889 lines
22 KiB
C
889 lines
22 KiB
C
/*-
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* William Jolitz and Don Ahn.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Routines to handle clock hardware.
|
|
*/
|
|
|
|
/*
|
|
* inittodr, settodr and support routines written
|
|
* by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
|
|
*
|
|
* reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
|
|
*/
|
|
|
|
#include "opt_clock.h"
|
|
#include "opt_isa.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/time.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/module.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/power.h>
|
|
|
|
#include <machine/clock.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/intr_machdep.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/psl.h>
|
|
#ifdef SMP
|
|
#include <machine/smp.h>
|
|
#endif
|
|
#include <machine/specialreg.h>
|
|
|
|
#include <amd64/isa/isa.h>
|
|
#include <isa/rtc.h>
|
|
#ifdef DEV_ISA
|
|
#include <isa/isavar.h>
|
|
#endif
|
|
#include <amd64/isa/timerreg.h>
|
|
|
|
/*
|
|
* 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
|
|
* can use a simple formula for leap years.
|
|
*/
|
|
#define LEAPYEAR(y) (((u_int)(y) % 4 == 0) ? 1 : 0)
|
|
#define DAYSPERYEAR (31+28+31+30+31+30+31+31+30+31+30+31)
|
|
|
|
#define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
|
|
|
|
int adjkerntz; /* local offset from GMT in seconds */
|
|
int clkintr_pending;
|
|
int disable_rtc_set; /* disable resettodr() if != 0 */
|
|
int pscnt = 1;
|
|
int psdiv = 1;
|
|
int statclock_disable;
|
|
#ifndef TIMER_FREQ
|
|
#define TIMER_FREQ 1193182
|
|
#endif
|
|
u_int timer_freq = TIMER_FREQ;
|
|
int timer0_max_count;
|
|
int wall_cmos_clock; /* wall CMOS clock assumed if != 0 */
|
|
struct mtx clock_lock;
|
|
|
|
static int beeping = 0;
|
|
static const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
|
|
static u_int hardclock_max_count;
|
|
static struct intsrc *i8254_intsrc;
|
|
static u_int32_t i8254_lastcount;
|
|
static u_int32_t i8254_offset;
|
|
static int (*i8254_pending)(struct intsrc *);
|
|
static int i8254_ticked;
|
|
static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
|
|
static u_char rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
|
|
|
|
/* Values for timerX_state: */
|
|
#define RELEASED 0
|
|
#define RELEASE_PENDING 1
|
|
#define ACQUIRED 2
|
|
#define ACQUIRE_PENDING 3
|
|
|
|
static u_char timer2_state;
|
|
|
|
static unsigned i8254_get_timecount(struct timecounter *tc);
|
|
static void set_timer_freq(u_int freq, int intr_freq);
|
|
|
|
static struct timecounter i8254_timecounter = {
|
|
i8254_get_timecount, /* get_timecount */
|
|
0, /* no poll_pps */
|
|
~0u, /* counter_mask */
|
|
0, /* frequency */
|
|
"i8254", /* name */
|
|
0 /* quality */
|
|
};
|
|
|
|
static void
|
|
clkintr(struct clockframe *frame)
|
|
{
|
|
|
|
if (timecounter->tc_get_timecount == i8254_get_timecount) {
|
|
mtx_lock_spin(&clock_lock);
|
|
if (i8254_ticked)
|
|
i8254_ticked = 0;
|
|
else {
|
|
i8254_offset += timer0_max_count;
|
|
i8254_lastcount = 0;
|
|
}
|
|
clkintr_pending = 0;
|
|
mtx_unlock_spin(&clock_lock);
|
|
}
|
|
hardclock(frame);
|
|
#ifdef SMP
|
|
forward_hardclock();
|
|
#endif
|
|
}
|
|
|
|
int
|
|
acquire_timer2(int mode)
|
|
{
|
|
|
|
if (timer2_state != RELEASED)
|
|
return (-1);
|
|
timer2_state = ACQUIRED;
|
|
|
|
/*
|
|
* This access to the timer registers is as atomic as possible
|
|
* because it is a single instruction. We could do better if we
|
|
* knew the rate. Use of splclock() limits glitches to 10-100us,
|
|
* and this is probably good enough for timer2, so we aren't as
|
|
* careful with it as with timer0.
|
|
*/
|
|
outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
release_timer2()
|
|
{
|
|
|
|
if (timer2_state != ACQUIRED)
|
|
return (-1);
|
|
timer2_state = RELEASED;
|
|
outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This routine receives statistical clock interrupts from the RTC.
|
|
* As explained above, these occur at 128 interrupts per second.
|
|
* When profiling, we receive interrupts at a rate of 1024 Hz.
|
|
*
|
|
* This does not actually add as much overhead as it sounds, because
|
|
* when the statistical clock is active, the hardclock driver no longer
|
|
* needs to keep (inaccurate) statistics on its own. This decouples
|
|
* statistics gathering from scheduling interrupts.
|
|
*
|
|
* The RTC chip requires that we read status register C (RTC_INTR)
|
|
* to acknowledge an interrupt, before it will generate the next one.
|
|
* Under high interrupt load, rtcintr() can be indefinitely delayed and
|
|
* the clock can tick immediately after the read from RTC_INTR. In this
|
|
* case, the mc146818A interrupt signal will not drop for long enough
|
|
* to register with the 8259 PIC. If an interrupt is missed, the stat
|
|
* clock will halt, considerably degrading system performance. This is
|
|
* why we use 'while' rather than a more straightforward 'if' below.
|
|
* Stat clock ticks can still be lost, causing minor loss of accuracy
|
|
* in the statistics, but the stat clock will no longer stop.
|
|
*/
|
|
static void
|
|
rtcintr(struct clockframe *frame)
|
|
{
|
|
|
|
while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
|
|
if (profprocs != 0) {
|
|
if (--pscnt == 0)
|
|
pscnt = psdiv;
|
|
profclock(frame);
|
|
}
|
|
if (pscnt == psdiv)
|
|
statclock(frame);
|
|
#ifdef SMP
|
|
forward_statclock();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#include "opt_ddb.h"
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
|
|
DB_SHOW_COMMAND(rtc, rtc)
|
|
{
|
|
printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
|
|
rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
|
|
rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
|
|
rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
|
|
}
|
|
#endif /* DDB */
|
|
|
|
static int
|
|
getit(void)
|
|
{
|
|
int high, low;
|
|
|
|
mtx_lock_spin(&clock_lock);
|
|
|
|
/* Select timer0 and latch counter value. */
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
|
|
|
|
low = inb(TIMER_CNTR0);
|
|
high = inb(TIMER_CNTR0);
|
|
|
|
mtx_unlock_spin(&clock_lock);
|
|
return ((high << 8) | low);
|
|
}
|
|
|
|
/*
|
|
* Wait "n" microseconds.
|
|
* Relies on timer 1 counting down from (timer_freq / hz)
|
|
* Note: timer had better have been programmed before this is first used!
|
|
*/
|
|
void
|
|
DELAY(int n)
|
|
{
|
|
int delta, prev_tick, tick, ticks_left;
|
|
|
|
#ifdef DELAYDEBUG
|
|
int getit_calls = 1;
|
|
int n1;
|
|
static int state = 0;
|
|
|
|
if (state == 0) {
|
|
state = 1;
|
|
for (n1 = 1; n1 <= 10000000; n1 *= 10)
|
|
DELAY(n1);
|
|
state = 2;
|
|
}
|
|
if (state == 1)
|
|
printf("DELAY(%d)...", n);
|
|
#endif
|
|
/*
|
|
* Guard against the timer being uninitialized if we are called
|
|
* early for console i/o.
|
|
*/
|
|
if (timer0_max_count == 0)
|
|
set_timer_freq(timer_freq, hz);
|
|
|
|
/*
|
|
* Read the counter first, so that the rest of the setup overhead is
|
|
* counted. Guess the initial overhead is 20 usec (on most systems it
|
|
* takes about 1.5 usec for each of the i/o's in getit(). The loop
|
|
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
|
|
* multiplications and divisions to scale the count take a while).
|
|
*
|
|
* However, if ddb is active then use a fake counter since reading
|
|
* the i8254 counter involves acquiring a lock. ddb must not do
|
|
* locking for many reasons, but it calls here for at least atkbd
|
|
* input.
|
|
*/
|
|
#ifdef KDB
|
|
if (kdb_active)
|
|
prev_tick = 1;
|
|
else
|
|
#endif
|
|
prev_tick = getit();
|
|
n -= 0; /* XXX actually guess no initial overhead */
|
|
/*
|
|
* Calculate (n * (timer_freq / 1e6)) without using floating point
|
|
* and without any avoidable overflows.
|
|
*/
|
|
if (n <= 0)
|
|
ticks_left = 0;
|
|
else if (n < 256)
|
|
/*
|
|
* Use fixed point to avoid a slow division by 1000000.
|
|
* 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
|
|
* 2^15 is the first power of 2 that gives exact results
|
|
* for n between 0 and 256.
|
|
*/
|
|
ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
|
|
else
|
|
/*
|
|
* Don't bother using fixed point, although gcc-2.7.2
|
|
* generates particularly poor code for the long long
|
|
* division, since even the slow way will complete long
|
|
* before the delay is up (unless we're interrupted).
|
|
*/
|
|
ticks_left = ((u_int)n * (long long)timer_freq + 999999)
|
|
/ 1000000;
|
|
|
|
while (ticks_left > 0) {
|
|
#ifdef KDB
|
|
if (kdb_active) {
|
|
inb(0x84);
|
|
tick = prev_tick - 1;
|
|
if (tick <= 0)
|
|
tick = timer0_max_count;
|
|
} else
|
|
#endif
|
|
tick = getit();
|
|
#ifdef DELAYDEBUG
|
|
++getit_calls;
|
|
#endif
|
|
delta = prev_tick - tick;
|
|
prev_tick = tick;
|
|
if (delta < 0) {
|
|
delta += timer0_max_count;
|
|
/*
|
|
* Guard against timer0_max_count being wrong.
|
|
* This shouldn't happen in normal operation,
|
|
* but it may happen if set_timer_freq() is
|
|
* traced.
|
|
*/
|
|
if (delta < 0)
|
|
delta = 0;
|
|
}
|
|
ticks_left -= delta;
|
|
}
|
|
#ifdef DELAYDEBUG
|
|
if (state == 1)
|
|
printf(" %d calls to getit() at %d usec each\n",
|
|
getit_calls, (n + 5) / getit_calls);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
sysbeepstop(void *chan)
|
|
{
|
|
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
|
|
release_timer2();
|
|
beeping = 0;
|
|
}
|
|
|
|
int
|
|
sysbeep(int pitch, int period)
|
|
{
|
|
int x = splclock();
|
|
|
|
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
|
|
if (!beeping) {
|
|
/* Something else owns it. */
|
|
splx(x);
|
|
return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
|
|
}
|
|
mtx_lock_spin(&clock_lock);
|
|
outb(TIMER_CNTR2, pitch);
|
|
outb(TIMER_CNTR2, (pitch>>8));
|
|
mtx_unlock_spin(&clock_lock);
|
|
if (!beeping) {
|
|
/* enable counter2 output to speaker */
|
|
outb(IO_PPI, inb(IO_PPI) | 3);
|
|
beeping = period;
|
|
timeout(sysbeepstop, (void *)NULL, period);
|
|
}
|
|
splx(x);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* RTC support routines
|
|
*/
|
|
|
|
int
|
|
rtcin(reg)
|
|
int reg;
|
|
{
|
|
int s;
|
|
u_char val;
|
|
|
|
s = splhigh();
|
|
outb(IO_RTC, reg);
|
|
inb(0x84);
|
|
val = inb(IO_RTC + 1);
|
|
inb(0x84);
|
|
splx(s);
|
|
return (val);
|
|
}
|
|
|
|
static __inline void
|
|
writertc(u_char reg, u_char val)
|
|
{
|
|
int s;
|
|
|
|
s = splhigh();
|
|
inb(0x84);
|
|
outb(IO_RTC, reg);
|
|
inb(0x84);
|
|
outb(IO_RTC + 1, val);
|
|
inb(0x84); /* XXX work around wrong order in rtcin() */
|
|
splx(s);
|
|
}
|
|
|
|
static __inline int
|
|
readrtc(int port)
|
|
{
|
|
return(bcd2bin(rtcin(port)));
|
|
}
|
|
|
|
static u_int
|
|
calibrate_clocks(void)
|
|
{
|
|
u_int count, prev_count, tot_count;
|
|
int sec, start_sec, timeout;
|
|
|
|
if (bootverbose)
|
|
printf("Calibrating clock(s) ... ");
|
|
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
|
|
goto fail;
|
|
timeout = 100000000;
|
|
|
|
/* Read the mc146818A seconds counter. */
|
|
for (;;) {
|
|
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
|
|
sec = rtcin(RTC_SEC);
|
|
break;
|
|
}
|
|
if (--timeout == 0)
|
|
goto fail;
|
|
}
|
|
|
|
/* Wait for the mC146818A seconds counter to change. */
|
|
start_sec = sec;
|
|
for (;;) {
|
|
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
|
|
sec = rtcin(RTC_SEC);
|
|
if (sec != start_sec)
|
|
break;
|
|
}
|
|
if (--timeout == 0)
|
|
goto fail;
|
|
}
|
|
|
|
/* Start keeping track of the i8254 counter. */
|
|
prev_count = getit();
|
|
if (prev_count == 0 || prev_count > timer0_max_count)
|
|
goto fail;
|
|
tot_count = 0;
|
|
|
|
/*
|
|
* Wait for the mc146818A seconds counter to change. Read the i8254
|
|
* counter for each iteration since this is convenient and only
|
|
* costs a few usec of inaccuracy. The timing of the final reads
|
|
* of the counters almost matches the timing of the initial reads,
|
|
* so the main cause of inaccuracy is the varying latency from
|
|
* inside getit() or rtcin(RTC_STATUSA) to the beginning of the
|
|
* rtcin(RTC_SEC) that returns a changed seconds count. The
|
|
* maximum inaccuracy from this cause is < 10 usec on 486's.
|
|
*/
|
|
start_sec = sec;
|
|
for (;;) {
|
|
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
|
|
sec = rtcin(RTC_SEC);
|
|
count = getit();
|
|
if (count == 0 || count > timer0_max_count)
|
|
goto fail;
|
|
if (count > prev_count)
|
|
tot_count += prev_count - (count - timer0_max_count);
|
|
else
|
|
tot_count += prev_count - count;
|
|
prev_count = count;
|
|
if (sec != start_sec)
|
|
break;
|
|
if (--timeout == 0)
|
|
goto fail;
|
|
}
|
|
|
|
if (bootverbose) {
|
|
printf("i8254 clock: %u Hz\n", tot_count);
|
|
}
|
|
return (tot_count);
|
|
|
|
fail:
|
|
if (bootverbose)
|
|
printf("failed, using default i8254 clock of %u Hz\n",
|
|
timer_freq);
|
|
return (timer_freq);
|
|
}
|
|
|
|
static void
|
|
set_timer_freq(u_int freq, int intr_freq)
|
|
{
|
|
int new_timer0_max_count;
|
|
|
|
mtx_lock_spin(&clock_lock);
|
|
timer_freq = freq;
|
|
new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
|
|
if (new_timer0_max_count != timer0_max_count) {
|
|
timer0_max_count = new_timer0_max_count;
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
|
|
outb(TIMER_CNTR0, timer0_max_count & 0xff);
|
|
outb(TIMER_CNTR0, timer0_max_count >> 8);
|
|
}
|
|
mtx_unlock_spin(&clock_lock);
|
|
}
|
|
|
|
/*
|
|
* Initialize 8254 timer 0 early so that it can be used in DELAY().
|
|
* XXX initialization of other timers is unintentionally left blank.
|
|
*/
|
|
void
|
|
startrtclock()
|
|
{
|
|
u_int delta, freq;
|
|
|
|
writertc(RTC_STATUSA, rtc_statusa);
|
|
writertc(RTC_STATUSB, RTCSB_24HR);
|
|
|
|
set_timer_freq(timer_freq, hz);
|
|
freq = calibrate_clocks();
|
|
#ifdef CLK_CALIBRATION_LOOP
|
|
if (bootverbose) {
|
|
printf(
|
|
"Press a key on the console to abort clock calibration\n");
|
|
while (cncheckc() == -1)
|
|
calibrate_clocks();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Use the calibrated i8254 frequency if it seems reasonable.
|
|
* Otherwise use the default, and don't use the calibrated i586
|
|
* frequency.
|
|
*/
|
|
delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
|
|
if (delta < timer_freq / 100) {
|
|
#ifndef CLK_USE_I8254_CALIBRATION
|
|
if (bootverbose)
|
|
printf(
|
|
"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
|
|
freq = timer_freq;
|
|
#endif
|
|
timer_freq = freq;
|
|
} else {
|
|
if (bootverbose)
|
|
printf(
|
|
"%d Hz differs from default of %d Hz by more than 1%%\n",
|
|
freq, timer_freq);
|
|
}
|
|
|
|
set_timer_freq(timer_freq, hz);
|
|
i8254_timecounter.tc_frequency = timer_freq;
|
|
tc_init(&i8254_timecounter);
|
|
|
|
init_TSC();
|
|
}
|
|
|
|
/*
|
|
* Initialize the time of day register, based on the time base which is, e.g.
|
|
* from a filesystem.
|
|
*/
|
|
void
|
|
inittodr(time_t base)
|
|
{
|
|
unsigned long sec, days;
|
|
int year, month;
|
|
int y, m, s;
|
|
struct timespec ts;
|
|
|
|
if (base) {
|
|
s = splclock();
|
|
ts.tv_sec = base;
|
|
ts.tv_nsec = 0;
|
|
tc_setclock(&ts);
|
|
splx(s);
|
|
}
|
|
|
|
/* Look if we have a RTC present and the time is valid */
|
|
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
|
|
goto wrong_time;
|
|
|
|
/* wait for time update to complete */
|
|
/* If RTCSA_TUP is zero, we have at least 244us before next update */
|
|
s = splhigh();
|
|
while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
|
|
splx(s);
|
|
s = splhigh();
|
|
}
|
|
|
|
days = 0;
|
|
#ifdef USE_RTC_CENTURY
|
|
year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
|
|
#else
|
|
year = readrtc(RTC_YEAR) + 1900;
|
|
if (year < 1970)
|
|
year += 100;
|
|
#endif
|
|
if (year < 1970) {
|
|
splx(s);
|
|
goto wrong_time;
|
|
}
|
|
month = readrtc(RTC_MONTH);
|
|
for (m = 1; m < month; m++)
|
|
days += daysinmonth[m-1];
|
|
if ((month > 2) && LEAPYEAR(year))
|
|
days ++;
|
|
days += readrtc(RTC_DAY) - 1;
|
|
for (y = 1970; y < year; y++)
|
|
days += DAYSPERYEAR + LEAPYEAR(y);
|
|
sec = ((( days * 24 +
|
|
readrtc(RTC_HRS)) * 60 +
|
|
readrtc(RTC_MIN)) * 60 +
|
|
readrtc(RTC_SEC));
|
|
/* sec now contains the number of seconds, since Jan 1 1970,
|
|
in the local time zone */
|
|
|
|
sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
|
|
|
|
y = time_second - sec;
|
|
if (y <= -2 || y >= 2) {
|
|
/* badly off, adjust it */
|
|
ts.tv_sec = sec;
|
|
ts.tv_nsec = 0;
|
|
tc_setclock(&ts);
|
|
}
|
|
splx(s);
|
|
return;
|
|
|
|
wrong_time:
|
|
printf("Invalid time in real time clock.\n");
|
|
printf("Check and reset the date immediately!\n");
|
|
}
|
|
|
|
/*
|
|
* Write system time back to RTC
|
|
*/
|
|
void
|
|
resettodr()
|
|
{
|
|
unsigned long tm;
|
|
int y, m, s;
|
|
|
|
if (disable_rtc_set)
|
|
return;
|
|
|
|
s = splclock();
|
|
tm = time_second;
|
|
splx(s);
|
|
|
|
/* Disable RTC updates and interrupts. */
|
|
writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
|
|
|
|
/* Calculate local time to put in RTC */
|
|
|
|
tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
|
|
|
|
writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */
|
|
writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */
|
|
writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24; /* Write back Hours */
|
|
|
|
/* We have now the days since 01-01-1970 in tm */
|
|
writertc(RTC_WDAY, (tm + 4) % 7 + 1); /* Write back Weekday */
|
|
for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
|
|
tm >= m;
|
|
y++, m = DAYSPERYEAR + LEAPYEAR(y))
|
|
tm -= m;
|
|
|
|
/* Now we have the years in y and the day-of-the-year in tm */
|
|
writertc(RTC_YEAR, bin2bcd(y%100)); /* Write back Year */
|
|
#ifdef USE_RTC_CENTURY
|
|
writertc(RTC_CENTURY, bin2bcd(y/100)); /* ... and Century */
|
|
#endif
|
|
for (m = 0; ; m++) {
|
|
int ml;
|
|
|
|
ml = daysinmonth[m];
|
|
if (m == 1 && LEAPYEAR(y))
|
|
ml++;
|
|
if (tm < ml)
|
|
break;
|
|
tm -= ml;
|
|
}
|
|
|
|
writertc(RTC_MONTH, bin2bcd(m + 1)); /* Write back Month */
|
|
writertc(RTC_DAY, bin2bcd(tm + 1)); /* Write back Month Day */
|
|
|
|
/* Reenable RTC updates and interrupts. */
|
|
writertc(RTC_STATUSB, rtc_statusb);
|
|
}
|
|
|
|
|
|
/*
|
|
* Start both clocks running.
|
|
*/
|
|
void
|
|
cpu_initclocks()
|
|
{
|
|
int diag;
|
|
|
|
if (statclock_disable) {
|
|
/*
|
|
* The stat interrupt mask is different without the
|
|
* statistics clock. Also, don't set the interrupt
|
|
* flag which would normally cause the RTC to generate
|
|
* interrupts.
|
|
*/
|
|
rtc_statusb = RTCSB_24HR;
|
|
} else {
|
|
/* Setting stathz to nonzero early helps avoid races. */
|
|
stathz = RTC_NOPROFRATE;
|
|
profhz = RTC_PROFRATE;
|
|
}
|
|
|
|
/* Finish initializing 8254 timer 0. */
|
|
intr_add_handler("clk", 0, (driver_intr_t *)clkintr, NULL,
|
|
INTR_TYPE_CLK | INTR_FAST, NULL);
|
|
i8254_intsrc = intr_lookup_source(0);
|
|
if (i8254_intsrc != NULL)
|
|
i8254_pending = i8254_intsrc->is_pic->pic_source_pending;
|
|
|
|
/* Initialize RTC. */
|
|
writertc(RTC_STATUSA, rtc_statusa);
|
|
writertc(RTC_STATUSB, RTCSB_24HR);
|
|
|
|
/* Don't bother enabling the statistics clock. */
|
|
if (!statclock_disable) {
|
|
diag = rtcin(RTC_DIAG);
|
|
if (diag != 0)
|
|
printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
|
|
|
|
intr_add_handler("rtc", 8, (driver_intr_t *)rtcintr, NULL,
|
|
INTR_TYPE_CLK | INTR_FAST, NULL);
|
|
|
|
writertc(RTC_STATUSB, rtc_statusb);
|
|
}
|
|
|
|
init_TSC_tc();
|
|
}
|
|
|
|
void
|
|
cpu_startprofclock(void)
|
|
{
|
|
|
|
rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
|
|
writertc(RTC_STATUSA, rtc_statusa);
|
|
psdiv = pscnt = psratio;
|
|
}
|
|
|
|
void
|
|
cpu_stopprofclock(void)
|
|
{
|
|
|
|
rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
|
|
writertc(RTC_STATUSA, rtc_statusa);
|
|
psdiv = pscnt = 1;
|
|
}
|
|
|
|
static int
|
|
sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
u_int freq;
|
|
|
|
/*
|
|
* Use `i8254' instead of `timer' in external names because `timer'
|
|
* is is too generic. Should use it everywhere.
|
|
*/
|
|
freq = timer_freq;
|
|
error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
|
|
if (error == 0 && req->newptr != NULL) {
|
|
set_timer_freq(freq, hz);
|
|
i8254_timecounter.tc_frequency = freq;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
|
|
0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
|
|
|
|
static unsigned
|
|
i8254_get_timecount(struct timecounter *tc)
|
|
{
|
|
u_int count;
|
|
u_int high, low;
|
|
u_long rflags;
|
|
|
|
rflags = read_rflags();
|
|
mtx_lock_spin(&clock_lock);
|
|
|
|
/* Select timer0 and latch counter value. */
|
|
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
|
|
|
|
low = inb(TIMER_CNTR0);
|
|
high = inb(TIMER_CNTR0);
|
|
count = timer0_max_count - ((high << 8) | low);
|
|
if (count < i8254_lastcount ||
|
|
(!i8254_ticked && (clkintr_pending ||
|
|
((count < 20 || (!(rflags & PSL_I) && count < timer0_max_count / 2u)) &&
|
|
i8254_intsrc != NULL && i8254_pending(i8254_intsrc))))) {
|
|
i8254_ticked = 1;
|
|
i8254_offset += timer0_max_count;
|
|
}
|
|
i8254_lastcount = count;
|
|
count += i8254_offset;
|
|
mtx_unlock_spin(&clock_lock);
|
|
return (count);
|
|
}
|
|
|
|
#ifdef DEV_ISA
|
|
/*
|
|
* Attach to the ISA PnP descriptors for the timer and realtime clock.
|
|
*/
|
|
static struct isa_pnp_id attimer_ids[] = {
|
|
{ 0x0001d041 /* PNP0100 */, "AT timer" },
|
|
{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
|
|
{ 0 }
|
|
};
|
|
|
|
static int
|
|
attimer_probe(device_t dev)
|
|
{
|
|
int result;
|
|
|
|
if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
|
|
device_quiet(dev);
|
|
return(result);
|
|
}
|
|
|
|
static int
|
|
attimer_attach(device_t dev)
|
|
{
|
|
return(0);
|
|
}
|
|
|
|
static device_method_t attimer_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, attimer_probe),
|
|
DEVMETHOD(device_attach, attimer_attach),
|
|
DEVMETHOD(device_detach, bus_generic_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX stop statclock? */
|
|
DEVMETHOD(device_resume, bus_generic_resume), /* XXX restart statclock? */
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t attimer_driver = {
|
|
"attimer",
|
|
attimer_methods,
|
|
1, /* no softc */
|
|
};
|
|
|
|
static devclass_t attimer_devclass;
|
|
|
|
DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
|
|
DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
|
|
#endif /* DEV_ISA */
|