ees;
|
|
|
|
if (unit >= MAXUNITS) {
|
|
msyslog(LOG_ERR,
|
|
"ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
|
|
unit, MAXUNITS);
|
|
return;
|
|
}
|
|
if (!unitinuse[unit]) {
|
|
msyslog(LOG_ERR,
|
|
"ees clock: INTERNAL ERROR, unit number %d not in use", unit);
|
|
return;
|
|
}
|
|
|
|
/* Tell the I/O module to turn us off. We're history. */
|
|
ees = eesunits[unit];
|
|
io_closeclock(&ees->io);
|
|
unitinuse[unit] = 0;
|
|
}
|
|
|
|
|
|
/* ees_report_event - note the occurance of an event */
|
|
static void
|
|
ees_report_event(
|
|
struct eesunit *ees,
|
|
int code
|
|
)
|
|
{
|
|
if (ees->status != (u_char)code) {
|
|
ees->status = (u_char)code;
|
|
if (code != CEVNT_NOMINAL)
|
|
ees->lastevent = (u_char)code;
|
|
/* Should report event to trap handler in here.
|
|
* Soon...
|
|
*/
|
|
}
|
|
}
|
|
|
|
|
|
/* ees_receive - receive data from the serial interface on an EES clock */
|
|
static void
|
|
ees_receive(
|
|
struct recvbuf *rbufp
|
|
)
|
|
{
|
|
register int n_sample;
|
|
register int day;
|
|
register struct eesunit *ees;
|
|
register u_char *dpt; /* Data PoinTeR: move along ... */
|
|
register u_char *dpend; /* Points just *after* last data char */
|
|
register char *cp;
|
|
l_fp tmp;
|
|
int call_pps_sample = 0;
|
|
l_fp pps_arrvstamp;
|
|
int sincelast;
|
|
int pps_step = 0;
|
|
int suspect_4ms_step = 0;
|
|
struct ppsclockev ppsclockev;
|
|
long *ptr = (long *) &ppsclockev;
|
|
int rc;
|
|
int request;
|
|
#ifdef HAVE_CIOGETEV
|
|
request = CIOGETEV;
|
|
#endif
|
|
#ifdef HAVE_TIOCGPPSEV
|
|
request = TIOCGPPSEV;
|
|
#endif
|
|
|
|
/* Get the clock this applies to and a pointer to the data */
|
|
ees = (struct eesunit *)rbufp->recv_srcclock;
|
|
dpt = (u_char *)&rbufp->recv_space;
|
|
dpend = dpt + rbufp->recv_length;
|
|
if ((debug & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE))
|
|
printf("[%d] ", rbufp->recv_length);
|
|
|
|
/* Check out our state and process appropriately */
|
|
switch (ees->codestate) {
|
|
case EESCS_WAIT:
|
|
/* Set an initial guess at the timestamp as the recv time.
|
|
* If just running in CBREAK mode, we can't improve this.
|
|
* If we have the CLOCK Line Discipline, PPSCD, or sime such,
|
|
* then we will do better later ....
|
|
*/
|
|
ees->arrvtime = rbufp->recv_time;
|
|
ees->codestate = EESCS_GOTSOME;
|
|
ees->lencode = 0;
|
|
/*FALLSTHROUGH*/
|
|
|
|
case EESCS_GOTSOME:
|
|
cp = &(ees->lastcode[ees->lencode]);
|
|
|
|
/* Gobble the bytes until the final (possibly stripped) 0xff */
|
|
while (dpt < dpend && (*dpt & 0x7f) != 0x7f) {
|
|
*cp++ = (char)*dpt++;
|
|
ees->lencode++;
|
|
/* Oh dear -- too many bytes .. */
|
|
if (ees->lencode > LENEESPRT) {
|
|
NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
|
|
msyslog(LOG_INFO,
|
|
"I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
|
|
ees->lencode, dpend - dpt, LENEESPRT,
|
|
#define D(x) (ees->lastcode[x])
|
|
D(0), D(1), D(2), D(3), D(4), D(5), D(6),
|
|
D(7), D(8), D(9), D(10), D(11), D(12));
|
|
#undef D
|
|
ees->badformat++;
|
|
ees->reason = CODEREASON + 1;
|
|
ees_event(ees, CEVNT_BADREPLY);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
}
|
|
/* Gave up because it was end of the buffer, rather than ff */
|
|
if (dpt == dpend) {
|
|
/* Incomplete. Wait for more. */
|
|
if (debug & DB_LOG_AWAITMORE)
|
|
msyslog(LOG_INFO,
|
|
"I: ees clock %d: %x == %x: await more",
|
|
ees->unit, dpt, dpend);
|
|
return;
|
|
}
|
|
|
|
/* This shouldn't happen ... ! */
|
|
if ((*dpt & 0x7f) != 0x7f) {
|
|
msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt);
|
|
ees->badformat++;
|
|
ees->reason = CODEREASON + 2;
|
|
ees_event(ees, CEVNT_BADREPLY);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
|
|
/* Skip the 0xff */
|
|
dpt++;
|
|
|
|
/* Finally, got a complete buffer. Mainline code will
|
|
* continue on. */
|
|
cp = ees->lastcode;
|
|
break;
|
|
|
|
default:
|
|
msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d",
|
|
ees->unit, ees->codestate);
|
|
ees->reason = CODEREASON + 5;
|
|
ees_event(ees, CEVNT_FAULT);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
|
|
/* Boy! After all that crap, the lastcode buffer now contains
|
|
* something we hope will be a valid time code. Do length
|
|
* checks and sanity checks on constant data.
|
|
*/
|
|
ees->codestate = EESCS_WAIT;
|
|
ees->lasttime = current_time;
|
|
if (ees->lencode != LENEESPRT) {
|
|
ees->badformat++;
|
|
ees->reason = CODEREASON + 6;
|
|
ees_event(ees, CEVNT_BADREPLY);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
|
|
cp = ees->lastcode;
|
|
|
|
/* Check that centisecond is zero */
|
|
if (cp[EESM_CSEC] != 0) {
|
|
ees->baddata++;
|
|
ees->reason = CODEREASON + 7;
|
|
ees_event(ees, CEVNT_BADREPLY);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
|
|
/* Check flag formats */
|
|
if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) {
|
|
ees->badformat++;
|
|
ees->reason = CODEREASON + 8;
|
|
ees_event(ees, CEVNT_BADREPLY);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
|
|
if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) {
|
|
ees->badformat++;
|
|
ees->reason = CODEREASON + 9;
|
|
ees_event(ees, CEVNT_BADREPLY);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
|
|
if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) {
|
|
ees->badformat++;
|
|
ees->reason = CODEREASON + 10;
|
|
ees_event(ees, CEVNT_BADREPLY);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
|
|
/* So far, so good. Compute day, hours, minutes, seconds,
|
|
* time zone. Do range checks on these.
|
|
*/
|
|
|
|
#define bcdunpack(val) ( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
|
|
#define istrue(x) ((x)?1:0)
|
|
|
|
ees->second = bcdunpack(cp[EESM_SEC]); /* second */
|
|
ees->minute = bcdunpack(cp[EESM_MIN]); /* minute */
|
|
ees->hour = bcdunpack(cp[EESM_HOUR]); /* hour */
|
|
|
|
day = bcdunpack(cp[EESM_DAY]); /* day of month */
|
|
|
|
switch (bcdunpack(cp[EESM_MON])) { /* month */
|
|
|
|
/* Add in lengths of all previous months. Add one more
|
|
if it is a leap year and after February.
|
|
*/
|
|
case 12: day += NOV; /*FALLSTHROUGH*/
|
|
case 11: day += OCT; /*FALLSTHROUGH*/
|
|
case 10: day += SEP; /*FALLSTHROUGH*/
|
|
case 9: day += AUG; /*FALLSTHROUGH*/
|
|
case 8: day += JUL; /*FALLSTHROUGH*/
|
|
case 7: day += JUN; /*FALLSTHROUGH*/
|
|
case 6: day += MAY; /*FALLSTHROUGH*/
|
|
case 5: day += APR; /*FALLSTHROUGH*/
|
|
case 4: day += MAR; /*FALLSTHROUGH*/
|
|
case 3: day += FEB;
|
|
if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/
|
|
case 2: day += JAN; /*FALLSTHROUGH*/
|
|
case 1: break;
|
|
default: ees->baddata++;
|
|
ees->reason = CODEREASON + 11;
|
|
ees_event(ees, CEVNT_BADDATE);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
|
|
ees->day = day;
|
|
|
|
/* Get timezone. The clocktime routine wants the number
|
|
* of hours to add to the delivered time to get UT.
|
|
* Currently -1 if BST flag set, 0 otherwise. This
|
|
* is the place to tweak things if double summer time
|
|
* ever happens.
|
|
*/
|
|
ees->tz = istrue(cp[EESM_BST]) ? -1 : 0;
|
|
|
|
if (ees->day > 366 || ees->day < 1 ||
|
|
ees->hour > 23 || ees->minute > 59 || ees->second > 59) {
|
|
ees->baddata++;
|
|
ees->reason = CODEREASON + 12;
|
|
ees_event(ees, CEVNT_BADDATE);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
|
|
n_sample = ees->nsamples;
|
|
|
|
/* Now, compute the reference time value: text -> tmp.l_ui */
|
|
if (!clocktime(ees->day, ees->hour, ees->minute, ees->second,
|
|
ees->tz, rbufp->recv_time.l_ui, &ees->yearstart,
|
|
&tmp.l_ui)) {
|
|
ees->baddata++;
|
|
ees->reason = CODEREASON + 13;
|
|
ees_event(ees, CEVNT_BADDATE);
|
|
ees_reset(ees);
|
|
return;
|
|
}
|
|
tmp.l_uf = 0;
|
|
|
|
/* DON'T use ees->arrvtime -- it may be < reftime */
|
|
ees->lastsampletime = tmp;
|
|
|
|
/* If we are synchronised to the radio, update the reference time.
|
|
* Also keep a note of when clock was last good.
|
|
*/
|
|
if (istrue(cp[EESM_MSFOK])) {
|
|
ees->reftime = tmp;
|
|
ees->clocklastgood = current_time;
|
|
}
|
|
|
|
|
|
/* Compute the offset. For the fractional part of the
|
|
* offset we use the expected delay for the message.
|
|
*/
|
|
ees->codeoffsets[n_sample].l_ui = tmp.l_ui;
|
|
ees->codeoffsets[n_sample].l_uf = 0;
|
|
|
|
/* Number of seconds since the last step */
|
|
sincelast = this_uisec - ees->last_step;
|
|
|
|
memset((char *) &ppsclockev, 0, sizeof ppsclockev);
|
|
|
|
rc = ioctl(ees->io.fd, request, (char *) &ppsclockev);
|
|
if (debug & DB_PRINT_EV) fprintf(stderr,
|
|
"[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
|
|
DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees),
|
|
rc, errno, ptr[0], ptr[1], ptr[2]);
|
|
|
|
/* If we managed to get the time of arrival, process the info */
|
|
if (rc >= 0) {
|
|
int conv = -1;
|
|
pps_step = ppsclockev.serial - ees->last_pps_no;
|
|
|
|
/* Possible that PPS triggered, but text message didn't */
|
|
if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second);
|
|
if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1;
|
|
if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4;
|
|
|
|
/* allow for single loss of PPS only */
|
|
if (pps_step != 1 && pps_step != 2)
|
|
fprintf(stderr, "PPS step: %d too far off %ld (%d)\n",
|
|
ppsclockev.serial, ees->last_pps_no, pps_step);
|
|
else if (!buftvtots((char *) &(ppsclockev.tv), &pps_arrvstamp))
|
|
fprintf(stderr, "buftvtots failed\n");
|
|
else { /* if ((ABS(time difference) - 0.25) < 0)
|
|
* then believe it ...
|
|
*/
|
|
l_fp diff;
|
|
diff = pps_arrvstamp;
|
|
conv = 0;
|
|
L_SUB(&diff, &ees->arrvtime);
|
|
if (debug & DB_PRINT_CDT)
|
|
printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
|
|
DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf,
|
|
(long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf,
|
|
(long)diff.l_ui, (long)diff.l_uf,
|
|
ctime(&(ppsclockev.tv.tv_sec)));
|
|
if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
|
|
L_SUB(&diff, &acceptable_slop);
|
|
if (L_ISNEG(&diff)) { /* AOK -- pps_sample */
|
|
ees->arrvtime = pps_arrvstamp;
|
|
conv++;
|
|
call_pps_sample++;
|
|
}
|
|
/* Some loss of some signals around sec = 1 */
|
|
else if (ees->second == 1) {
|
|
diff = pps_arrvstamp;
|
|
L_ADD(&diff, &onesec);
|
|
L_SUB(&diff, &ees->arrvtime);
|
|
if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
|
|
L_SUB(&diff, &acceptable_slop);
|
|
msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
|
|
pps_arrvstamp.l_ui - ees->arrvtime.l_ui,
|
|
pps_arrvstamp.l_uf,
|
|
ees->arrvtime.l_uf,
|
|
diff.l_ui, diff.l_uf,
|
|
(int)ppsclockev.tv.tv_usec,
|
|
ctime(&(ppsclockev.tv.tv_sec)));
|
|
if (L_ISNEG(&diff)) { /* AOK -- pps_sample */
|
|
suspect_4ms_step |= 2;
|
|
ees->arrvtime = pps_arrvstamp;
|
|
L_ADD(&ees->arrvtime, &onesec);
|
|
conv++;
|
|
call_pps_sample++;
|
|
}
|
|
}
|
|
}
|
|
ees->last_pps_no = ppsclockev.serial;
|
|
if (debug & DB_PRINT_CDTC)
|
|
printf(
|
|
"[%x] %08lx %08lx %d u%d (%d %d)\n",
|
|
DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui,
|
|
(long)pps_arrvstamp.l_uf, conv, ees->unit,
|
|
call_pps_sample, pps_step);
|
|
}
|
|
|
|
/* See if there has been a 4ms jump at a minute boundry */
|
|
{ l_fp delta;
|
|
#define delta_isec delta.l_ui
|
|
#define delta_ssec delta.l_i
|
|
#define delta_sfsec delta.l_f
|
|
long delta_f_abs;
|
|
|
|
delta.l_i = ees->arrvtime.l_i;
|
|
delta.l_f = ees->arrvtime.l_f;
|
|
|
|
L_SUB(&delta, &ees->last_l);
|
|
delta_f_abs = delta_sfsec;
|
|
if (delta_f_abs < 0) delta_f_abs = -delta_f_abs;
|
|
|
|
/* Dump the deltas each minute */
|
|
if (debug & DB_DUMP_DELTAS)
|
|
{ if (/*0 <= ees->second && */
|
|
ees->second < ((sizeof deltas) / (sizeof deltas[0]))) deltas[ees->second] = delta_sfsec;
|
|
/* Dump on second 1, as second 0 sometimes missed */
|
|
if (ees->second == 1) {
|
|
char text[16 * ((sizeof deltas) / (sizeof deltas[0]))];
|
|
char *cptr=text;
|
|
int i;
|
|
for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) {
|
|
sprintf(cptr, " %d.%04d",
|
|
msec(deltas[i]), subms(deltas[i]));
|
|
while (*cptr) cptr++;
|
|
}
|
|
msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s",
|
|
msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE),
|
|
msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE),
|
|
text+1);
|
|
for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0;
|
|
}
|
|
}
|
|
|
|
/* Lets see if we have a 4 mS step at a minute boundaary */
|
|
if ( ((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) &&
|
|
(delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) &&
|
|
(ees->second == 0 || ees->second == 1 || ees->second == 2) &&
|
|
(sincelast < 0 || sincelast > 122)
|
|
) { /* 4ms jump at min boundry */
|
|
int old_sincelast;
|
|
int count=0;
|
|
int sum = 0;
|
|
/* Yes -- so compute the ramp time */
|
|
if (ees->last_step == 0) sincelast = 0;
|
|
old_sincelast = sincelast;
|
|
|
|
/* First time in, just set "ees->last_step" */
|
|
if(ees->last_step) {
|
|
int other_step = 0;
|
|
int third_step = 0;
|
|
int this_step = (sincelast + (60 /2)) / 60;
|
|
int p_step = ees->this_step;
|
|
int p;
|
|
ees->last_steps[p_step] = this_step;
|
|
p= p_step;
|
|
p_step++;
|
|
if (p_step >= LAST_STEPS) p_step = 0;
|
|
ees->this_step = p_step;
|
|
/* Find the "average" interval */
|
|
while (p != p_step) {
|
|
int this = ees->last_steps[p];
|
|
if (this == 0) break;
|
|
if (this != this_step) {
|
|
if (other_step == 0 && (
|
|
this== (this_step +2) ||
|
|
this== (this_step -2) ||
|
|
this== (this_step +1) ||
|
|
this== (this_step -1)))
|
|
other_step = this;
|
|
if (other_step != this) {
|
|
int idelta = (this_step - other_step);
|
|
if (idelta < 0) idelta = - idelta;
|
|
if (third_step == 0 && (
|
|
(idelta == 1) ? (
|
|
this == (other_step +1) ||
|
|
this == (other_step -1) ||
|
|
this == (this_step +1) ||
|
|
this == (this_step -1))
|
|
:
|
|
(
|
|
this == (this_step + other_step)/2
|
|
)
|
|
)) third_step = this;
|
|
if (third_step != this) break;
|
|
}
|
|
}
|
|
sum += this;
|
|
p--;
|
|
if (p < 0) p += LAST_STEPS;
|
|
count++;
|
|
}
|
|
msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step);
|
|
if (count != 0) sum = ((sum * 60) + (count /2)) / count;
|
|
#define SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
|
|
msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
|
|
ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
|
|
SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
|
|
printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
|
|
ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
|
|
SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
|
|
#undef SV
|
|
ees->jump_fsecs = delta_sfsec;
|
|
ees->using_ramp = 1;
|
|
if (sincelast > 170)
|
|
ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs);
|
|
else ees->last_step_late = 30;
|
|
if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30;
|
|
if (ees->last_step_late < 0) ees->last_step_late = 0;
|
|
if (ees->last_step_late >= 60) ees->last_step_late = 59;
|
|
sincelast = 0;
|
|
}
|
|
else { /* First time in -- just save info */
|
|
ees->last_step_late = 30;
|
|
ees->jump_fsecs = delta_sfsec;
|
|
ees->using_ramp = 1;
|
|
sum = 4 * 60;
|
|
}
|
|
ees->last_step = this_uisec;
|
|
printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
|
|
ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
|
|
ees->second, old_sincelast, ees->last_step_late, count, sum,
|
|
ees->last_step_secs);
|
|
msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
|
|
ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second,
|
|
old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs);
|
|
if (sum) ees->last_step_secs = sum;
|
|
}
|
|
/* OK, so not a 4ms step at a minute boundry */
|
|
else {
|
|
if (suspect_4ms_step) msyslog(LOG_ERR,
|
|
"MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
|
|
ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec),
|
|
msec(EES_STEP_F - EES_STEP_F_GRACE),
|
|
subms(EES_STEP_F - EES_STEP_F_GRACE),
|
|
(int)msec(delta_f_abs),
|
|
(int)subms(delta_f_abs),
|
|
msec(EES_STEP_F + EES_STEP_F_GRACE),
|
|
subms(EES_STEP_F + EES_STEP_F_GRACE),
|
|
ees->second,
|
|
sincelast);
|
|
if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) {
|
|
static int ees_step_notes = EES_STEP_NOTES;
|
|
if (ees_step_notes > 0) {
|
|
ees_step_notes--;
|
|
printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
|
|
ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
|
|
ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !");
|
|
msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s",
|
|
ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ees->last_l = ees->arrvtime;
|
|
|
|
/* IF we have found that it's ramping
|
|
* && it's within twice the expected ramp period
|
|
* && there is a non zero step size (avoid /0 !)
|
|
* THEN we twiddle things
|
|
*/
|
|
if (ees->using_ramp &&
|
|
sincelast < (ees->last_step_secs)*2 &&
|
|
ees->last_step_secs)
|
|
{ long sec_of_ramp = sincelast + ees->last_step_late;
|
|
long fsecs;
|
|
l_fp inc;
|
|
|
|
/* Ramp time may vary, so may ramp for longer than last time */
|
|
if (sec_of_ramp > (ees->last_step_secs + 120))
|
|
sec_of_ramp = ees->last_step_secs;
|
|
|
|
/* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
|
|
fsecs = sec_of_ramp * (ees->jump_fsecs / ees->last_step_secs);
|
|
|
|
if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR,
|
|
"[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
|
|
DB_LOG_DELTAS,
|
|
ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
|
|
pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
|
|
if (debug & DB_PRINT_DELTAS) printf(
|
|
"MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
|
|
ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
|
|
(long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
|
|
|
|
/* Must sign extend the result */
|
|
inc.l_i = (fsecs < 0) ? -1 : 0;
|
|
inc.l_f = fsecs;
|
|
if (debug & DB_INC_PPS)
|
|
{ L_SUB(&pps_arrvstamp, &inc);
|
|
L_SUB(&ees->arrvtime, &inc);
|
|
}
|
|
else
|
|
{ L_ADD(&pps_arrvstamp, &inc);
|
|
L_ADD(&ees->arrvtime, &inc);
|
|
}
|
|
}
|
|
else {
|
|
if (debug & DB_LOG_DELTAS) msyslog(LOG_ERR,
|
|
"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
|
|
DB_LOG_DELTAS,
|
|
ees->unit, ees->using_ramp,
|
|
sincelast,
|
|
(ees->last_step_secs)*2,
|
|
ees->last_step_secs);
|
|
if (debug & DB_PRINT_DELTAS) printf(
|
|
"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
|
|
DB_LOG_DELTAS,
|
|
ees->unit, ees->using_ramp,
|
|
sincelast,
|
|
(ees->last_step_secs)*2,
|
|
ees->last_step_secs);
|
|
}
|
|
|
|
L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]);
|
|
L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]);
|
|
|
|
if (call_pps_sample && !(debug & DB_NO_PPS)) {
|
|
/* Sigh -- it expects its args negated */
|
|
L_NEG(&pps_arrvstamp);
|
|
/*
|
|
* I had to disable this here, since it appears there is no pointer to the
|
|
* peer structure.
|
|
*
|
|
(void) pps_sample(peer, &pps_arrvstamp);
|
|
*/
|
|
}
|
|
|
|
/* Subtract off the local clock time stamp */
|
|
L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime);
|
|
if (debug & DB_LOG_SAMPLES) msyslog(LOG_ERR,
|
|
"MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
|
|
ees->unit, DB_LOG_DELTAS, n_sample,
|
|
ees->codeoffsets[n_sample].l_f,
|
|
ees->codeoffsets[n_sample].l_f / 4295,
|
|
pps_arrvstamp.l_f,
|
|
pps_arrvstamp.l_f /4295,
|
|
(debug & DB_NO_PPS) ? " [no PPS]" : "");
|
|
|
|
if (ees->nsamples++ == NCODES-1) ees_process(ees);
|
|
|
|
/* Done! */
|
|
}
|
|
|
|
|
|
/* offcompare - auxiliary comparison routine for offset sort */
|
|
|
|
#ifdef QSORT_USES_VOID_P
|
|
static int
|
|
offcompare(
|
|
const void *va,
|
|
const void *vb
|
|
)
|
|
{
|
|
const l_fp *a = (const l_fp *)va;
|
|
const l_fp *b = (const l_fp *)vb;
|
|
return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
|
|
}
|
|
#else
|
|
static int
|
|
offcompare(
|
|
const l_fp *a,
|
|
const l_fp *b
|
|
)
|
|
{
|
|
return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
|
|
}
|
|
#endif /* QSORT_USES_VOID_P */
|
|
|
|
|
|
/* ees_process - process a pile of samples from the clock */
|
|
static void
|
|
ees_process(
|
|
struct eesunit *ees
|
|
)
|
|
{
|
|
static int last_samples = -1;
|
|
register int i, j;
|
|
register int noff;
|
|
register l_fp *coffs = ees->codeoffsets;
|
|
l_fp offset, tmp;
|
|
double dispersion; /* ++++ */
|
|
int lostsync, isinsync;
|
|
int samples = ees->nsamples;
|
|
int samplelog = 0; /* keep "gcc -Wall" happy ! */
|
|
int samplereduce = (samples + 1) / 2;
|
|
double doffset;
|
|
|
|
/* Reset things to zero so we don't have to worry later */
|
|
ees_reset(ees);
|
|
|
|
if (sloppyclockflag[ees->unit]) {
|
|
samplelog = (samples < 2) ? 0 :
|
|
(samples < 5) ? 1 :
|
|
(samples < 9) ? 2 :
|
|
(samples < 17) ? 3 :
|
|
(samples < 33) ? 4 : 5;
|
|
samplereduce = (1 << samplelog);
|
|
}
|
|
|
|
if (samples != last_samples &&
|
|
((samples != (last_samples-1)) || samples < 3)) {
|
|
msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....",
|
|
samples, last_samples, samplereduce);
|
|
last_samples = samples;
|
|
}
|
|
if (samples < 1) return;
|
|
|
|
/* If requested, dump the raw data we have in the buffer */
|
|
if (ees->dump_vals) dump_buf(coffs, 0, samples, "Raw data is:");
|
|
|
|
/* Sort the offsets, trim off the extremes, then choose one. */
|
|
qsort((char *) coffs, (u_int)samples, sizeof(l_fp), offcompare);
|
|
|
|
noff = samples;
|
|
i = 0;
|
|
while ((noff - i) > samplereduce) {
|
|
/* Trim off the sample which is further away
|
|
* from the median. We work this out by doubling
|
|
* the median, subtracting off the end samples, and
|
|
* looking at the sign of the answer, using the
|
|
* identity (c-b)-(b-a) == 2*b-a-c
|
|
*/
|
|
tmp = coffs[(noff + i)/2];
|
|
L_ADD(&tmp, &tmp);
|
|
L_SUB(&tmp, &coffs[i]);
|
|
L_SUB(&tmp, &coffs[noff-1]);
|
|
if (L_ISNEG(&tmp)) noff--; else i++;
|
|
}
|
|
|
|
/* If requested, dump the reduce data we have in the buffer */
|
|
if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced to:");
|
|
|
|
/* What we do next depends on the setting of the sloppy clock flag.
|
|
* If it is on, average the remainder to derive our estimate.
|
|
* Otherwise, just pick a representative value from the remaining stuff
|
|
*/
|
|
if (sloppyclockflag[ees->unit]) {
|
|
offset.l_ui = offset.l_uf = 0;
|
|
for (j = i; j < noff; j++)
|
|
L_ADD(&offset, &coffs[j]);
|
|
for (j = samplelog; j > 0; j--)
|
|
L_RSHIFTU(&offset);
|
|
}
|
|
else offset = coffs[i+BESTSAMPLE];
|
|
|
|
/* Compute the dispersion as the difference between the
|
|
* lowest and highest offsets that remain in the
|
|
* consideration list.
|
|
*
|
|
* It looks like MOST clocks have MOD (max error), so halve it !
|
|
*/
|
|
tmp = coffs[noff-1];
|
|
L_SUB(&tmp, &coffs[i]);
|
|
#define FRACT_SEC(n) ((1 << 30) / (n/2))
|
|
dispersion = LFPTOFP(&tmp) / 2; /* ++++ */
|
|
if (debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog(
|
|
(debug & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO,
|
|
"I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
|
|
debug & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE),
|
|
offset.l_f / 4295, offset.l_f,
|
|
(dispersion * 1526) / 100,
|
|
(sloppyclockflag[ees->unit]) ? " by averaging" : "",
|
|
FRACT_SEC(10) / 4295,
|
|
(coffs[0].l_f) / 4295,
|
|
i,
|
|
(coffs[i].l_f) / 4295,
|
|
(coffs[samples/2].l_f) / 4295,
|
|
(coffs[i+BESTSAMPLE].l_f) / 4295,
|
|
noff-1,
|
|
(coffs[noff-1].l_f) / 4295,
|
|
(coffs[samples-1].l_f) / 4295);
|
|
|
|
/* Are we playing silly wotsits ?
|
|
* If we are using all data, see if there is a "small" delta,
|
|
* and if so, blurr this with 3/4 of the delta from the last value
|
|
*/
|
|
if (ees->usealldata && ees->offset.l_uf) {
|
|
long diff = (long) (ees->offset.l_uf - offset.l_uf);
|
|
|
|
/* is the delta small enough ? */
|
|
if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) {
|
|
int samd = (64 * 4) / samples;
|
|
long new;
|
|
if (samd < 2) samd = 2;
|
|
new = offset.l_uf + ((diff * (samd -1)) / samd);
|
|
|
|
/* Sign change -> need to fix up int part */
|
|
if ((new & 0x80000000) !=
|
|
(((long) offset.l_uf) & 0x80000000))
|
|
{ NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
|
|
msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d",
|
|
new & 0x80000000,
|
|
((long) offset.l_uf) & 0x80000000,
|
|
new, (long) offset.l_uf,
|
|
(new < 0) ? -1 : 1);
|
|
offset.l_ui += (new < 0) ? -1 : 1;
|
|
}
|
|
dispersion /= 4;
|
|
if (debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog(
|
|
(debug & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO,
|
|
"I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
|
|
debug & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE),
|
|
((long) offset.l_uf) / 4295, new / 4295,
|
|
(dispersion * 1526) / 100);
|
|
offset.l_uf = (unsigned long) new;
|
|
}
|
|
else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
|
|
(debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
|
|
"[%x] No smooth as delta not %d < %ld < %d",
|
|
debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
|
|
- FRACT_SEC(100), diff, FRACT_SEC(100));
|
|
}
|
|
else if (debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
|
|
(debug & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
|
|
"I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
|
|
debug & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
|
|
ees->usealldata, ees->offset.l_f, ees->offset.l_uf,
|
|
offset.l_f, ees->offset.l_f - offset.l_f);
|
|
|
|
/* Collect offset info for debugging info */
|
|
ees->offset = offset;
|
|
ees->lowoffset = coffs[i];
|
|
ees->highoffset = coffs[noff-1];
|
|
|
|
/* Determine synchronization status. Can be unsync'd either
|
|
* by a report from the clock or by a leap hold.
|
|
*
|
|
* Loss of the radio signal for a short time does not cause
|
|
* us to go unsynchronised, since the receiver keeps quite
|
|
* good time on its own. The spec says 20ms in 4 hours; the
|
|
* observed drift in our clock (Cambridge) is about a second
|
|
* a day, but even that keeps us within the inherent tolerance
|
|
* of the clock for about 15 minutes. Observation shows that
|
|
* the typical "short" outage is 3 minutes, so to allow us
|
|
* to ride out those, we will give it 5 minutes.
|
|
*/
|
|
lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0;
|
|
isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1;
|
|
|
|
/* Done. Use time of last good, synchronised code as the
|
|
* reference time, and lastsampletime as the receive time.
|
|
*/
|
|
if (ees->fix_pending) {
|
|
msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x\n",
|
|
ees->fix_pending, ees->unit, offset.l_i, offset.l_f);
|
|
ees->fix_pending = 0;
|
|
}
|
|
LFPTOD(&offset, doffset);
|
|
refclock_receive(ees->peer);
|
|
ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL);
|
|
}
|
|
|
|
/* msfees_poll - called by the transmit procedure */
|
|
static void
|
|
msfees_poll(
|
|
int unit,
|
|
struct peer *peer
|
|
)
|
|
{
|
|
if (unit >= MAXUNITS) {
|
|
msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid",
|
|
unit);
|
|
return;
|
|
}
|
|
if (!unitinuse[unit]) {
|
|
msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused",
|
|
unit);
|
|
return;
|
|
}
|
|
|
|
ees_process(eesunits[unit]);
|
|
|
|
if ((current_time - eesunits[unit]->lasttime) > 150)
|
|
ees_event(eesunits[unit], CEVNT_FAULT);
|
|
}
|
|
|
|
|
|
#else
|
|
int refclock_msfees_bs;
|
|
#endif /* REFCLOCK */
|