e51e55880d
interface send queue that need to be processed.
1984 lines
52 KiB
C
1984 lines
52 KiB
C
/*
|
|
* Copyright (c) 1997, 1998, 1999
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
|
|
* the SK-984x series adapters, both single port and dual port.
|
|
* References:
|
|
* The XaQti XMAC II datasheet, http://www.xaqti.com
|
|
* The SysKonnect GEnesis manual, http://www.syskonnect.com
|
|
*
|
|
* Written by Bill Paul <wpaul@ee.columbia.edu>
|
|
* Department of Electrical Engineering
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* The SysKonnect gigabit ethernet adapters consist of two main
|
|
* components: the SysKonnect GEnesis controller chip and the XaQti Corp.
|
|
* XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
|
|
* components and a PHY while the GEnesis controller provides a PCI
|
|
* interface with DMA support. Each card may have between 512K and
|
|
* 2MB of SRAM on board depending on the configuration.
|
|
*
|
|
* The SysKonnect GEnesis controller can have either one or two XMAC
|
|
* chips connected to it, allowing single or dual port NIC configurations.
|
|
* SysKonnect has the distinction of being the only vendor on the market
|
|
* with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
|
|
* dual DMA queues, packet/MAC/transmit arbiters and direct access to the
|
|
* XMAC registers. This driver takes advantage of these features to allow
|
|
* both XMACs to operate as independent interfaces.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <vm/vm.h> /* for vtophys */
|
|
#include <vm/pmap.h> /* for vtophys */
|
|
#include <machine/clock.h> /* for DELAY */
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
|
|
#define SK_USEIOSPACE
|
|
|
|
#include <pci/if_skreg.h>
|
|
#include <pci/xmaciireg.h>
|
|
|
|
#ifndef lint
|
|
static const char rcsid[] =
|
|
"$FreeBSD$";
|
|
#endif
|
|
|
|
static struct sk_type sk_devs[] = {
|
|
{ SK_VENDORID, SK_DEVICEID_GE, "SysKonnect Gigabit Ethernet" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int sk_probe __P((device_t));
|
|
static int sk_attach __P((device_t));
|
|
static int sk_detach __P((device_t));
|
|
static int sk_attach_xmac __P((struct sk_softc *, int));
|
|
static void sk_intr __P((void *));
|
|
static void sk_intr_xmac __P((struct sk_if_softc *));
|
|
static void sk_rxeof __P((struct sk_if_softc *));
|
|
static void sk_txeof __P((struct sk_if_softc *));
|
|
static int sk_encap __P((struct sk_if_softc *, struct mbuf *,
|
|
u_int32_t *));
|
|
static void sk_start __P((struct ifnet *));
|
|
static int sk_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static void sk_init __P((void *));
|
|
static void sk_init_xmac __P((struct sk_if_softc *));
|
|
static void sk_stop __P((struct sk_if_softc *));
|
|
static void sk_watchdog __P((struct ifnet *));
|
|
static void sk_shutdown __P((device_t));
|
|
static int sk_ifmedia_upd __P((struct ifnet *));
|
|
static void sk_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
|
static void sk_reset __P((struct sk_softc *));
|
|
static int sk_newbuf __P((struct sk_if_softc *,
|
|
struct sk_chain *, struct mbuf *));
|
|
static int sk_alloc_jumbo_mem __P((struct sk_if_softc *));
|
|
static void *sk_jalloc __P((struct sk_if_softc *));
|
|
static void sk_jfree __P((caddr_t, u_int));
|
|
static void sk_jref __P((caddr_t, u_int));
|
|
static int sk_init_rx_ring __P((struct sk_if_softc *));
|
|
static void sk_init_tx_ring __P((struct sk_if_softc *));
|
|
#ifdef notdef
|
|
static u_int32_t sk_win_read_4 __P((struct sk_softc *, int));
|
|
#endif
|
|
static u_int16_t sk_win_read_2 __P((struct sk_softc *, int));
|
|
static u_int8_t sk_win_read_1 __P((struct sk_softc *, int));
|
|
static void sk_win_write_4 __P((struct sk_softc *, int, u_int32_t));
|
|
static void sk_win_write_2 __P((struct sk_softc *, int, u_int32_t));
|
|
static void sk_win_write_1 __P((struct sk_softc *, int, u_int32_t));
|
|
static u_int8_t sk_vpd_readbyte __P((struct sk_softc *, int));
|
|
static void sk_vpd_read_res __P((struct sk_softc *,
|
|
struct vpd_res *, int));
|
|
static void sk_vpd_read __P((struct sk_softc *));
|
|
static u_int16_t sk_phy_readreg __P((struct sk_if_softc *, int));
|
|
static void sk_phy_writereg __P((struct sk_if_softc *, int, u_int32_t));
|
|
static u_int32_t sk_calchash __P((caddr_t));
|
|
static void sk_setfilt __P((struct sk_if_softc *, caddr_t, int));
|
|
static void sk_setmulti __P((struct sk_if_softc *));
|
|
|
|
#ifdef SK_USEIOSPACE
|
|
#define SK_RES SYS_RES_IOPORT
|
|
#define SK_RID SK_PCI_LOIO
|
|
#else
|
|
#define SK_RES SYS_RES_MEMORY
|
|
#define SK_RID SK_PCI_LOMEM
|
|
#endif
|
|
|
|
static device_method_t sk_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, sk_probe),
|
|
DEVMETHOD(device_attach, sk_attach),
|
|
DEVMETHOD(device_detach, sk_detach),
|
|
DEVMETHOD(device_shutdown, sk_shutdown),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t sk_driver = {
|
|
"skc",
|
|
sk_methods,
|
|
sizeof(struct sk_softc)
|
|
};
|
|
|
|
static devclass_t sk_devclass;
|
|
|
|
DRIVER_MODULE(if_sk, pci, sk_driver, sk_devclass, 0, 0);
|
|
|
|
#define SK_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
|
|
|
|
#define SK_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
|
|
|
|
#define SK_WIN_SETBIT_4(sc, reg, x) \
|
|
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
|
|
|
|
#define SK_WIN_CLRBIT_4(sc, reg, x) \
|
|
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
|
|
|
|
#define SK_WIN_SETBIT_2(sc, reg, x) \
|
|
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
|
|
|
|
#define SK_WIN_CLRBIT_2(sc, reg, x) \
|
|
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
|
|
|
|
#ifdef notdef
|
|
static u_int32_t sk_win_read_4(sc, reg)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
{
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
|
|
}
|
|
#endif
|
|
|
|
static u_int16_t sk_win_read_2(sc, reg)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
{
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
|
|
}
|
|
|
|
static u_int8_t sk_win_read_1(sc, reg)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
{
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
|
|
}
|
|
|
|
static void sk_win_write_4(sc, reg, val)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
|
|
return;
|
|
}
|
|
|
|
static void sk_win_write_2(sc, reg, val)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
|
|
return;
|
|
}
|
|
|
|
static void sk_win_write_1(sc, reg, val)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The VPD EEPROM contains Vital Product Data, as suggested in
|
|
* the PCI 2.1 specification. The VPD data is separared into areas
|
|
* denoted by resource IDs. The SysKonnect VPD contains an ID string
|
|
* resource (the name of the adapter), a read-only area resource
|
|
* containing various key/data fields and a read/write area which
|
|
* can be used to store asset management information or log messages.
|
|
* We read the ID string and read-only into buffers attached to
|
|
* the controller softc structure for later use. At the moment,
|
|
* we only use the ID string during sk_attach().
|
|
*/
|
|
static u_int8_t sk_vpd_readbyte(sc, addr)
|
|
struct sk_softc *sc;
|
|
int addr;
|
|
{
|
|
int i;
|
|
|
|
sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if (sk_win_read_2(sc,
|
|
SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT)
|
|
return(0);
|
|
|
|
return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
|
|
}
|
|
|
|
static void sk_vpd_read_res(sc, res, addr)
|
|
struct sk_softc *sc;
|
|
struct vpd_res *res;
|
|
int addr;
|
|
{
|
|
int i;
|
|
u_int8_t *ptr;
|
|
|
|
ptr = (u_int8_t *)res;
|
|
for (i = 0; i < sizeof(struct vpd_res); i++)
|
|
ptr[i] = sk_vpd_readbyte(sc, i + addr);
|
|
|
|
return;
|
|
}
|
|
|
|
static void sk_vpd_read(sc)
|
|
struct sk_softc *sc;
|
|
{
|
|
int pos = 0, i;
|
|
struct vpd_res res;
|
|
|
|
if (sc->sk_vpd_prodname != NULL)
|
|
free(sc->sk_vpd_prodname, M_DEVBUF);
|
|
if (sc->sk_vpd_readonly != NULL)
|
|
free(sc->sk_vpd_readonly, M_DEVBUF);
|
|
sc->sk_vpd_prodname = NULL;
|
|
sc->sk_vpd_readonly = NULL;
|
|
|
|
sk_vpd_read_res(sc, &res, pos);
|
|
|
|
if (res.vr_id != VPD_RES_ID) {
|
|
printf("skc%d: bad VPD resource id: expected %x got %x\n",
|
|
sc->sk_unit, VPD_RES_ID, res.vr_id);
|
|
return;
|
|
}
|
|
|
|
pos += sizeof(res);
|
|
sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
|
|
for (i = 0; i < res.vr_len; i++)
|
|
sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
|
|
sc->sk_vpd_prodname[i] = '\0';
|
|
pos += i;
|
|
|
|
sk_vpd_read_res(sc, &res, pos);
|
|
|
|
if (res.vr_id != VPD_RES_READ) {
|
|
printf("skc%d: bad VPD resource id: expected %x got %x\n",
|
|
sc->sk_unit, VPD_RES_READ, res.vr_id);
|
|
return;
|
|
}
|
|
|
|
pos += sizeof(res);
|
|
sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
|
|
for (i = 0; i < res.vr_len + 1; i++)
|
|
sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
|
|
|
|
return;
|
|
}
|
|
|
|
static u_int16_t sk_phy_readreg(sc_if, reg)
|
|
struct sk_if_softc *sc_if;
|
|
int reg;
|
|
{
|
|
int i;
|
|
|
|
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT) {
|
|
printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
|
|
return(0);
|
|
}
|
|
|
|
return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
|
|
}
|
|
|
|
static void sk_phy_writereg(sc_if, reg, val)
|
|
struct sk_if_softc *sc_if;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
int i;
|
|
|
|
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT) {
|
|
printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
|
|
return;
|
|
}
|
|
|
|
SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT)
|
|
printf("sk%d: phy write timed out\n", sc_if->sk_unit);
|
|
|
|
return;
|
|
}
|
|
|
|
#define SK_POLY 0xEDB88320
|
|
#define SK_BITS 6
|
|
|
|
static u_int32_t sk_calchash(addr)
|
|
caddr_t addr;
|
|
{
|
|
u_int32_t idx, bit, data, crc;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
for (idx = 0; idx < 6; idx++) {
|
|
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
|
|
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
|
|
}
|
|
|
|
return (~crc & ((1 << SK_BITS) - 1));
|
|
}
|
|
|
|
static void sk_setfilt(sc_if, addr, slot)
|
|
struct sk_if_softc *sc_if;
|
|
caddr_t addr;
|
|
int slot;
|
|
{
|
|
int base;
|
|
|
|
base = XM_RXFILT_ENTRY(slot);
|
|
|
|
SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
|
|
SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
|
|
SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
|
|
|
|
return;
|
|
}
|
|
|
|
static void sk_setmulti(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct ifnet *ifp;
|
|
u_int32_t hashes[2] = { 0, 0 };
|
|
int h, i;
|
|
struct ifmultiaddr *ifma;
|
|
u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
|
|
|
|
ifp = &sc_if->arpcom.ac_if;
|
|
|
|
/* First, zot all the existing filters. */
|
|
for (i = 1; i < XM_RXFILT_MAX; i++)
|
|
sk_setfilt(sc_if, (caddr_t)&dummy, i);
|
|
SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
|
|
SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
|
|
|
|
/* Now program new ones. */
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
hashes[0] = 0xFFFFFFFF;
|
|
hashes[1] = 0xFFFFFFFF;
|
|
} else {
|
|
i = 1;
|
|
/* First find the tail of the list. */
|
|
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
|
|
ifma = ifma->ifma_link.le_next) {
|
|
if (ifma->ifma_link.le_next == NULL)
|
|
break;
|
|
}
|
|
/* Now traverse the list backwards. */
|
|
for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
|
|
ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
/*
|
|
* Program the first XM_RXFILT_MAX multicast groups
|
|
* into the perfect filter. For all others,
|
|
* use the hash table.
|
|
*/
|
|
if (i < XM_RXFILT_MAX) {
|
|
sk_setfilt(sc_if,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
h = sk_calchash(
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
}
|
|
}
|
|
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
|
|
XM_MODE_RX_USE_PERFECT);
|
|
SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
|
|
SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
|
|
|
|
return;
|
|
}
|
|
|
|
static int sk_init_rx_ring(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_chain_data *cd;
|
|
struct sk_ring_data *rd;
|
|
int i;
|
|
|
|
cd = &sc_if->sk_cdata;
|
|
rd = sc_if->sk_rdata;
|
|
|
|
bzero((char *)rd->sk_rx_ring,
|
|
sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
|
|
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
|
|
if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
if (i == (SK_RX_RING_CNT - 1)) {
|
|
cd->sk_rx_chain[i].sk_next =
|
|
&cd->sk_rx_chain[0];
|
|
rd->sk_rx_ring[i].sk_next =
|
|
vtophys(&rd->sk_rx_ring[0]);
|
|
} else {
|
|
cd->sk_rx_chain[i].sk_next =
|
|
&cd->sk_rx_chain[i + 1];
|
|
rd->sk_rx_ring[i].sk_next =
|
|
vtophys(&rd->sk_rx_ring[i + 1]);
|
|
}
|
|
}
|
|
|
|
sc_if->sk_cdata.sk_rx_prod = 0;
|
|
sc_if->sk_cdata.sk_rx_cons = 0;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void sk_init_tx_ring(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_chain_data *cd;
|
|
struct sk_ring_data *rd;
|
|
int i;
|
|
|
|
cd = &sc_if->sk_cdata;
|
|
rd = sc_if->sk_rdata;
|
|
|
|
bzero((char *)sc_if->sk_rdata->sk_tx_ring,
|
|
sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
|
|
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
|
|
if (i == (SK_TX_RING_CNT - 1)) {
|
|
cd->sk_tx_chain[i].sk_next =
|
|
&cd->sk_tx_chain[0];
|
|
rd->sk_tx_ring[i].sk_next =
|
|
vtophys(&rd->sk_tx_ring[0]);
|
|
} else {
|
|
cd->sk_tx_chain[i].sk_next =
|
|
&cd->sk_tx_chain[i + 1];
|
|
rd->sk_tx_ring[i].sk_next =
|
|
vtophys(&rd->sk_tx_ring[i + 1]);
|
|
}
|
|
}
|
|
|
|
sc_if->sk_cdata.sk_tx_prod = 0;
|
|
sc_if->sk_cdata.sk_tx_cons = 0;
|
|
sc_if->sk_cdata.sk_tx_cnt = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
static int sk_newbuf(sc_if, c, m)
|
|
struct sk_if_softc *sc_if;
|
|
struct sk_chain *c;
|
|
struct mbuf *m;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
struct sk_rx_desc *r;
|
|
|
|
if (m == NULL) {
|
|
caddr_t *buf = NULL;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("sk%d: no memory for rx list -- "
|
|
"packet dropped!\n", sc_if->sk_unit);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
/* Allocate the jumbo buffer */
|
|
buf = sk_jalloc(sc_if);
|
|
if (buf == NULL) {
|
|
m_freem(m_new);
|
|
#ifdef SK_VERBOSE
|
|
printf("sk%d: jumbo allocation failed "
|
|
"-- packet dropped!\n", sc_if->sk_unit);
|
|
#endif
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
/* Attach the buffer to the mbuf */
|
|
m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
|
|
m_new->m_flags |= M_EXT;
|
|
m_new->m_ext.ext_size = m_new->m_pkthdr.len =
|
|
m_new->m_len = SK_MCLBYTES;
|
|
m_new->m_ext.ext_free = sk_jfree;
|
|
m_new->m_ext.ext_ref = sk_jref;
|
|
} else {
|
|
/*
|
|
* We're re-using a previously allocated mbuf;
|
|
* be sure to re-init pointers and lengths to
|
|
* default values.
|
|
*/
|
|
m_new = m;
|
|
m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
}
|
|
|
|
/*
|
|
* Adjust alignment so packet payload begins on a
|
|
* longword boundary. Mandatory for Alpha, useful on
|
|
* x86 too.
|
|
*/
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
|
|
r = c->sk_desc;
|
|
c->sk_mbuf = m_new;
|
|
r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
|
|
r->sk_ctl = m_new->m_len | SK_RXSTAT;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Allocate jumbo buffer storage. The SysKonnect adapters support
|
|
* "jumbograms" (9K frames), although SysKonnect doesn't currently
|
|
* use them in their drivers. In order for us to use them, we need
|
|
* large 9K receive buffers, however standard mbuf clusters are only
|
|
* 2048 bytes in size. Consequently, we need to allocate and manage
|
|
* our own jumbo buffer pool. Fortunately, this does not require an
|
|
* excessive amount of additional code.
|
|
*/
|
|
static int sk_alloc_jumbo_mem(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
caddr_t ptr;
|
|
register int i;
|
|
struct sk_jpool_entry *entry;
|
|
|
|
/* Grab a big chunk o' storage. */
|
|
sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
|
|
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
|
|
|
|
if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
|
|
printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
SLIST_INIT(&sc_if->sk_jfree_listhead);
|
|
SLIST_INIT(&sc_if->sk_jinuse_listhead);
|
|
|
|
/*
|
|
* Now divide it up into 9K pieces and save the addresses
|
|
* in an array. Note that we play an evil trick here by using
|
|
* the first few bytes in the buffer to hold the the address
|
|
* of the softc structure for this interface. This is because
|
|
* sk_jfree() needs it, but it is called by the mbuf management
|
|
* code which will not pass it to us explicitly.
|
|
*/
|
|
ptr = sc_if->sk_cdata.sk_jumbo_buf;
|
|
for (i = 0; i < SK_JSLOTS; i++) {
|
|
u_int64_t **aptr;
|
|
aptr = (u_int64_t **)ptr;
|
|
aptr[0] = (u_int64_t *)sc_if;
|
|
ptr += sizeof(u_int64_t);
|
|
sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr;
|
|
sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0;
|
|
ptr += SK_MCLBYTES;
|
|
entry = malloc(sizeof(struct sk_jpool_entry),
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (entry == NULL) {
|
|
free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
|
|
sc_if->sk_cdata.sk_jumbo_buf = NULL;
|
|
printf("sk%d: no memory for jumbo "
|
|
"buffer queue!\n", sc_if->sk_unit);
|
|
return(ENOBUFS);
|
|
}
|
|
entry->slot = i;
|
|
SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
|
|
entry, jpool_entries);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Allocate a jumbo buffer.
|
|
*/
|
|
static void *sk_jalloc(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_jpool_entry *entry;
|
|
|
|
entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
|
|
|
|
if (entry == NULL) {
|
|
#ifdef SK_VERBOSE
|
|
printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
|
|
#endif
|
|
return(NULL);
|
|
}
|
|
|
|
SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
|
|
sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1;
|
|
return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf);
|
|
}
|
|
|
|
/*
|
|
* Adjust usage count on a jumbo buffer. In general this doesn't
|
|
* get used much because our jumbo buffers don't get passed around
|
|
* a lot, but it's implemented for correctness.
|
|
*/
|
|
static void sk_jref(buf, size)
|
|
caddr_t buf;
|
|
u_int size;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
u_int64_t **aptr;
|
|
register int i;
|
|
|
|
/* Extract the softc struct pointer. */
|
|
aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
|
|
sc_if = (struct sk_if_softc *)(aptr[0]);
|
|
|
|
if (sc_if == NULL)
|
|
panic("sk_jref: can't find softc pointer!");
|
|
|
|
if (size != SK_MCLBYTES)
|
|
panic("sk_jref: adjusting refcount of buf of wrong size!");
|
|
|
|
/* calculate the slot this buffer belongs to */
|
|
|
|
i = ((vm_offset_t)aptr
|
|
- (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
|
|
|
|
if ((i < 0) || (i >= SK_JSLOTS))
|
|
panic("sk_jref: asked to reference buffer "
|
|
"that we don't manage!");
|
|
else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
|
|
panic("sk_jref: buffer already free!");
|
|
else
|
|
sc_if->sk_cdata.sk_jslots[i].sk_inuse++;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Release a jumbo buffer.
|
|
*/
|
|
static void sk_jfree(buf, size)
|
|
caddr_t buf;
|
|
u_int size;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
u_int64_t **aptr;
|
|
int i;
|
|
struct sk_jpool_entry *entry;
|
|
|
|
/* Extract the softc struct pointer. */
|
|
aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
|
|
sc_if = (struct sk_if_softc *)(aptr[0]);
|
|
|
|
if (sc_if == NULL)
|
|
panic("sk_jfree: can't find softc pointer!");
|
|
|
|
if (size != SK_MCLBYTES)
|
|
panic("sk_jfree: freeing buffer of wrong size!");
|
|
|
|
/* calculate the slot this buffer belongs to */
|
|
|
|
i = ((vm_offset_t)aptr
|
|
- (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
|
|
|
|
if ((i < 0) || (i >= SK_JSLOTS))
|
|
panic("sk_jfree: asked to free buffer that we don't manage!");
|
|
else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
|
|
panic("sk_jfree: buffer already free!");
|
|
else {
|
|
sc_if->sk_cdata.sk_jslots[i].sk_inuse--;
|
|
if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) {
|
|
entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
|
|
if (entry == NULL)
|
|
panic("sk_jfree: buffer not in use!");
|
|
entry->slot = i;
|
|
SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead,
|
|
jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
|
|
entry, jpool_entries);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int sk_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct ifmedia *ifm;
|
|
|
|
sc_if = ifp->if_softc;
|
|
ifm = &sc_if->ifmedia;
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return(EINVAL);
|
|
|
|
switch(IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
sk_phy_writereg(sc_if, XM_PHY_BMCR,
|
|
XM_BMCR_RENEGOTIATE|XM_BMCR_AUTONEGENBL);
|
|
break;
|
|
case IFM_1000_LX:
|
|
case IFM_1000_SX:
|
|
case IFM_1000_CX:
|
|
case IFM_1000_TX:
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
sk_phy_writereg(sc_if, XM_PHY_BMCR, XM_BMCR_DUPLEX);
|
|
else
|
|
sk_phy_writereg(sc_if, XM_PHY_BMCR, 0);
|
|
break;
|
|
default:
|
|
printf("sk%d: invalid media selected\n", sc_if->sk_unit);
|
|
return(EINVAL);
|
|
break;
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void sk_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if;
|
|
u_int16_t bmsr, extsts;
|
|
|
|
sc_if = ifp->if_softc;
|
|
sc = sc_if->sk_softc;
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
bmsr = sk_phy_readreg(sc_if, XM_PHY_BMSR);
|
|
extsts = sk_phy_readreg(sc_if, XM_PHY_EXTSTS);
|
|
|
|
if (!(bmsr & XM_BMSR_LINKSTAT))
|
|
return;
|
|
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
ifmr->ifm_active |= sc->sk_pmd;;
|
|
if (extsts & XM_EXTSTS_FULLDUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
|
|
return;
|
|
}
|
|
|
|
static int sk_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct sk_if_softc *sc_if = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
switch(command) {
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu > SK_JUMBO_MTU)
|
|
error = EINVAL;
|
|
else {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
sk_init(sc_if);
|
|
}
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING &&
|
|
ifp->if_flags & IFF_PROMISC &&
|
|
!(sc_if->sk_if_flags & IFF_PROMISC)) {
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE,
|
|
XM_MODE_RX_PROMISC);
|
|
sk_setmulti(sc_if);
|
|
} else if (ifp->if_flags & IFF_RUNNING &&
|
|
!(ifp->if_flags & IFF_PROMISC) &&
|
|
sc_if->sk_if_flags & IFF_PROMISC) {
|
|
SK_XM_CLRBIT_4(sc_if, XM_MODE,
|
|
XM_MODE_RX_PROMISC);
|
|
sk_setmulti(sc_if);
|
|
} else
|
|
sk_init(sc_if);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
sk_stop(sc_if);
|
|
}
|
|
sc_if->sk_if_flags = ifp->if_flags;
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
sk_setmulti(sc_if);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc_if->ifmedia, command);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
(void)splx(s);
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int sk_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_type *t;
|
|
|
|
t = sk_devs;
|
|
|
|
while(t->sk_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->sk_vid) &&
|
|
(pci_get_device(dev) == t->sk_did)) {
|
|
device_set_desc(dev, t->sk_name);
|
|
return(0);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Force the GEnesis into reset, then bring it out of reset.
|
|
*/
|
|
static void sk_reset(sc)
|
|
struct sk_softc *sc;
|
|
{
|
|
CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
|
|
CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
|
|
DELAY(1000);
|
|
CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
|
|
CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
|
|
|
|
/* Configure packet arbiter */
|
|
sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
|
|
sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
|
|
sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
|
|
sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
|
|
sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
|
|
|
|
/* Enable RAM interface */
|
|
sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
|
|
|
|
/*
|
|
* Configure interrupt moderation. The moderation timer
|
|
* defers interrupts specified in the interrupt moderation
|
|
* timer mask based on the timeout specified in the interrupt
|
|
* moderation timer init register. Each bit in the timer
|
|
* register represents 18.825ns, so to specify a timeout in
|
|
* microseconds, we have to multiply by 54.
|
|
*/
|
|
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
|
|
sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
|
|
SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
|
|
sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Each XMAC chip is attached as a separate logical IP interface.
|
|
* Single port cards will have only one logical interface of course.
|
|
*/
|
|
static int sk_attach_xmac(sc, port)
|
|
struct sk_softc *sc;
|
|
int port;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
char ifname[64];
|
|
|
|
if (sc == NULL)
|
|
return(EINVAL);
|
|
|
|
if (port != SK_PORT_A && port != SK_PORT_B)
|
|
return(EINVAL);
|
|
|
|
sc_if = malloc(sizeof(struct sk_if_softc), M_DEVBUF, M_NOWAIT);
|
|
if (sc_if == NULL) {
|
|
printf("skc%d: no memory for interface softc!\n", sc->sk_unit);
|
|
return(ENOMEM);
|
|
}
|
|
bzero((char *)sc_if, sizeof(struct sk_if_softc));
|
|
|
|
for (i = 0; i < SK_MAXUNIT; i++) {
|
|
sprintf(ifname, "sk%d", i);
|
|
if (ifunit(ifname) == NULL)
|
|
break;
|
|
}
|
|
|
|
if (i == SK_MAXUNIT) {
|
|
printf("skc%d: too many sk units\n", sc->sk_unit);
|
|
free(sc_if, M_DEVBUF);
|
|
return(ENODEV);
|
|
}
|
|
|
|
sc_if->sk_unit = i;
|
|
sc_if->sk_port = port;
|
|
sc_if->sk_softc = sc;
|
|
sc->sk_if[port] = sc_if;
|
|
if (port == SK_PORT_A)
|
|
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
|
|
if (port == SK_PORT_B)
|
|
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
|
|
|
|
/*
|
|
* Get station address for this interface. Note that
|
|
* dual port cards actually come with three station
|
|
* addresses: one for each port, plus an extra. The
|
|
* extra one is used by the SysKonnect driver software
|
|
* as a 'virtual' station address for when both ports
|
|
* are operating in failover mode. Currently we don't
|
|
* use this extra address.
|
|
*/
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
sc_if->arpcom.ac_enaddr[i] =
|
|
sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
|
|
|
|
printf("sk%d: <XaQti Corp. XMAC II> at skc%d port %d\n",
|
|
sc_if->sk_unit, sc->sk_unit, port);
|
|
|
|
printf("sk%d: Ethernet address: %6D\n",
|
|
sc_if->sk_unit, sc_if->arpcom.ac_enaddr, ":");
|
|
|
|
/*
|
|
* Set up RAM buffer addresses. The NIC will have a certain
|
|
* amount of SRAM on it, somewhere between 512K and 2MB. We
|
|
* need to divide this up a) between the transmitter and
|
|
* receiver and b) between the two XMACs, if this is a
|
|
* dual port NIC. Our algotithm is to divide up the memory
|
|
* evenly so that everyone gets a fair share.
|
|
*/
|
|
if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
|
|
u_int32_t chunk, val;
|
|
|
|
chunk = sc->sk_ramsize / 2;
|
|
val = sc->sk_rboff / sizeof(u_int64_t);
|
|
sc_if->sk_rx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_rx_ramend = val - 1;
|
|
sc_if->sk_tx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_tx_ramend = val - 1;
|
|
} else {
|
|
u_int32_t chunk, val;
|
|
|
|
chunk = sc->sk_ramsize / 4;
|
|
val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
|
|
sizeof(u_int64_t);
|
|
sc_if->sk_rx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_rx_ramend = val - 1;
|
|
sc_if->sk_tx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_tx_ramend = val - 1;
|
|
}
|
|
|
|
/* Allocate the descriptor queues. */
|
|
sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
|
|
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
|
|
|
|
if (sc_if->sk_rdata == NULL) {
|
|
printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
|
|
free(sc_if, M_DEVBUF);
|
|
sc->sk_if[port] = NULL;
|
|
return(ENOMEM);
|
|
}
|
|
|
|
bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
|
|
|
|
/* Try to allocate memory for jumbo buffers. */
|
|
if (sk_alloc_jumbo_mem(sc_if)) {
|
|
printf("sk%d: jumbo buffer allocation failed\n",
|
|
sc_if->sk_unit);
|
|
free(sc_if->sk_rdata, M_DEVBUF);
|
|
free(sc_if, M_DEVBUF);
|
|
sc->sk_if[port] = NULL;
|
|
return(ENOMEM);
|
|
}
|
|
|
|
ifp = &sc_if->arpcom.ac_if;
|
|
ifp->if_softc = sc_if;
|
|
ifp->if_unit = sc_if->sk_unit;
|
|
ifp->if_name = "sk";
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = sk_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = sk_start;
|
|
ifp->if_watchdog = sk_watchdog;
|
|
ifp->if_init = sk_init;
|
|
ifp->if_baudrate = 1000000000;
|
|
ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
|
|
|
|
/*
|
|
* Do ifmedia setup.
|
|
*/
|
|
ifmedia_init(&sc_if->ifmedia, 0, sk_ifmedia_upd, sk_ifmedia_sts);
|
|
ifmedia_add(&sc_if->ifmedia, IFM_ETHER|sc->sk_pmd, 0, NULL);
|
|
ifmedia_add(&sc_if->ifmedia, IFM_ETHER|sc->sk_pmd|IFM_FDX, 0, NULL);
|
|
ifmedia_add(&sc_if->ifmedia, IFM_ETHER|sc->sk_pmd|IFM_HDX, 0, NULL);
|
|
ifmedia_add(&sc_if->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&sc_if->ifmedia, IFM_ETHER|IFM_AUTO);
|
|
|
|
/*
|
|
* Call MI attach routines.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int sk_attach(dev)
|
|
device_t dev;
|
|
{
|
|
int s;
|
|
u_int32_t command;
|
|
struct sk_softc *sc;
|
|
int unit, error = 0, rid;
|
|
|
|
s = splimp();
|
|
|
|
sc = device_get_softc(dev);
|
|
unit = device_get_unit(dev);
|
|
bzero(sc, sizeof(struct sk_softc));
|
|
|
|
/*
|
|
* Handle power management nonsense.
|
|
*/
|
|
command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
|
|
if (command == 0x01) {
|
|
|
|
command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
|
|
if (command & SK_PSTATE_MASK) {
|
|
u_int32_t iobase, membase, irq;
|
|
|
|
/* Save important PCI config data. */
|
|
iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
|
|
membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
|
|
irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
|
|
|
|
/* Reset the power state. */
|
|
printf("skc%d: chip is in D%d power mode "
|
|
"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
|
|
command &= 0xFFFFFFFC;
|
|
pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
|
|
|
|
/* Restore PCI config data. */
|
|
pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
|
|
pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
|
|
pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
|
|
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
|
pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
|
|
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
|
|
|
|
#ifdef SK_USEIOSPACE
|
|
if (!(command & PCIM_CMD_PORTEN)) {
|
|
printf("skc%d: failed to enable I/O ports!\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
#else
|
|
if (!(command & PCIM_CMD_MEMEN)) {
|
|
printf("skc%d: failed to enable memory mapping!\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
#endif
|
|
|
|
rid = SK_RID;
|
|
sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
|
|
0, ~0, 1, RF_ACTIVE);
|
|
|
|
if (sc->sk_res == NULL) {
|
|
printf("sk%d: couldn't map ports/memory\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
sc->sk_btag = rman_get_bustag(sc->sk_res);
|
|
sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
|
|
|
|
/* Allocate interrupt */
|
|
rid = 0;
|
|
sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->sk_irq == NULL) {
|
|
printf("skc%d: couldn't map interrupt\n", unit);
|
|
bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
|
|
sk_intr, sc, &sc->sk_intrhand);
|
|
|
|
if (error) {
|
|
printf("skc%d: couldn't set up irq\n", unit);
|
|
bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_res);
|
|
goto fail;
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
sk_reset(sc);
|
|
|
|
sc->sk_unit = unit;
|
|
|
|
/* Read and save vital product data from EEPROM. */
|
|
sk_vpd_read(sc);
|
|
|
|
/* Read and save RAM size and RAMbuffer offset */
|
|
switch(sk_win_read_1(sc, SK_EPROM0)) {
|
|
case SK_RAMSIZE_512K_64:
|
|
sc->sk_ramsize = 0x80000;
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
break;
|
|
case SK_RAMSIZE_1024K_64:
|
|
sc->sk_ramsize = 0x100000;
|
|
sc->sk_rboff = SK_RBOFF_80000;
|
|
break;
|
|
case SK_RAMSIZE_1024K_128:
|
|
sc->sk_ramsize = 0x100000;
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
break;
|
|
case SK_RAMSIZE_2048K_128:
|
|
sc->sk_ramsize = 0x200000;
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
break;
|
|
default:
|
|
printf("skc%d: unknown ram size: %d\n",
|
|
sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
|
|
bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
|
|
bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
|
|
error = ENXIO;
|
|
goto fail;
|
|
break;
|
|
}
|
|
|
|
/* Read and save physical media type */
|
|
switch(sk_win_read_1(sc, SK_PMDTYPE)) {
|
|
case SK_PMD_1000BASESX:
|
|
sc->sk_pmd = IFM_1000_SX;
|
|
break;
|
|
case SK_PMD_1000BASELX:
|
|
sc->sk_pmd = IFM_1000_LX;
|
|
break;
|
|
case SK_PMD_1000BASECX:
|
|
sc->sk_pmd = IFM_1000_CX;
|
|
break;
|
|
case SK_PMD_1000BASETX:
|
|
sc->sk_pmd = IFM_1000_TX;
|
|
break;
|
|
default:
|
|
printf("skc%d: unknown media type: 0x%x\n",
|
|
sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
|
|
bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
|
|
bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Announce the product name. */
|
|
printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
|
|
|
|
sk_attach_xmac(sc, SK_PORT_A);
|
|
if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC))
|
|
sk_attach_xmac(sc, SK_PORT_B);
|
|
|
|
/* Turn on the 'driver is loaded' LED. */
|
|
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
|
|
|
|
fail:
|
|
splx(s);
|
|
return(error);
|
|
}
|
|
|
|
static int sk_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL;
|
|
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
|
|
int s;
|
|
|
|
s = splimp();
|
|
|
|
sc = device_get_softc(dev);
|
|
sc_if0 = sc->sk_if[SK_PORT_A];
|
|
ifp0 = &sc_if0->arpcom.ac_if;
|
|
sk_stop(sc_if0);
|
|
if_detach(ifp0);
|
|
contigfree(sc_if0->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
|
|
ifmedia_removeall(&sc_if0->ifmedia);
|
|
free(sc->sk_if[SK_PORT_A], M_DEVBUF);
|
|
if (sc->sk_if[SK_PORT_B] != NULL) {
|
|
sc_if1 = sc->sk_if[SK_PORT_B];
|
|
ifp1 = &sc_if1->arpcom.ac_if;
|
|
sk_stop(sc_if1);
|
|
if_detach(ifp1);
|
|
contigfree(sc_if1->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
|
|
ifmedia_removeall(&sc_if1->ifmedia);
|
|
free(sc->sk_if[SK_PORT_B], M_DEVBUF);
|
|
}
|
|
|
|
bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
|
|
bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
|
|
|
|
splx(s);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int sk_encap(sc_if, m_head, txidx)
|
|
struct sk_if_softc *sc_if;
|
|
struct mbuf *m_head;
|
|
u_int32_t *txidx;
|
|
{
|
|
struct sk_tx_desc *f = NULL;
|
|
struct mbuf *m;
|
|
u_int32_t frag, cur, cnt = 0;
|
|
|
|
m = m_head;
|
|
cur = frag = *txidx;
|
|
|
|
/*
|
|
* Start packing the mbufs in this chain into
|
|
* the fragment pointers. Stop when we run out
|
|
* of fragments or hit the end of the mbuf chain.
|
|
*/
|
|
for (m = m_head; m != NULL; m = m->m_next) {
|
|
if (m->m_len != 0) {
|
|
if ((SK_TX_RING_CNT -
|
|
(sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
|
|
return(ENOBUFS);
|
|
f = &sc_if->sk_rdata->sk_tx_ring[frag];
|
|
f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
|
|
f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
|
|
if (cnt == 0)
|
|
f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
|
|
else
|
|
f->sk_ctl |= SK_TXCTL_OWN;
|
|
cur = frag;
|
|
SK_INC(frag, SK_TX_RING_CNT);
|
|
cnt++;
|
|
}
|
|
}
|
|
|
|
if (m != NULL)
|
|
return(ENOBUFS);
|
|
|
|
sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
|
|
SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
|
|
sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
|
|
sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
|
|
sc_if->sk_cdata.sk_tx_cnt += cnt;
|
|
|
|
*txidx = frag;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void sk_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if;
|
|
struct mbuf *m_head = NULL;
|
|
u_int32_t idx;
|
|
|
|
sc_if = ifp->if_softc;
|
|
sc = sc_if->sk_softc;
|
|
|
|
idx = sc_if->sk_cdata.sk_tx_prod;
|
|
|
|
while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (sk_encap(sc_if, m_head, &idx)) {
|
|
IF_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, m_head);
|
|
}
|
|
|
|
/* Transmit */
|
|
sc_if->sk_cdata.sk_tx_prod = idx;
|
|
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
|
|
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
ifp->if_timer = 5;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static void sk_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
|
|
sc_if = ifp->if_softc;
|
|
|
|
printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
|
|
sk_init(sc_if);
|
|
|
|
return;
|
|
}
|
|
|
|
static void sk_shutdown(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* Turn off the 'driver is loaded' LED. */
|
|
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
|
|
|
|
/*
|
|
* Reset the GEnesis controller. Doing this should also
|
|
* assert the resets on the attached XMAC(s).
|
|
*/
|
|
sk_reset(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void sk_rxeof(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct sk_chain *cur_rx;
|
|
int total_len = 0;
|
|
int i;
|
|
u_int32_t rxstat;
|
|
|
|
ifp = &sc_if->arpcom.ac_if;
|
|
i = sc_if->sk_cdata.sk_rx_prod;
|
|
cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
|
|
|
|
while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
|
|
|
|
cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
|
|
rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
|
|
m = cur_rx->sk_mbuf;
|
|
cur_rx->sk_mbuf = NULL;
|
|
total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
|
|
SK_INC(i, SK_RX_RING_CNT);
|
|
|
|
if (rxstat & XM_RXSTAT_ERRFRAME) {
|
|
ifp->if_ierrors++;
|
|
sk_newbuf(sc_if, cur_rx, m);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Try to allocate a new jumbo buffer. If that
|
|
* fails, copy the packet to mbufs and put the
|
|
* jumbo buffer back in the ring so it can be
|
|
* re-used. If allocating mbufs fails, then we
|
|
* have to drop the packet.
|
|
*/
|
|
if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
|
|
struct mbuf *m0;
|
|
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
|
|
total_len + ETHER_ALIGN, 0, ifp, NULL);
|
|
sk_newbuf(sc_if, cur_rx, m);
|
|
if (m0 == NULL) {
|
|
printf("sk%d: no receive buffers "
|
|
"available -- packet dropped!\n",
|
|
sc_if->sk_unit);
|
|
ifp->if_ierrors++;
|
|
continue;
|
|
}
|
|
m_adj(m0, ETHER_ALIGN);
|
|
m = m0;
|
|
} else {
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
if (ifp->if_bpf) {
|
|
bpf_mtap(ifp, m);
|
|
if (ifp->if_flags & IFF_PROMISC &&
|
|
(bcmp(eh->ether_dhost, sc_if->arpcom.ac_enaddr,
|
|
ETHER_ADDR_LEN) && !(eh->ether_dhost[0] & 1))) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Remove header from mbuf and pass it on. */
|
|
m_adj(m, sizeof(struct ether_header));
|
|
ether_input(ifp, eh, m);
|
|
}
|
|
|
|
sc_if->sk_cdata.sk_rx_prod = i;
|
|
|
|
return;
|
|
}
|
|
|
|
static void sk_txeof(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_tx_desc *cur_tx = NULL;
|
|
struct ifnet *ifp;
|
|
u_int32_t idx;
|
|
|
|
ifp = &sc_if->arpcom.ac_if;
|
|
|
|
/*
|
|
* Go through our tx ring and free mbufs for those
|
|
* frames that have been sent.
|
|
*/
|
|
idx = sc_if->sk_cdata.sk_tx_cons;
|
|
while(idx != sc_if->sk_cdata.sk_tx_prod) {
|
|
cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
|
|
if (cur_tx->sk_ctl & SK_TXCTL_OWN)
|
|
break;
|
|
if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
|
|
ifp->if_opackets++;
|
|
if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
|
|
m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
|
|
sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
|
|
}
|
|
sc_if->sk_cdata.sk_tx_cnt--;
|
|
SK_INC(idx, SK_TX_RING_CNT);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
sc_if->sk_cdata.sk_tx_cons = idx;
|
|
|
|
if (cur_tx != NULL)
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
return;
|
|
}
|
|
|
|
static void sk_intr_xmac(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
u_int16_t status;
|
|
u_int16_t bmsr;
|
|
|
|
sc = sc_if->sk_softc;
|
|
status = SK_XM_READ_2(sc_if, XM_ISR);
|
|
|
|
if (status & XM_ISR_LINKEVENT) {
|
|
SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_LINKEVENT);
|
|
if (sc_if->sk_link == 1) {
|
|
printf("sk%d: gigabit link down\n", sc_if->sk_unit);
|
|
sc_if->sk_link = 0;
|
|
}
|
|
}
|
|
|
|
if (status & XM_ISR_AUTONEG_DONE) {
|
|
bmsr = sk_phy_readreg(sc_if, XM_PHY_BMSR);
|
|
if (bmsr & XM_BMSR_LINKSTAT) {
|
|
sc_if->sk_link = 1;
|
|
SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_LINKEVENT);
|
|
printf("sk%d: gigabit link up\n", sc_if->sk_unit);
|
|
}
|
|
}
|
|
|
|
if (status & XM_IMR_TX_UNDERRUN)
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
|
|
|
|
if (status & XM_IMR_RX_OVERRUN)
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
|
|
|
|
return;
|
|
}
|
|
|
|
static void sk_intr(xsc)
|
|
void *xsc;
|
|
{
|
|
struct sk_softc *sc = xsc;
|
|
struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL;
|
|
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
|
|
u_int32_t status;
|
|
|
|
sc_if0 = sc->sk_if[SK_PORT_A];
|
|
sc_if1 = sc->sk_if[SK_PORT_B];
|
|
|
|
if (sc_if0 != NULL)
|
|
ifp0 = &sc_if0->arpcom.ac_if;
|
|
if (sc_if1 != NULL)
|
|
ifp1 = &sc_if0->arpcom.ac_if;
|
|
|
|
for (;;) {
|
|
status = CSR_READ_4(sc, SK_ISSR);
|
|
if (!(status & sc->sk_intrmask))
|
|
break;
|
|
|
|
/* Handle receive interrupts first. */
|
|
if (status & SK_ISR_RX1_EOF) {
|
|
sk_rxeof(sc_if0);
|
|
CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
|
|
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
|
|
}
|
|
if (status & SK_ISR_RX2_EOF) {
|
|
sk_rxeof(sc_if1);
|
|
CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
|
|
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
|
|
}
|
|
|
|
/* Then transmit interrupts. */
|
|
if (status & SK_ISR_TX1_S_EOF) {
|
|
sk_txeof(sc_if0);
|
|
CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
|
|
SK_TXBMU_CLR_IRQ_EOF);
|
|
}
|
|
if (status & SK_ISR_TX2_S_EOF) {
|
|
sk_txeof(sc_if1);
|
|
CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
|
|
SK_TXBMU_CLR_IRQ_EOF);
|
|
}
|
|
|
|
/* Then MAC interrupts. */
|
|
if (status & SK_ISR_MAC1)
|
|
sk_intr_xmac(sc_if0);
|
|
|
|
if (status & SK_ISR_MAC2)
|
|
sk_intr_xmac(sc_if1);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
|
|
|
|
if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
|
|
sk_start(ifp0);
|
|
if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
|
|
sk_start(ifp1);
|
|
|
|
return;
|
|
}
|
|
|
|
static void sk_init_xmac(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = &sc_if->arpcom.ac_if;
|
|
|
|
/* Unreset the XMAC. */
|
|
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
|
|
DELAY(1000);
|
|
|
|
/* Save the XMAC II revision */
|
|
sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
|
|
|
|
/* Set station address */
|
|
SK_XM_WRITE_2(sc_if, XM_PAR0,
|
|
*(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
|
|
SK_XM_WRITE_2(sc_if, XM_PAR1,
|
|
*(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
|
|
SK_XM_WRITE_2(sc_if, XM_PAR2,
|
|
*(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
|
|
} else {
|
|
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
|
|
} else {
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
|
|
}
|
|
|
|
/* We don't need the FCS appended to the packet. */
|
|
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
|
|
|
|
/* We want short frames padded to 60 bytes. */
|
|
SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
|
|
|
|
/*
|
|
* Enable the reception of all error frames. This is is
|
|
* a necessary evil due to the design of the XMAC. The
|
|
* XMAC's receive FIFO is only 8K in size, however jumbo
|
|
* frames can be up to 9000 bytes in length. When bad
|
|
* frame filtering is enabled, the XMAC's RX FIFO operates
|
|
* in 'store and forward' mode. For this to work, the
|
|
* entire frame has to fit into the FIFO, but that means
|
|
* that jumbo frames larger than 8192 bytes will be
|
|
* truncated. Disabling all bad frame filtering causes
|
|
* the RX FIFO to operate in streaming mode, in which
|
|
* case the XMAC will start transfering frames out of the
|
|
* RX FIFO as soon as the FIFO threshold is reached.
|
|
*/
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
|
|
XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
|
|
XM_MODE_RX_INRANGELEN);
|
|
|
|
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
|
|
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
|
|
else
|
|
SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
|
|
|
|
/*
|
|
* Bump up the transmit threshold. This helps hold off transmit
|
|
* underruns when we're blasting traffic from both ports at once.
|
|
*/
|
|
SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
|
|
|
|
/* Set multicast filter */
|
|
sk_setmulti(sc_if);
|
|
|
|
/* Clear and enable interrupts */
|
|
SK_XM_READ_2(sc_if, XM_ISR);
|
|
SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
|
|
|
|
sc_if->sk_link = 0;
|
|
|
|
/* Configure MAC arbiter */
|
|
switch(sc_if->sk_xmac_rev) {
|
|
case XM_XMAC_REV_B2:
|
|
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
|
|
break;
|
|
case XM_XMAC_REV_C1:
|
|
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
sk_win_write_2(sc, SK_MACARB_CTL,
|
|
SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Note that to properly initialize any part of the GEnesis chip,
|
|
* you first have to take it out of reset mode.
|
|
*/
|
|
static void sk_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct sk_if_softc *sc_if = xsc;
|
|
struct sk_softc *sc;
|
|
struct ifnet *ifp;
|
|
int s;
|
|
|
|
s = splimp();
|
|
|
|
ifp = &sc_if->arpcom.ac_if;
|
|
sc = sc_if->sk_softc;
|
|
|
|
/* Cancel pending I/O and free all RX/TX buffers. */
|
|
sk_stop(sc_if);
|
|
|
|
/* Configure LINK_SYNC LED */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
|
|
|
|
/* Configure RX LED */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
|
|
|
|
/* Configure TX LED */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
|
|
|
|
/* Configure I2C registers */
|
|
|
|
/* Configure XMAC(s) */
|
|
sk_init_xmac(sc_if);
|
|
|
|
/* Configure MAC FIFOs */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
|
|
|
|
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
|
|
|
|
/* Configure transmit arbiter(s) */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
|
|
SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
|
|
|
|
/* Configure RAMbuffers */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
|
|
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
|
|
|
|
/* Configure BMUs */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
|
|
vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
|
|
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
|
|
vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
|
|
|
|
/* Init descriptors */
|
|
if (sk_init_rx_ring(sc_if) == ENOBUFS) {
|
|
printf("sk%d: initialization failed: no "
|
|
"memory for rx buffers\n", sc_if->sk_unit);
|
|
sk_stop(sc_if);
|
|
(void)splx(s);
|
|
return;
|
|
}
|
|
sk_init_tx_ring(sc_if);
|
|
|
|
/* Configure interrupt handling */
|
|
CSR_READ_4(sc, SK_ISSR);
|
|
if (sc_if->sk_port == SK_PORT_A)
|
|
sc->sk_intrmask |= SK_INTRS1;
|
|
else
|
|
sc->sk_intrmask |= SK_INTRS2;
|
|
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
|
|
|
|
/* Start BMUs. */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
|
|
|
|
/* Enable XMACs TX and RX state machines */
|
|
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
splx(s);
|
|
|
|
return;
|
|
}
|
|
|
|
static void sk_stop(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
int i;
|
|
struct sk_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = &sc_if->arpcom.ac_if;
|
|
|
|
/* Turn off various components of this interface. */
|
|
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
|
|
|
|
/* Disable interrupts */
|
|
if (sc_if->sk_port == SK_PORT_A)
|
|
sc->sk_intrmask &= ~SK_INTRS1;
|
|
else
|
|
sc->sk_intrmask &= ~SK_INTRS2;
|
|
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
|
|
|
|
/* Free RX and TX mbufs still in the queues. */
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
|
|
m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
|
|
sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
|
|
m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
|
|
sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
|
|
|
|
return;
|
|
}
|