freebsd-dev/sys/dev/aic7xxx/aic7xxx.c
Justin T. Gibbs 0378c40c5c Fix a few problems with handling rejected transfer negotiation messages.
Use the host message loop for any unknown message types instead of performing
a reject message in the sequencer.  Pass reject messages to the host
message loop too which frees up a sequencer interrupt type slot.

Default to issuing a bus reset if initiator mode is enabled.  It seems
that the reset scsi bus bit is not defined in the same location for
all aic78xx BIOSes, so attempting to honor this setting will have to
wait until I get more information on how to detect it.

Nuke some unused variables.
1998-12-17 00:06:52 +00:00

5415 lines
140 KiB
C

/*
* Generic driver for the aic7xxx based adaptec SCSI controllers
* Product specific probe and attach routines can be found in:
* i386/eisa/ahc_eisa.c 27/284X and aic7770 motherboard controllers
* pci/ahc_pci.c 3985, 3980, 3940, 2940, aic7895, aic7890,
* aic7880, aic7870, aic7860, and aic7850 controllers
*
* Copyright (c) 1994, 1995, 1996, 1997, 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Where this Software is combined with software released under the terms of
* the GNU Public License ("GPL") and the terms of the GPL would require the
* combined work to also be released under the terms of the GPL, the terms
* and conditions of this License will apply in addition to those of the
* GPL with the exception of any terms or conditions of this License that
* conflict with, or are expressly prohibited by, the GPL.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: aic7xxx.c,v 1.13 1998/12/15 08:22:40 gibbs Exp $
*/
/*
* A few notes on features of the driver.
*
* SCB paging takes advantage of the fact that devices stay disconnected
* from the bus a relatively long time and that while they're disconnected,
* having the SCBs for these transactions down on the host adapter is of
* little use. Instead of leaving this idle SCB down on the card we copy
* it back up into kernel memory and reuse the SCB slot on the card to
* schedule another transaction. This can be a real payoff when doing random
* I/O to tagged queueing devices since there are more transactions active at
* once for the device to sort for optimal seek reduction. The algorithm goes
* like this...
*
* The sequencer maintains two lists of its hardware SCBs. The first is the
* singly linked free list which tracks all SCBs that are not currently in
* use. The second is the doubly linked disconnected list which holds the
* SCBs of transactions that are in the disconnected state sorted most
* recently disconnected first. When the kernel queues a transaction to
* the card, a hardware SCB to "house" this transaction is retrieved from
* either of these two lists. If the SCB came from the disconnected list,
* a check is made to see if any data transfer or SCB linking (more on linking
* in a bit) information has been changed since it was copied from the host
* and if so, DMAs the SCB back up before it can be used. Once a hardware
* SCB has been obtained, the SCB is DMAed from the host. Before any work
* can begin on this SCB, the sequencer must ensure that either the SCB is
* for a tagged transaction or the target is not already working on another
* non-tagged transaction. If a conflict arises in the non-tagged case, the
* sequencer finds the SCB for the active transactions and sets the SCB_LINKED
* field in that SCB to this next SCB to execute. To facilitate finding
* active non-tagged SCBs, the last four bytes of up to the first four hardware
* SCBs serve as a storage area for the currently active SCB ID for each
* target.
*
* When a device reconnects, a search is made of the hardware SCBs to find
* the SCB for this transaction. If the search fails, a hardware SCB is
* pulled from either the free or disconnected SCB list and the proper
* SCB is DMAed from the host. If the MK_MESSAGE control bit is set
* in the control byte of the SCB while it was disconnected, the sequencer
* will assert ATN and attempt to issue a message to the host.
*
* When a command completes, a check for non-zero status and residuals is
* made. If either of these conditions exists, the SCB is DMAed back up to
* the host so that it can interpret this information. Additionally, in the
* case of bad status, the sequencer generates a special interrupt and pauses
* itself. This allows the host to setup a request sense command if it
* chooses for this target synchronously with the error so that sense
* information isn't lost.
*
*/
#include <opt_aic7xxx.h>
#include <pci.h>
#include <stddef.h> /* For offsetof */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#if NPCI > 0
#include <machine/bus_memio.h>
#endif
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/clock.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <dev/aic7xxx/aic7xxx.h>
#include <dev/aic7xxx/sequencer.h>
#include <aic7xxx_reg.h>
#include <aic7xxx_seq.h>
#include <sys/kernel.h>
#ifndef AHC_TMODE_ENABLE
#define AHC_TMODE_ENABLE 0
#endif
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#define ALL_CHANNELS '\0'
#define ALL_TARGETS_MASK 0xFFFF
#define SIM_IS_SCSIBUS_B(ahc, sim) \
(sim == ahc->sim_b)
#define SCB_IS_SCSIBUS_B(scb) \
(((scb)->hscb->tcl & SELBUSB) != 0)
#define SCB_TARGET(scb) \
(((scb)->hscb->tcl & TID) >> 4)
#define SCB_CHANNEL(scb) \
(SCB_IS_SCSIBUS_B(scb) ? 'B' : 'A')
#define SCB_LUN(scb) \
((scb)->hscb->tcl & LID)
#define SCB_TARGET_OFFSET(scb) \
(SCB_TARGET(scb) + (SCB_IS_SCSIBUS_B(scb) ? 8 : 0))
#define SCB_TARGET_MASK(scb) \
(0x01 << (SCB_TARGET_OFFSET(scb)))
#define ccb_scb_ptr spriv_ptr0
#define ccb_ahc_ptr spriv_ptr1
typedef enum {
ROLE_UNKNOWN,
ROLE_INITIATOR,
ROLE_TARGET,
} role_t;
struct ahc_devinfo {
int target_offset;
u_int16_t target_mask;
u_int8_t target;
u_int8_t lun;
char channel;
role_t role; /*
* Only guaranteed to be correct if not
* in the busfree state.
*/
};
typedef enum {
SEARCH_COMPLETE,
SEARCH_COUNT,
SEARCH_REMOVE
} ahc_search_action;
u_long ahc_unit = 0;
#ifdef AHC_DEBUG
static int ahc_debug = AHC_DEBUG;
#endif
#if NPCI > 0
void ahc_pci_intr(struct ahc_softc *ahc);
#endif
#if UNUSED
static void ahc_dump_targcmd(struct target_cmd *cmd);
#endif
static void ahc_shutdown(int howto, void *arg);
static cam_status
ahc_find_tmode_devs(struct ahc_softc *ahc,
struct cam_sim *sim, union ccb *ccb,
struct tmode_tstate **tstate,
struct tmode_lstate **lstate,
int notfound_failure);
static void ahc_action(struct cam_sim *sim, union ccb *ccb);
static void ahc_async(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
static void ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs,
int nsegments, int error);
static void ahc_poll(struct cam_sim *sim);
static void ahc_setup_data(struct ahc_softc *ahc,
struct ccb_scsiio *csio, struct scb *scb);
static void ahc_freeze_devq(struct ahc_softc *ahc, struct cam_path *path);
static struct scb *
ahc_get_scb(struct ahc_softc *ahc);
static void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
static struct scb *
ahc_alloc_scb(struct ahc_softc *ahc);
static void ahc_fetch_devinfo(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static void ahc_compile_devinfo(struct ahc_devinfo *devinfo,
u_int target, u_int lun, char channel,
role_t role);
static u_int ahc_abort_wscb(struct ahc_softc *ahc, u_int scbpos, u_int prev);
static void ahc_done(struct ahc_softc *ahc, struct scb *scbp);
static void ahc_handle_target_cmd(struct ahc_softc *ahc,
struct target_cmd *cmd);
static void ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat);
static void ahc_handle_scsiint(struct ahc_softc *ahc, u_int intstat);
static void ahc_build_transfer_msg(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static void ahc_setup_initiator_msgout(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct scb *scb);
static void ahc_setup_target_msgin(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static int ahc_handle_msg_reject(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static void ahc_clear_msg_state(struct ahc_softc *ahc);
static void ahc_handle_message_phase(struct ahc_softc *ahc,
struct cam_path *path);
static int ahc_sent_msg(struct ahc_softc *ahc, u_int msgtype, int full);
static int ahc_parse_msg(struct ahc_softc *ahc, struct cam_path *path,
struct ahc_devinfo *devinfo);
static void ahc_handle_devreset(struct ahc_softc *ahc, int target,
char channel, cam_status status,
ac_code acode, char *message,
int verbose_only);
static void ahc_loadseq(struct ahc_softc *ahc);
static int ahc_check_patch(struct ahc_softc *ahc,
struct patch **start_patch,
int start_instr, int *skip_addr);
static void ahc_download_instr(struct ahc_softc *ahc,
int instrptr, u_int8_t *dconsts);
static int ahc_match_scb(struct scb *scb, int target, char channel,
int lun, u_int tag);
#ifdef AHC_DEBUG
static void ahc_print_scb(struct scb *scb);
#endif
static int ahc_search_qinfifo(struct ahc_softc *ahc, int target,
char channel, int lun, u_int tag,
u_int32_t status, ahc_search_action action);
static void ahc_abort_ccb(struct ahc_softc *ahc, struct cam_sim *sim,
union ccb *ccb);
static int ahc_reset_channel(struct ahc_softc *ahc, char channel,
int initiate_reset);
static int ahc_abort_scbs(struct ahc_softc *ahc, int target,
char channel, int lun, u_int tag,
u_int32_t status);
static int ahc_search_disc_list(struct ahc_softc *ahc, int target,
char channel, int lun, u_int tag);
static u_int ahc_rem_scb_from_disc_list(struct ahc_softc *ahc,
u_int prev, u_int scbptr);
static void ahc_add_curscb_to_free_list(struct ahc_softc *ahc);
static void ahc_clear_intstat(struct ahc_softc *ahc);
static void ahc_reset_current_bus(struct ahc_softc *ahc);
static struct ahc_syncrate *
ahc_devlimited_syncrate(struct ahc_softc *ahc, u_int *period);
static struct ahc_syncrate *
ahc_find_syncrate(struct ahc_softc *ahc, u_int *period,
u_int maxsync);
static u_int ahc_find_period(struct ahc_softc *ahc, u_int scsirate,
u_int maxsync);
static void ahc_validate_offset(struct ahc_softc *ahc,
struct ahc_syncrate *syncrate,
u_int *offset, int wide);
static void ahc_update_target_msg_request(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct ahc_target_tinfo *tinfo,
int force);
static int ahc_create_path(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct cam_path **path);
static void ahc_set_syncrate(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct cam_path *path,
struct ahc_syncrate *syncrate,
u_int period, u_int offset, u_int type);
static void ahc_set_width(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct cam_path *path, u_int width, u_int type);
static void ahc_construct_sdtr(struct ahc_softc *ahc,
u_int period, u_int offset);
static void ahc_construct_wdtr(struct ahc_softc *ahc, u_int bus_width);
static void ahc_calc_residual(struct scb *scb);
static void ahc_update_pending_syncrates(struct ahc_softc *ahc);
static void ahc_set_recoveryscb(struct ahc_softc *ahc, struct scb *scb);
static timeout_t
ahc_timeout;
static __inline int sequencer_paused(struct ahc_softc *ahc);
static __inline void pause_sequencer(struct ahc_softc *ahc);
static __inline void unpause_sequencer(struct ahc_softc *ahc,
int unpause_always);
static __inline void restart_sequencer(struct ahc_softc *ahc);
static __inline u_int ahc_index_busy_tcl(struct ahc_softc *ahc,
u_int tcl, int unbusy);
static __inline void ahc_busy_tcl(struct ahc_softc *ahc, struct scb *scb);
static __inline void ahc_freeze_ccb(union ccb* ccb);
static __inline cam_status ahc_ccb_status(union ccb* ccb);
static __inline void ahc_set_ccb_status(union ccb* ccb,
cam_status status);
static __inline u_int32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
return (ahc->hscb_busaddr + (sizeof(struct hardware_scb) * index));
}
#define AHC_BUSRESET_DELAY 25 /* Reset delay in us */
static __inline int
sequencer_paused(struct ahc_softc *ahc)
{
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
}
static __inline void
pause_sequencer(struct ahc_softc *ahc)
{
ahc_outb(ahc, HCNTRL, ahc->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (sequencer_paused(ahc) == 0)
;
}
static __inline void
unpause_sequencer(struct ahc_softc *ahc, int unpause_always)
{
if (unpause_always
|| (ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
ahc_outb(ahc, HCNTRL, ahc->unpause);
}
/*
* Restart the sequencer program from address zero
*/
static __inline void
restart_sequencer(struct ahc_softc *ahc)
{
pause_sequencer(ahc);
ahc_outb(ahc, SEQCTL, FASTMODE|SEQRESET);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
}
static __inline u_int
ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl, int unbusy)
{
u_int scbid;
scbid = ahc->untagged_scbs[tcl];
if (unbusy)
ahc->untagged_scbs[tcl] = SCB_LIST_NULL;
return (scbid);
}
static __inline void
ahc_busy_tcl(struct ahc_softc *ahc, struct scb *scb)
{
ahc->untagged_scbs[scb->hscb->tcl] = scb->hscb->tag;
}
static __inline void
ahc_freeze_ccb(union ccb* ccb)
{
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
}
}
static __inline cam_status
ahc_ccb_status(union ccb* ccb)
{
return (ccb->ccb_h.status & CAM_STATUS_MASK);
}
static __inline void
ahc_set_ccb_status(union ccb* ccb, cam_status status)
{
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= status;
}
char *
ahc_name(struct ahc_softc *ahc)
{
static char name[10];
snprintf(name, sizeof(name), "ahc%d", ahc->unit);
return (name);
}
#ifdef AHC_DEBUG
static void
ahc_print_scb(struct scb *scb)
{
struct hardware_scb *hscb = scb->hscb;
printf("scb:%p control:0x%x tcl:0x%x cmdlen:%d cmdpointer:0x%lx\n",
scb,
hscb->control,
hscb->tcl,
hscb->cmdlen,
hscb->cmdpointer );
printf(" datlen:%d data:0x%lx segs:0x%x segp:0x%lx\n",
hscb->datalen,
hscb->data,
hscb->SG_count,
hscb->SG_pointer);
printf(" sg_addr:%lx sg_len:%ld\n",
scb->ahc_dma[0].addr,
scb->ahc_dma[0].len);
printf(" cdb:%x %x %x %x %x %x %x %x %x %x %x %x\n",
hscb->cmdstore[0], hscb->cmdstore[1], hscb->cmdstore[2],
hscb->cmdstore[3], hscb->cmdstore[4], hscb->cmdstore[5],
hscb->cmdstore[6], hscb->cmdstore[7], hscb->cmdstore[8],
hscb->cmdstore[9], hscb->cmdstore[10], hscb->cmdstore[11]);
}
#endif
static struct {
u_int8_t errno;
char *errmesg;
} hard_error[] = {
{ ILLHADDR, "Illegal Host Access" },
{ ILLSADDR, "Illegal Sequencer Address referrenced" },
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
{ SQPARERR, "Sequencer Parity Error" },
{ DPARERR, "Data-path Parity Error" },
{ MPARERR, "Scratch or SCB Memory Parity Error" },
{ PCIERRSTAT, "PCI Error detected" },
{ CIOPARERR, "CIOBUS Parity Error" },
};
/*
* Valid SCSIRATE values. (p. 3-17)
* Provides a mapping of tranfer periods in ns to the proper value to
* stick in the scsiscfr reg to use that transfer rate.
*/
#define AHC_SYNCRATE_ULTRA2 0
#define AHC_SYNCRATE_ULTRA 2
#define AHC_SYNCRATE_FAST 5
static struct ahc_syncrate ahc_syncrates[] = {
/* ultra2 fast/ultra period rate */
{ 0x13, 0x000, 10, "40.0" },
{ 0x14, 0x000, 11, "33.0" },
{ 0x15, 0x100, 12, "20.0" },
{ 0x16, 0x110, 15, "16.0" },
{ 0x17, 0x120, 18, "13.4" },
{ 0x18, 0x000, 25, "10.0" },
{ 0x19, 0x010, 31, "8.0" },
{ 0x1a, 0x020, 37, "6.67" },
{ 0x1b, 0x030, 43, "5.7" },
{ 0x10, 0x040, 50, "5.0" },
{ 0x00, 0x050, 56, "4.4" },
{ 0x00, 0x060, 62, "4.0" },
{ 0x00, 0x070, 68, "3.6" },
{ 0x00, 0x000, 0, NULL }
};
/*
* Allocate a controller structure for a new device and initialize it.
*/
struct ahc_softc *
ahc_alloc(int unit, u_int32_t iobase, vm_offset_t maddr, ahc_chip chip,
ahc_feature features, ahc_flag flags, struct scb_data *scb_data)
{
/*
* find unit and check we have that many defined
*/
struct ahc_softc *ahc;
size_t alloc_size;
/*
* Allocate a storage area for us
*/
if (scb_data == NULL)
/*
* We are not sharing SCB space with another controller
* so allocate our own SCB data space.
*/
alloc_size = sizeof(struct full_ahc_softc);
else
alloc_size = sizeof(struct ahc_softc);
ahc = malloc(alloc_size, M_DEVBUF, M_NOWAIT);
if (!ahc) {
printf("ahc%d: cannot malloc!\n", unit);
return NULL;
}
bzero(ahc, alloc_size);
if (scb_data == NULL) {
struct full_ahc_softc* full_softc = (struct full_ahc_softc*)ahc;
ahc->scb_data = &full_softc->scb_data_storage;
STAILQ_INIT(&ahc->scb_data->free_scbs);
} else
ahc->scb_data = scb_data;
LIST_INIT(&ahc->pending_ccbs);
ahc->unit = unit;
/*
* XXX This should be done by the bus specific probe stubs with
* the bus layer providing the bsh and tag. Unfortunately,
* we need to clean up how we configure things before this
* can happen.
*/
if (maddr != NULL) {
ahc->tag = I386_BUS_SPACE_MEM;
ahc->bsh = (bus_space_handle_t)maddr;
} else {
ahc->tag = I386_BUS_SPACE_IO;
ahc->bsh = (bus_space_handle_t)iobase;
}
ahc->chip = chip;
ahc->features = features;
ahc->flags = flags;
ahc->unpause = (ahc_inb(ahc, HCNTRL) & IRQMS) | INTEN;
ahc->pause = ahc->unpause | PAUSE;
return (ahc);
}
void
ahc_free(ahc)
struct ahc_softc *ahc;
{
free(ahc, M_DEVBUF);
return;
}
int
ahc_reset(struct ahc_softc *ahc)
{
u_int sblkctl;
int wait;
ahc_outb(ahc, HCNTRL, CHIPRST | ahc->pause);
/*
* Ensure that the reset has finished
*/
wait = 1000;
while (--wait && !(ahc_inb(ahc, HCNTRL) & CHIPRSTACK))
DELAY(1000);
if (wait == 0) {
printf("%s: WARNING - Failed chip reset! "
"Trying to initialize anyway.\n", ahc_name(ahc));
}
ahc_outb(ahc, HCNTRL, ahc->pause);
/* Determine channel configuration */
sblkctl = ahc_inb(ahc, SBLKCTL) & (SELBUSB|SELWIDE);
/* No Twin Channel PCI cards */
if ((ahc->chip & AHC_PCI) != 0)
sblkctl &= ~SELBUSB;
switch (sblkctl) {
case 0:
/* Single Narrow Channel */
break;
case 2:
/* Wide Channel */
ahc->features |= AHC_WIDE;
break;
case 8:
/* Twin Channel */
ahc->features |= AHC_TWIN;
break;
default:
printf(" Unsupported adapter type. Ignoring\n");
return(-1);
}
return (0);
}
/*
* Called when we have an active connection to a target on the bus,
* this function finds the nearest syncrate to the input period limited
* by the capabilities of the bus connectivity of the target.
*/
static struct ahc_syncrate *
ahc_devlimited_syncrate(struct ahc_softc *ahc, u_int *period) {
u_int maxsync;
if ((ahc->features & AHC_ULTRA2) != 0) {
if ((ahc_inb(ahc, SBLKCTL) & ENAB40) != 0
&& (ahc_inb(ahc, SSTAT2) & EXP_ACTIVE) == 0) {
maxsync = AHC_SYNCRATE_ULTRA2;
} else {
maxsync = AHC_SYNCRATE_ULTRA;
}
} else if ((ahc->features & AHC_ULTRA) != 0) {
maxsync = AHC_SYNCRATE_ULTRA;
} else {
maxsync = AHC_SYNCRATE_FAST;
}
return (ahc_find_syncrate(ahc, period, maxsync));
}
/*
* Look up the valid period to SCSIRATE conversion in our table.
* Return the period and offset that should be sent to the target
* if this was the beginning of an SDTR.
*/
static struct ahc_syncrate *
ahc_find_syncrate(struct ahc_softc *ahc, u_int *period, u_int maxsync)
{
struct ahc_syncrate *syncrate;
syncrate = &ahc_syncrates[maxsync];
while ((syncrate->rate != NULL)
&& ((ahc->features & AHC_ULTRA2) == 0
|| (syncrate->sxfr_ultra2 != 0))) {
if (*period <= syncrate->period) {
/*
* When responding to a target that requests
* sync, the requested rate may fall between
* two rates that we can output, but still be
* a rate that we can receive. Because of this,
* we want to respond to the target with
* the same rate that it sent to us even
* if the period we use to send data to it
* is lower. Only lower the response period
* if we must.
*/
if (syncrate == &ahc_syncrates[maxsync]) {
*period = syncrate->period;
}
break;
}
syncrate++;
}
if ((*period == 0)
|| (syncrate->rate == NULL)
|| ((ahc->features & AHC_ULTRA2) != 0
&& (syncrate->sxfr_ultra2 == 0))) {
/* Use asynchronous transfers. */
*period = 0;
syncrate = NULL;
}
return (syncrate);
}
static u_int
ahc_find_period(struct ahc_softc *ahc, u_int scsirate, u_int maxsync)
{
struct ahc_syncrate *syncrate;
if ((ahc->features & AHC_ULTRA2) != 0) {
scsirate &= SXFR_ULTRA2;
} else {
scsirate &= SXFR;
}
syncrate = &ahc_syncrates[maxsync];
while (syncrate->rate != NULL) {
if ((ahc->features & AHC_ULTRA2) != 0) {
if (syncrate->sxfr_ultra2 == 0)
break;
else if (scsirate == syncrate->sxfr_ultra2)
return (syncrate->period);
} else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR)) {
return (syncrate->period);
}
syncrate++;
}
return (0); /* async */
}
static void
ahc_validate_offset(struct ahc_softc *ahc, struct ahc_syncrate *syncrate,
u_int *offset, int wide)
{
u_int maxoffset;
/* Limit offset to what we can do */
if (syncrate == NULL) {
maxoffset = 0;
} else if ((ahc->features & AHC_ULTRA2) != 0) {
maxoffset = MAX_OFFSET_ULTRA2;
} else {
if (wide)
maxoffset = MAX_OFFSET_16BIT;
else
maxoffset = MAX_OFFSET_8BIT;
}
*offset = MIN(*offset, maxoffset);
}
static void
ahc_update_target_msg_request(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct ahc_target_tinfo *tinfo,
int force)
{
int paused;
u_int targ_msg_req_orig;
targ_msg_req_orig = ahc->targ_msg_req;
if (tinfo->current.period != tinfo->goal.period
|| tinfo->current.width != tinfo->goal.width
|| (force
&& (tinfo->goal.period != 0
|| tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT)))
ahc->targ_msg_req |= devinfo->target_mask;
else
ahc->targ_msg_req &= ~devinfo->target_mask;
if (ahc->targ_msg_req != targ_msg_req_orig) {
/* Update the message request bit for this target */
paused = sequencer_paused(ahc);
if (!paused)
pause_sequencer(ahc);
ahc_outb(ahc, TARGET_MSG_REQUEST, ahc->targ_msg_req & 0xFF);
ahc_outb(ahc, TARGET_MSG_REQUEST + 1,
(ahc->targ_msg_req >> 8) & 0xFF);
if (!paused)
unpause_sequencer(ahc, /*unpause always*/FALSE);
}
}
static int
ahc_create_path(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct cam_path **path)
{
path_id_t path_id;
if (devinfo->channel == 'B')
path_id = cam_sim_path(ahc->sim_b);
else
path_id = cam_sim_path(ahc->sim);
return (xpt_create_path(path, /*periph*/NULL,
path_id, devinfo->target,
devinfo->lun));
}
static void
ahc_set_syncrate(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct cam_path *path, struct ahc_syncrate *syncrate,
u_int period, u_int offset, u_int type)
{
struct ahc_target_tinfo *tinfo;
u_int old_period;
u_int old_offset;
if (syncrate == NULL) {
period = 0;
offset = 0;
}
tinfo = &ahc->transinfo[devinfo->target_offset];
old_period = tinfo->current.period;
old_offset = tinfo->current.offset;
if ((type & AHC_TRANS_CUR) != 0
&& (old_period != period || old_offset != offset)) {
struct cam_path *path2;
u_int scsirate;
scsirate = tinfo->scsirate;
if ((ahc->features & AHC_ULTRA2) != 0) {
scsirate &= ~SXFR_ULTRA2;
if (syncrate != NULL) {
scsirate |= syncrate->sxfr_ultra2;
}
if ((type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE)
ahc_outb(ahc, SCSIOFFSET, offset);
} else {
scsirate &= ~(SXFR|SOFS);
/*
* Ensure Ultra mode is set properly for
* this target.
*/
ahc->ultraenb &= ~devinfo->target_mask;
if (syncrate != NULL) {
if (syncrate->sxfr & ULTRA_SXFR) {
ahc->ultraenb |= devinfo->target_mask;
}
scsirate |= syncrate->sxfr & SXFR;
scsirate |= offset & SOFS;
}
if ((type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE) {
u_int sxfrctl0;
sxfrctl0 = ahc_inb(ahc, SXFRCTL0);
sxfrctl0 &= ~FAST20;
if (ahc->ultraenb & devinfo->target_mask)
sxfrctl0 |= FAST20;
ahc_outb(ahc, SXFRCTL0, sxfrctl0);
}
}
if ((type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE)
ahc_outb(ahc, SCSIRATE, scsirate);
tinfo->scsirate = scsirate;
tinfo->current.period = period;
tinfo->current.offset = offset;
/* Update the syncrates in any pending scbs */
ahc_update_pending_syncrates(ahc);
/*
* If possible, tell the SCSI layer about the
* new transfer parameters.
*/
/* If possible, update the XPT's notion of our transfer rate */
path2 = NULL;
if (path == NULL) {
int error;
error = ahc_create_path(ahc, devinfo, &path2);
if (error == CAM_REQ_CMP)
path = path2;
else
path2 = NULL;
}
if (path != NULL) {
struct ccb_trans_settings neg;
neg.sync_period = period;
neg.sync_offset = offset;
neg.valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID;
xpt_setup_ccb(&neg.ccb_h, path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, path, &neg);
}
if (path2 != NULL)
xpt_free_path(path2);
if (bootverbose) {
if (offset != 0) {
printf("%s: target %d synchronous at %sMHz, "
"offset = 0x%x\n", ahc_name(ahc),
devinfo->target, syncrate->rate, offset);
} else {
printf("%s: target %d using "
"asynchronous transfers\n",
ahc_name(ahc), devinfo->target);
}
}
}
if ((type & AHC_TRANS_GOAL) != 0) {
tinfo->goal.period = period;
tinfo->goal.offset = offset;
}
if ((type & AHC_TRANS_USER) != 0) {
tinfo->user.period = period;
tinfo->user.offset = offset;
}
ahc_update_target_msg_request(ahc, devinfo, tinfo, /*force*/FALSE);
}
static void
ahc_set_width(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct cam_path *path, u_int width, u_int type)
{
struct ahc_target_tinfo *tinfo;
u_int oldwidth;
tinfo = &ahc->transinfo[devinfo->target_offset];
oldwidth = tinfo->current.width;
if ((type & AHC_TRANS_CUR) != 0 && oldwidth != width) {
struct cam_path *path2;
u_int scsirate;
scsirate = tinfo->scsirate;
scsirate &= ~WIDEXFER;
if (width == MSG_EXT_WDTR_BUS_16_BIT)
scsirate |= WIDEXFER;
tinfo->scsirate = scsirate;
if ((type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE)
ahc_outb(ahc, SCSIRATE, scsirate);
tinfo->current.width = width;
/* If possible, update the XPT's notion of our transfer rate */
path2 = NULL;
if (path == NULL) {
int error;
error = ahc_create_path(ahc, devinfo, &path2);
if (error == CAM_REQ_CMP)
path = path2;
else
path2 = NULL;
}
if (path != NULL) {
struct ccb_trans_settings neg;
neg.bus_width = width;
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_setup_ccb(&neg.ccb_h, path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, path, &neg);
}
if (path2 != NULL)
xpt_free_path(path2);
if (bootverbose) {
printf("%s: target %d using %dbit transfers\n",
ahc_name(ahc), devinfo->target,
8 * (0x01 << width));
}
}
if ((type & AHC_TRANS_GOAL) != 0)
tinfo->goal.width = width;
if ((type & AHC_TRANS_USER) != 0)
tinfo->user.width = width;
ahc_update_target_msg_request(ahc, devinfo, tinfo, /*force*/FALSE);
}
/*
* Attach all the sub-devices we can find
*/
int
ahc_attach(struct ahc_softc *ahc)
{
struct ccb_setasync csa;
struct cam_devq *devq;
int bus_id;
int bus_id2;
struct cam_sim *sim;
struct cam_sim *sim2;
struct cam_path *path;
struct cam_path *path2;
int count;
count = 0;
sim = NULL;
sim2 = NULL;
/*
* Attach secondary channel first if the user has
* declared it the primary channel.
*/
if ((ahc->flags & AHC_CHANNEL_B_PRIMARY) != 0) {
bus_id = 1;
bus_id2 = 0;
} else {
bus_id = 0;
bus_id2 = 1;
}
/*
* Create the device queue for our SIM(s).
*/
devq = cam_simq_alloc(ahc->scb_data->maxscbs);
if (devq == NULL)
goto fail;
/*
* Construct our first channel SIM entry
*/
sim = cam_sim_alloc(ahc_action, ahc_poll, "ahc", ahc, ahc->unit,
1, ahc->scb_data->maxscbs, devq);
if (sim == NULL) {
cam_simq_free(devq);
goto fail;
}
if (xpt_bus_register(sim, bus_id) != CAM_SUCCESS) {
cam_sim_free(sim, /*free_devq*/TRUE);
sim = NULL;
goto fail;
}
if (xpt_create_path(&path, /*periph*/NULL,
cam_sim_path(sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, /*free_devq*/TRUE);
sim = NULL;
goto fail;
}
xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = ahc_async;
csa.callback_arg = sim;
xpt_action((union ccb *)&csa);
count++;
if (ahc->features & AHC_TWIN) {
sim2 = cam_sim_alloc(ahc_action, ahc_poll, "ahc",
ahc, ahc->unit, 1,
ahc->scb_data->maxscbs, devq);
if (sim2 == NULL) {
printf("ahc_attach: Unable to attach second "
"bus due to resource shortage");
goto fail;
}
if (xpt_bus_register(sim2, bus_id2) != CAM_SUCCESS) {
printf("ahc_attach: Unable to attach second "
"bus due to resource shortage");
/*
* We do not want to destroy the device queue
* because the first bus is using it.
*/
cam_sim_free(sim2, /*free_devq*/FALSE);
goto fail;
}
if (xpt_create_path(&path2, /*periph*/NULL,
cam_sim_path(sim2),
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim2));
cam_sim_free(sim2, /*free_devq*/FALSE);
sim2 = NULL;
goto fail;
}
xpt_setup_ccb(&csa.ccb_h, path2, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = ahc_async;
csa.callback_arg = sim2;
xpt_action((union ccb *)&csa);
count++;
}
fail:
if ((ahc->flags & AHC_CHANNEL_B_PRIMARY) != 0) {
ahc->sim_b = sim;
ahc->path_b = path;
ahc->sim = sim2;
ahc->path = path2;
} else {
ahc->sim = sim;
ahc->path = path;
ahc->sim_b = sim2;
ahc->path_b = path2;
}
return (count);
}
static void
ahc_fetch_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
u_int saved_tcl;
role_t role;
if (ahc_inb(ahc, SSTAT0) & TARGET)
role = ROLE_TARGET;
else
role = ROLE_INITIATOR;
saved_tcl = ahc_inb(ahc, SAVED_TCL);
ahc_compile_devinfo(devinfo, (saved_tcl >> 4) & 0x0f,
saved_tcl & 0x3, (saved_tcl & SELBUSB) ? 'B': 'A',
role);
}
static void
ahc_compile_devinfo(struct ahc_devinfo *devinfo, u_int target, u_int lun,
char channel, role_t role)
{
devinfo->target = target;
devinfo->lun = lun;
devinfo->target_offset = target;
devinfo->channel = channel;
devinfo->role = role;
if (channel == 'B')
devinfo->target_offset += 8;
devinfo->target_mask = (0x01 << devinfo->target_offset);
}
/*
* Catch an interrupt from the adapter
*/
void
ahc_intr(void *arg)
{
struct ahc_softc *ahc;
u_int intstat;
ahc = (struct ahc_softc *)arg;
intstat = ahc_inb(ahc, INTSTAT);
/*
* Any interrupts to process?
*/
#if NPCI > 0
if ((intstat & INT_PEND) == 0) {
if ((ahc->chip & AHC_PCI) != 0
&& (ahc->unsolicited_ints > 500)) {
if ((ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
ahc_pci_intr(ahc);
ahc->unsolicited_ints = 0;
} else {
ahc->unsolicited_ints++;
}
return;
} else {
ahc->unsolicited_ints = 0;
}
#else
if ((intstat & INT_PEND) == 0)
return;
#endif
if (intstat & CMDCMPLT) {
struct scb *scb;
u_int scb_index;
ahc_outb(ahc, CLRINT, CLRCMDINT);
while (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) {
scb_index = ahc->qoutfifo[ahc->qoutfifonext];
ahc->qoutfifo[ahc->qoutfifonext++] = SCB_LIST_NULL;
scb = ahc->scb_data->scbarray[scb_index];
if (!scb || !(scb->flags & SCB_ACTIVE)) {
printf("%s: WARNING no command for scb %d "
"(cmdcmplt)\nQOUTPOS = %d\n",
ahc_name(ahc), scb_index,
ahc->qoutfifonext - 1);
continue;
}
/*
* Save off the residual
* if there is one.
*/
if (scb->hscb->residual_SG_count != 0)
ahc_calc_residual(scb);
ahc_done(ahc, scb);
}
if ((ahc->flags & AHC_TARGETMODE) != 0) {
while (ahc->targetcmds[ahc->tqinfifonext].cmd_valid) {
struct target_cmd *cmd;
cmd = &ahc->targetcmds[ahc->tqinfifonext++];
ahc_handle_target_cmd(ahc, cmd);
cmd->cmd_valid = 0;
}
}
}
if (intstat & BRKADRINT) {
/*
* We upset the sequencer :-(
* Lookup the error message
*/
int i, error, num_errors;
error = ahc_inb(ahc, ERROR);
num_errors = sizeof(hard_error)/sizeof(hard_error[0]);
for (i = 0; error != 1 && i < num_errors; i++)
error >>= 1;
panic("%s: brkadrint, %s at seqaddr = 0x%x\n",
ahc_name(ahc), hard_error[i].errmesg,
ahc_inb(ahc, SEQADDR0) |
(ahc_inb(ahc, SEQADDR1) << 8));
/* Tell everyone that this HBA is no longer availible */
ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
CAM_LUN_WILDCARD, SCB_LIST_NULL, CAM_NO_HBA);
}
if (intstat & SEQINT)
ahc_handle_seqint(ahc, intstat);
if (intstat & SCSIINT)
ahc_handle_scsiint(ahc, intstat);
}
static void
ahc_handle_target_cmd(struct ahc_softc *ahc, struct target_cmd *cmd)
{
struct tmode_tstate *tstate;
struct tmode_lstate *lstate;
struct ccb_accept_tio *atio;
u_int8_t *byte;
int initiator;
int target;
int lun;
initiator = cmd->initiator_channel >> 4;
target = cmd->targ_id;
lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
byte = cmd->bytes;
tstate = ahc->enabled_targets[target];
lstate = NULL;
if (tstate != NULL && lun < 8)
lstate = tstate->enabled_luns[lun];
/*
* XXX Need to have a default TMODE devce that attaches to luns
* that wouldn't otherwise be enabled and returns the proper
* inquiry information. After all, we don't want to duplicate
* this code in each driver. For now, simply drop it on the
* floor.
*/
if (lstate == NULL) {
printf("Incoming Command on disabled lun\n");
return;
}
atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
/* XXX Should reconnect and return BUSY status */
if (atio == NULL) {
printf("No ATIOs for incoming command\n");
return;
}
SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
/*
* Package it up and send it off to
* whomever has this lun enabled.
*/
atio->init_id = initiator;
if (byte[0] != 0xFF) {
/* Tag was included */
atio->tag_action = *byte++;
atio->tag_id = *byte++;
atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
} else {
byte++;
atio->ccb_h.flags = 0;
}
/* Okay. Now determine the cdb size based on the command code */
switch (*byte >> CMD_GROUP_CODE_SHIFT) {
case 0:
atio->cdb_len = 6;
break;
case 1:
case 2:
atio->cdb_len = 10;
break;
case 4:
atio->cdb_len = 16;
break;
case 5:
atio->cdb_len = 12;
break;
case 3:
default:
/* Only copy the opcode. */
atio->cdb_len = 1;
printf("Reserved or VU command code type encountered\n");
break;
}
bcopy(byte, atio->cdb_io.cdb_bytes, atio->cdb_len);
atio->ccb_h.status |= CAM_CDB_RECVD;
if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
/*
* We weren't allowed to disconnect.
* We're hanging on the bus until a
* continue target I/O comes in response
* to this accept tio.
*/
ahc->pending_device = lstate;
}
xpt_done((union ccb*)atio);
}
static void
ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat)
{
struct scb *scb;
struct ahc_devinfo devinfo;
ahc_fetch_devinfo(ahc, &devinfo);
/*
* Clear the upper byte that holds SEQINT status
* codes and clear the SEQINT bit. We will unpause
* the sequencer, if appropriate, after servicing
* the request.
*/
ahc_outb(ahc, CLRINT, CLRSEQINT);
switch (intstat & SEQINT_MASK) {
case NO_MATCH:
{
/* Ensure we don't leave the selection hardware on */
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
printf("%s:%c:%d: no active SCB for reconnecting "
"target - issuing BUS DEVICE RESET\n",
ahc_name(ahc), devinfo.channel, devinfo.target);
printf("SAVED_TCL == 0x%x, ARG_1 == 0x%x, SEQ_FLAGS == 0x%x\n",
ahc_inb(ahc, SAVED_TCL), ahc_inb(ahc, ARG_1),
ahc_inb(ahc, SEQ_FLAGS));
break;
}
case SEND_REJECT:
{
u_int rejbyte = ahc_inb(ahc, ACCUM);
printf("%s:%c:%d: Warning - unknown message received from "
"target (0x%x). Rejecting\n",
ahc_name(ahc), devinfo.channel, devinfo.target, rejbyte);
break;
}
case NO_IDENT:
{
/*
* The reconnecting target either did not send an identify
* message, or did, but we didn't find and SCB to match and
* before it could respond to our ATN/abort, it hit a dataphase.
* The only safe thing to do is to blow it away with a bus
* reset.
*/
int found;
printf("%s:%c:%d: Target did not send an IDENTIFY message. "
"LASTPHASE = 0x%x, SAVED_TCL == 0x%x\n",
ahc_name(ahc), devinfo.channel, devinfo.target,
ahc_inb(ahc, LASTPHASE), ahc_inb(ahc, SAVED_TCL));
found = ahc_reset_channel(ahc, devinfo.channel,
/*initiate reset*/TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahc_name(ahc), devinfo.channel,
found);
break;
}
case BAD_PHASE:
if (ahc_inb(ahc, LASTPHASE) == P_BUSFREE) {
printf("%s:%c:%d: Missed busfree.\n", ahc_name(ahc),
devinfo.channel, devinfo.target);
restart_sequencer(ahc);
return;
} else {
printf("%s:%c:%d: unknown scsi bus phase. Attempting "
"to continue\n", ahc_name(ahc), devinfo.channel,
devinfo.target);
}
break;
case BAD_STATUS:
{
u_int scb_index;
struct hardware_scb *hscb;
struct ccb_scsiio *csio;
/*
* The sequencer will notify us when a command
* has an error that would be of interest to
* the kernel. This allows us to leave the sequencer
* running in the common case of command completes
* without error. The sequencer will already have
* dma'd the SCB back up to us, so we can reference
* the in kernel copy directly.
*/
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc->scb_data->scbarray[scb_index];
hscb = scb->hscb;
/*
* Set the default return value to 0 (don't
* send sense). The sense code will change
* this if needed.
*/
ahc_outb(ahc, RETURN_1, 0);
if (!(scb && (scb->flags & SCB_ACTIVE))) {
printf("%s:%c:%d: ahc_intr - referenced scb "
"not valid during seqint 0x%x scb(%d)\n",
ahc_name(ahc), devinfo.channel,
devinfo.target, intstat, scb_index);
goto unpause;
}
/* Don't want to clobber the original sense code */
if ((scb->flags & SCB_SENSE) != 0) {
/*
* Clear the SCB_SENSE Flag and have
* the sequencer do a normal command
* complete.
*/
scb->flags &= ~SCB_SENSE;
ahc_set_ccb_status(scb->ccb, CAM_AUTOSENSE_FAIL);
break;
}
ahc_set_ccb_status(scb->ccb, CAM_SCSI_STATUS_ERROR);
csio = &scb->ccb->csio;
csio->scsi_status = hscb->status;
switch (hscb->status) {
case SCSI_STATUS_OK:
printf("%s: Interrupted for staus of 0???\n",
ahc_name(ahc));
break;
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_CHECK_COND:
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSENSE) {
xpt_print_path(csio->ccb_h.path);
printf("SCB %d: requests Check Status\n",
scb->hscb->tag);
}
#endif
if ((csio->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0) {
struct ahc_dma_seg *sg = scb->ahc_dma;
struct scsi_sense *sc =
(struct scsi_sense *)(&hscb->cmdstore);
struct ahc_target_tinfo *tinfo;
/*
* Save off the residual if there is one.
*/
if (hscb->residual_SG_count != 0)
ahc_calc_residual(scb);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSENSE) {
xpt_print_path(csio->ccb_h.path);
printf("Sending Sense\n");
}
#endif
/*
* bzero from the sense data before having
* the drive fill it. The SCSI spec mandates
* that any untransfered data should be
* assumed to be zero.
*/
bzero(&csio->sense_data,
sizeof(csio->sense_data));
sc->opcode = REQUEST_SENSE;
sc->byte2 = SCB_LUN(scb) << 5;
sc->unused[0] = 0;
sc->unused[1] = 0;
sc->length = csio->sense_len;
sc->control = 0;
sg->addr = vtophys(&csio->sense_data);
sg->len = csio->sense_len;
/*
* Would be nice to preserve DISCENB here,
* but due to the way we page SCBs, we can't.
*/
hscb->control = 0;
/*
* This request sense could be because the
* the device lost power or in some other
* way has lost our transfer negotiations.
* Renegotiate if appropriate.
*/
tinfo = &ahc->transinfo[devinfo.target_offset];
ahc_update_target_msg_request(ahc, &devinfo,
tinfo,
/*force*/TRUE);
hscb->status = 0;
hscb->SG_count = 1;
hscb->SG_pointer = scb->ahc_dmaphys;
hscb->data = sg->addr;
hscb->datalen = sg->len;
hscb->cmdpointer = hscb->cmdstore_busaddr;
hscb->cmdlen = sizeof(*sc);
scb->sg_count = hscb->SG_count;
scb->flags |= SCB_SENSE;
/*
* Ensure the target is busy since this
* will be an untagged request.
*/
ahc_busy_tcl(ahc, scb);
ahc_outb(ahc, RETURN_1, SEND_SENSE);
/*
* Ensure we have enough time to actually
* retrieve the sense.
*/
untimeout(ahc_timeout, (caddr_t)scb,
scb->ccb->ccb_h.timeout_ch);
scb->ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, (caddr_t)scb, 5 * hz);
/* Freeze the queue while the sense occurs. */
ahc_freeze_devq(ahc, scb->ccb->ccb_h.path);
ahc_freeze_ccb(scb->ccb);
break;
}
break;
case SCSI_STATUS_BUSY:
case SCSI_STATUS_QUEUE_FULL:
/*
* Requeue any transactions that haven't been
* sent yet.
*/
ahc_freeze_devq(ahc, scb->ccb->ccb_h.path);
ahc_freeze_ccb(scb->ccb);
break;
}
break;
}
case TARGET_MSG_HELP:
{
/*
* XXX Handle BDR, Abort, Abort Tag, and transfer negotiations.
*/
restart_sequencer(ahc);
return;
}
case HOST_MSG_LOOP:
{
/*
* The sequencer has encountered a message phase
* that requires host assistance for completion.
* While handling the message phase(s), we will be
* notified by the sequencer after each byte is
* transfered so we can track bus phases.
*
* If this is the first time we've seen a HOST_MSG_LOOP,
* initialize the state of the host message loop.
*/
if (ahc->msg_type == MSG_TYPE_NONE) {
u_int bus_phase;
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
if (bus_phase != P_MESGIN && bus_phase != P_MESGOUT)
panic("ahc_intr: HOST_MSG_LOOP bad phase 0x%x",
bus_phase);
if (devinfo.role == ROLE_INITIATOR) {
struct scb *scb;
u_int scb_index;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc->scb_data->scbarray[scb_index];
if (bus_phase == P_MESGOUT)
ahc_setup_initiator_msgout(ahc,
&devinfo,
scb);
else {
ahc->msg_type =
MSG_TYPE_INITIATOR_MSGIN;
ahc->msgin_index = 0;
}
} else {
if (bus_phase == P_MESGOUT) {
ahc->msg_type =
MSG_TYPE_TARGET_MSGOUT;
ahc->msgin_index = 0;
} else
/* XXX Ever executed??? */
ahc_setup_target_msgin(ahc, &devinfo);
}
}
/* Pass a NULL path so that handlers generate their own */
ahc_handle_message_phase(ahc, /*path*/NULL);
break;
}
case DATA_OVERRUN:
{
/*
* When the sequencer detects an overrun, it
* places the controller in "BITBUCKET" mode
* and allows the target to complete its transfer.
* Unfortunately, none of the counters get updated
* when the controller is in this mode, so we have
* no way of knowing how large the overrun was.
*/
u_int scbindex = ahc_inb(ahc, SCB_TAG);
u_int lastphase = ahc_inb(ahc, LASTPHASE);
int i;
scb = ahc->scb_data->scbarray[scbindex];
xpt_print_path(scb->ccb->ccb_h.path);
printf("data overrun detected in %s phase."
" Tag == 0x%x.\n",
lastphase == P_DATAIN ? "Data-In" : "Data-Out",
scb->hscb->tag);
xpt_print_path(scb->ccb->ccb_h.path);
printf("%s seen Data Phase. Length = %d. NumSGs = %d.\n",
ahc_inb(ahc, SEQ_FLAGS) & DPHASE ? "Have" : "Haven't",
scb->ccb->csio.dxfer_len, scb->sg_count);
for (i = 0; i < scb->sg_count - 1; i++) {
printf("sg[%d] - Addr 0x%x : Length %d\n",
i,
scb->ahc_dma[i].addr,
scb->ahc_dma[i].len);
}
/*
* Set this and it will take affect when the
* target does a command complete.
*/
ahc_freeze_devq(ahc, scb->ccb->ccb_h.path);
ahc_set_ccb_status(scb->ccb, CAM_DATA_RUN_ERR);
ahc_freeze_ccb(scb->ccb);
break;
}
case TRACEPOINT:
{
printf("TRACEPOINT: RETURN_2 = %d\n", ahc_inb(ahc, RETURN_2));
#if 0
printf("SSTAT1 == 0x%x\n", ahc_inb(ahc, SSTAT1));
printf("SSTAT0 == 0x%x\n", ahc_inb(ahc, SSTAT0));
printf(", SCSISIGI == 0x%x\n", ahc_inb(ahc, SCSISIGI));
printf("TRACEPOINT: CCHCNT = %d, SG_COUNT = %d\n",
ahc_inb(ahc, CCHCNT), ahc_inb(ahc, SG_COUNT));
printf("TRACEPOINT: SCB_TAG = %d\n", ahc_inb(ahc, SCB_TAG));
printf("TRACEPOINT1: CCHADDR = %d, CCHCNT = %d, SCBPTR = %d\n",
ahc_inb(ahc, CCHADDR)
| (ahc_inb(ahc, CCHADDR+1) << 8)
| (ahc_inb(ahc, CCHADDR+2) << 16)
| (ahc_inb(ahc, CCHADDR+3) << 24),
ahc_inb(ahc, CCHCNT)
| (ahc_inb(ahc, CCHCNT+1) << 8)
| (ahc_inb(ahc, CCHCNT+2) << 16),
ahc_inb(ahc, SCBPTR));
printf("TRACEPOINT: WAITING_SCBH = %d\n", ahc_inb(ahc, WAITING_SCBH));
printf("TRACEPOINT: SCB_TAG = %d\n", ahc_inb(ahc, SCB_TAG));
#endif
break;
}
#if NOT_YET
/* XXX Fill these in later */
case MESG_BUFFER_BUSY:
break;
case MSGIN_PHASEMIS:
break;
#endif
default:
printf("ahc_intr: seqint, "
"intstat == 0x%x, scsisigi = 0x%x\n",
intstat, ahc_inb(ahc, SCSISIGI));
break;
}
unpause:
/*
* The sequencer is paused immediately on
* a SEQINT, so we should restart it when
* we're done.
*/
unpause_sequencer(ahc, /*unpause_always*/TRUE);
}
static void
ahc_handle_scsiint(struct ahc_softc *ahc, u_int intstat)
{
u_int scb_index;
u_int status;
struct scb *scb;
char cur_channel;
char intr_channel;
if ((ahc->features & AHC_TWIN) != 0
&& ((ahc_inb(ahc, SBLKCTL) & SELBUSB) != 0))
cur_channel = 'B';
else
cur_channel = 'A';
intr_channel = cur_channel;
status = ahc_inb(ahc, SSTAT1);
if (status == 0) {
if ((ahc->features & AHC_TWIN) != 0) {
/* Try the other channel */
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
status = ahc_inb(ahc, SSTAT1);
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
intr_channel = (cur_channel == 'A') ? 'B' : 'A';
}
if (status == 0) {
printf("%s: Spurious SCSI interrupt\n", ahc_name(ahc));
return;
}
}
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index < ahc->scb_data->numscbs) {
scb = ahc->scb_data->scbarray[scb_index];
if ((scb->flags & SCB_ACTIVE) == 0)
scb = NULL;
} else
scb = NULL;
if ((status & SCSIRSTI) != 0) {
printf("%s: Someone reset channel %c\n",
ahc_name(ahc), intr_channel);
ahc_reset_channel(ahc, intr_channel, /* Initiate Reset */FALSE);
} else if ((status & BUSFREE) != 0 && (status & SELTO) == 0) {
/*
* First look at what phase we were last in.
* If its message out, chances are pretty good
* that the busfree was in response to one of
* our abort requests.
*/
u_int lastphase = ahc_inb(ahc, LASTPHASE);
u_int saved_tcl = ahc_inb(ahc, SAVED_TCL);
u_int target = (saved_tcl >> 4) & 0x0f;
char channel = saved_tcl & SELBUSB ? 'B': 'A';
int printerror = 1;
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
if (lastphase == P_MESGOUT) {
u_int message;
u_int tag;
message = ahc_inb(ahc, SINDEX);
tag = SCB_LIST_NULL;
switch (message) {
case MSG_ABORT_TAG:
tag = scb->hscb->tag;
/* FALLTRHOUGH */
case MSG_ABORT:
xpt_print_path(scb->ccb->ccb_h.path);
printf("SCB %d - Abort %s Completed.\n",
scb->hscb->tag, tag == SCB_LIST_NULL ?
"" : "Tag");
if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
ahc_set_ccb_status(scb->ccb,
CAM_REQ_ABORTED);
ahc_done(ahc, scb);
}
printerror = 0;
break;
case MSG_BUS_DEV_RESET:
ahc_handle_devreset(ahc, target, channel,
CAM_BDR_SENT, AC_SENT_BDR,
"Bus Device Reset",
/*verbose_only*/FALSE);
printerror = 0;
break;
default:
break;
}
}
if (printerror != 0) {
if (scb != NULL) {
u_int tag;
if ((scb->hscb->control & TAG_ENB) != 0)
tag = scb->hscb->tag;
else
tag = SCB_LIST_NULL;
ahc_abort_scbs(ahc, target, channel,
SCB_LUN(scb), tag,
CAM_UNEXP_BUSFREE);
} else {
ahc_abort_scbs(ahc, target, channel,
CAM_LUN_WILDCARD, SCB_LIST_NULL,
CAM_UNEXP_BUSFREE);
printf("%s: ", ahc_name(ahc));
}
printf("Unexpected busfree. LASTPHASE == 0x%x\n"
"SEQADDR == 0x%x\n",
lastphase, ahc_inb(ahc, SEQADDR0)
| (ahc_inb(ahc, SEQADDR1) << 8));
}
ahc_clear_msg_state(ahc);
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
ahc_outb(ahc, CLRSINT1, CLRBUSFREE);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
restart_sequencer(ahc);
} else if ((status & SELTO) != 0) {
u_int scbptr;
scbptr = ahc_inb(ahc, WAITING_SCBH);
ahc_outb(ahc, SCBPTR, scbptr);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index < ahc->scb_data->numscbs) {
scb = ahc->scb_data->scbarray[scb_index];
if ((scb->flags & SCB_ACTIVE) == 0)
scb = NULL;
} else
scb = NULL;
if (scb == NULL) {
printf("%s: ahc_intr - referenced scb not "
"valid during SELTO scb(%d, %d)\n",
ahc_name(ahc), scbptr, scb_index);
} else {
ahc_handle_devreset(ahc, SCB_TARGET(scb),
SCB_CHANNEL(scb), CAM_SEL_TIMEOUT,
/*ac_code*/0, "Selection Timeout",
/*verbose_only*/TRUE);
}
/* Stop the selection */
ahc_outb(ahc, SCSISEQ, 0);
ahc_clear_msg_state(ahc);
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRBUSFREE);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
restart_sequencer(ahc);
} else if (scb == NULL) {
printf("%s: ahc_intr - referenced scb not "
"valid during scsiint 0x%x scb(%d)\n"
"SIMODE0 = 0x%x, SIMODE1 = 0x%x, SSTAT0 = 0x%x\n"
"SEQADDR = 0x%x\n", ahc_name(ahc),
status, scb_index, ahc_inb(ahc, SIMODE0),
ahc_inb(ahc, SIMODE1), ahc_inb(ahc, SSTAT0),
ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8));
ahc_outb(ahc, CLRSINT1, status);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
scb = NULL;
} else if ((status & SCSIPERR) != 0) {
/*
* Determine the bus phase and
* queue an appropriate message
*/
char *phase;
u_int mesg_out = MSG_NOOP;
u_int lastphase = ahc_inb(ahc, LASTPHASE);
xpt_print_path(scb->ccb->ccb_h.path);
switch (lastphase) {
case P_DATAOUT:
phase = "Data-Out";
break;
case P_DATAIN:
phase = "Data-In";
mesg_out = MSG_INITIATOR_DET_ERR;
break;
case P_COMMAND:
phase = "Command";
break;
case P_MESGOUT:
phase = "Message-Out";
break;
case P_STATUS:
phase = "Status";
mesg_out = MSG_INITIATOR_DET_ERR;
break;
case P_MESGIN:
phase = "Message-In";
mesg_out = MSG_PARITY_ERROR;
break;
default:
phase = "unknown";
break;
}
printf("parity error during %s phase.\n", phase);
printf("SEQADDR == 0x%x\n", ahc_inb(ahc, SEQADDR0)
| (ahc_inb(ahc, SEQADDR1) << 8));
printf("SCSIRATE == 0x%x\n", ahc_inb(ahc, SCSIRATE));
/*
* We've set the hardware to assert ATN if we
* get a parity error on "in" phases, so all we
* need to do is stuff the message buffer with
* the appropriate message. "In" phases have set
* mesg_out to something other than MSG_NOP.
*/
if (mesg_out != MSG_NOOP) {
if (ahc->msg_type != MSG_TYPE_NONE)
ahc->send_msg_perror = TRUE;
else
ahc_outb(ahc, MSG_OUT, mesg_out);
}
ahc_outb(ahc, CLRSINT1, CLRSCSIPERR);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
} else {
xpt_print_path(scb->ccb->ccb_h.path);
printf("Unknown SCSIINT. Status = 0x%x\n", status);
ahc_outb(ahc, CLRSINT1, status);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
}
}
static void
ahc_build_transfer_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
/*
* We need to initiate transfer negotiations.
* If our current and goal settings are identical,
* we want to renegotiate due to a check condition.
*/
struct ahc_target_tinfo *tinfo;
int dowide;
int dosync;
tinfo = &ahc->transinfo[devinfo->target_offset];
dowide = tinfo->current.width != tinfo->goal.width;
dosync = tinfo->current.period != tinfo->goal.period;
if (!dowide && !dosync) {
dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
dosync = tinfo->goal.period != 0;
}
if (dowide)
ahc_construct_wdtr(ahc, tinfo->goal.width);
else if (dosync) {
struct ahc_syncrate *rate;
u_int period;
u_int offset;
period = tinfo->goal.period;
rate = ahc_devlimited_syncrate(ahc, &period);
offset = tinfo->goal.offset;
ahc_validate_offset(ahc, rate, &offset,
tinfo->current.width);
ahc_construct_sdtr(ahc, period, offset);
} else {
panic("ahc_intr: AWAITING_MSG for negotiation, "
"but no negotiation needed\n");
}
}
static void
ahc_setup_initiator_msgout(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct scb *scb)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 0;
if ((scb->flags & SCB_DEVICE_RESET) == 0
&& ahc_inb(ahc, MSG_OUT) == MSG_IDENTIFYFLAG) {
u_int identify_msg;
identify_msg = MSG_IDENTIFYFLAG | SCB_LUN(scb);
if ((scb->hscb->control & DISCENB) != 0)
identify_msg |= MSG_IDENTIFY_DISCFLAG;
ahc->msgout_buf[ahc->msgout_index++] = identify_msg;
ahc->msgout_len++;
if ((scb->hscb->control & TAG_ENB) != 0) {
ahc->msgout_buf[ahc->msgout_index++] =
scb->ccb->csio.tag_action;
ahc->msgout_buf[ahc->msgout_index++] = scb->hscb->tag;
ahc->msgout_len += 2;
}
}
if (scb->flags & SCB_DEVICE_RESET) {
ahc->msgout_buf[ahc->msgout_index++] = MSG_BUS_DEV_RESET;
ahc->msgout_len++;
xpt_print_path(scb->ccb->ccb_h.path);
printf("Bus Device Reset Message Sent\n");
} else if (scb->flags & SCB_ABORT) {
if ((scb->hscb->control & TAG_ENB) != 0)
ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT_TAG;
else
ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT;
ahc->msgout_len++;
xpt_print_path(scb->ccb->ccb_h.path);
printf("Abort Message Sent\n");
} else if ((ahc->targ_msg_req & devinfo->target_mask) != 0) {
ahc_build_transfer_msg(ahc, devinfo);
} else {
printf("ahc_intr: AWAITING_MSG for an SCB that "
"does not have a waiting message");
panic("SCB = %d, SCB Control = %x, MSG_OUT = %x "
"SCB flags = %x", scb->hscb->tag, scb->hscb->control,
ahc_inb(ahc, MSG_OUT), scb->flags);
}
/*
* Clear the MK_MESSAGE flag from the SCB so we aren't
* asked to send this message again.
*/
ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL) & ~MK_MESSAGE);
ahc->msgout_index = 0;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
}
static void
ahc_setup_target_msgin(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 0;
if ((ahc->targ_msg_req & devinfo->target_mask) != 0)
ahc_build_transfer_msg(ahc, devinfo);
else
panic("ahc_intr: AWAITING target message with no message");
ahc->msgout_index = 0;
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
}
static int
ahc_handle_msg_reject(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
/*
* What we care about here is if we had an
* outstanding SDTR or WDTR message for this
* target. If we did, this is a signal that
* the target is refusing negotiation.
*/
struct scb *scb;
u_int scb_index;
u_int last_msg;
int response = 0;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc->scb_data->scbarray[scb_index];
/* Might be necessary */
last_msg = ahc_inb(ahc, LAST_MSG);
if (ahc_sent_msg(ahc, MSG_EXT_WDTR, /*full*/FALSE)) {
struct ahc_target_tinfo *tinfo;
/* note 8bit xfers and clear flag */
printf("%s:%c:%d: refuses WIDE negotiation. Using "
"8bit transfers\n", ahc_name(ahc),
devinfo->channel, devinfo->target);
ahc_set_width(ahc, devinfo, scb->ccb->ccb_h.path,
MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL);
ahc_set_syncrate(ahc, devinfo, scb->ccb->ccb_h.path,
/*syncrate*/NULL, /*period*/0,
/*offset*/0, AHC_TRANS_ACTIVE);
tinfo = &ahc->transinfo[devinfo->target_offset];
if (tinfo->goal.period) {
u_int period;
/* Start the sync negotiation */
period = tinfo->goal.period;
ahc_devlimited_syncrate(ahc, &period);
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_sdtr(ahc, period, tinfo->goal.offset);
ahc->msgout_index = 0;
response = 1;
}
} else if (ahc_sent_msg(ahc, MSG_EXT_SDTR, /*full*/FALSE)) {
/* note asynch xfers and clear flag */
ahc_set_syncrate(ahc, devinfo, scb->ccb->ccb_h.path,
/*syncrate*/NULL, /*period*/0,
/*offset*/0,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL);
printf("%s:%c:%d: refuses synchronous negotiation. "
"Using asynchronous transfers\n",
ahc_name(ahc),
devinfo->channel, devinfo->target);
} else if ((scb->hscb->control & MSG_SIMPLE_Q_TAG) != 0) {
struct ccb_trans_settings neg;
printf("%s:%c:%d: refuses tagged commands. Performing "
"non-tagged I/O\n", ahc_name(ahc),
devinfo->channel, devinfo->target);
ahc->tagenable &= ~devinfo->target_mask;
neg.flags = 0;
neg.valid = CCB_TRANS_TQ_VALID;
xpt_setup_ccb(&neg.ccb_h, scb->ccb->ccb_h.path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, scb->ccb->ccb_h.path, &neg);
/*
* Resend the identify for this CCB as the target
* may believe that the selection is invalid otherwise.
*/
ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL)
& ~MSG_SIMPLE_Q_TAG);
scb->hscb->control &= ~MSG_SIMPLE_Q_TAG;
scb->ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
ahc_outb(ahc, MSG_OUT, MSG_IDENTIFYFLAG);
ahc_outb(ahc, SCSISIGO, ahc_inb(ahc, SCSISIGO) | ATNO);
/*
* Requeue all tagged commands for this target
* currently in our posession so they can be
* converted to untagged commands.
*/
ahc_search_qinfifo(ahc, SCB_TARGET(scb), SCB_CHANNEL(scb),
SCB_LUN(scb), /*tag*/SCB_LIST_NULL,
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
} else {
/*
* Otherwise, we ignore it.
*/
printf("%s:%c:%d: Message reject for %x -- ignored\n",
ahc_name(ahc), devinfo->channel, devinfo->target,
last_msg);
}
return (response);
}
static void
ahc_clear_msg_state(struct ahc_softc *ahc)
{
ahc->msgout_len = 0;
ahc->msgin_index = 0;
ahc->msg_type = MSG_TYPE_NONE;
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
}
static void
ahc_handle_message_phase(struct ahc_softc *ahc, struct cam_path *path)
{
struct ahc_devinfo devinfo;
u_int bus_phase;
int end_session;
ahc_fetch_devinfo(ahc, &devinfo);
end_session = FALSE;
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
reswitch:
switch (ahc->msg_type) {
case MSG_TYPE_INITIATOR_MSGOUT:
{
int lastbyte;
int phasemis;
int msgdone;
if (ahc->msgout_len == 0)
panic("REQINIT interrupt with no active message");
phasemis = bus_phase != P_MESGOUT;
if (phasemis) {
if (bus_phase == P_MESGIN) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahc_outb(ahc, CLRSINT1, CLRATNO);
ahc->send_msg_perror = FALSE;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGIN;
ahc->msgin_index = 0;
goto reswitch;
}
end_session = TRUE;
break;
}
if (ahc->send_msg_perror) {
ahc_outb(ahc, CLRSINT1, CLRATNO);
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
ahc_outb(ahc, SCSIDATL, MSG_PARITY_ERROR);
break;
}
msgdone = ahc->msgout_index == ahc->msgout_len;
if (msgdone) {
/*
* The target has requested a retry.
* Re-assert ATN, reset our message index to
* 0, and try again.
*/
ahc->msgout_index = 0;
ahc_outb(ahc, SCSISIGO, ahc_inb(ahc, SCSISIGO) | ATNO);
}
lastbyte = ahc->msgout_index == (ahc->msgout_len - 1);
if (lastbyte) {
/* Last byte is signified by dropping ATN */
ahc_outb(ahc, CLRSINT1, CLRATNO);
}
/*
* Clear our interrupt status and present
* the next byte on the bus.
*/
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
break;
}
case MSG_TYPE_INITIATOR_MSGIN:
{
int phasemis;
int message_done;
phasemis = bus_phase != P_MESGIN;
if (phasemis) {
ahc->msgin_index = 0;
if (bus_phase == P_MESGOUT
&& (ahc->send_msg_perror == TRUE
|| (ahc->msgout_len != 0
&& ahc->msgout_index == 0))) {
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
goto reswitch;
}
end_session = TRUE;
break;
}
/* Pull the byte in without acking it */
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIBUSL);
message_done = ahc_parse_msg(ahc, path, &devinfo);
if (message_done) {
/*
* Clear our incoming message buffer in case there
* is another message following this one.
*/
ahc->msgin_index = 0;
/*
* If this message illicited a response,
* assert ATN so the target takes us to the
* message out phase.
*/
if (ahc->msgout_len != 0)
ahc_outb(ahc, SCSISIGO,
ahc_inb(ahc, SCSISIGO) | ATNO);
}
/* Ack the byte */
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
ahc_inb(ahc, SCSIDATL);
ahc->msgin_index++;
break;
}
case MSG_TYPE_TARGET_MSGIN:
{
int msgdone;
int msgout_request;
if (ahc->msgout_len == 0)
panic("Target REQINIT with no active message");
/*
* If we interrupted a mesgout session, the initiator
* will not know this until our first REQ. So, we
* only honor mesgout requests after we've sent our
* first byte.
*/
if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0
&& ahc->msgout_index > 0)
msgout_request = TRUE;
else
msgout_request = FALSE;
if (msgout_request) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahc->msg_type = MSG_TYPE_TARGET_MSGOUT;
ahc_outb(ahc, SCSISIGO, P_MESGOUT | BSYO);
ahc->msgin_index = 0;
/* Dummy read to REQ for first byte */
ahc_inb(ahc, SCSIDATL);
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
break;
}
msgdone = ahc->msgout_index == ahc->msgout_len;
if (msgdone) {
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
end_session = TRUE;
break;
}
/*
* Present the next byte on the bus.
*/
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) | SPIOEN);
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
break;
}
case MSG_TYPE_TARGET_MSGOUT:
{
int lastbyte;
int msgdone;
/*
* The initiator signals that this is
* the last byte by dropping ATN.
*/
lastbyte = (ahc_inb(ahc, SCSISIGI) & ATNI) == 0;
/*
* Read the latched byte, but turn off SPIOEN first
* so that we don't inadvertantly cause a REQ for the
* next byte.
*/
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIDATL);
msgdone = ahc_parse_msg(ahc, path, &devinfo);
ahc->msgin_index++;
/*
* XXX Read spec about initiator dropping ATN too soon
* and use msgdone to detect it.
*/
if (msgdone) {
ahc->msgin_index = 0;
/*
* If this message illicited a response, transition
* to the Message in phase and send it.
*/
if (ahc->msgout_len != 0) {
ahc_outb(ahc, SCSISIGO, P_MESGIN | BSYO);
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
ahc->msgin_index = 0;
break;
}
}
if (lastbyte)
end_session = TRUE;
else {
/* Ask for the next byte. */
ahc_outb(ahc, SXFRCTL0,
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
}
break;
}
default:
panic("Unknown REQINIT message type");
}
if (end_session) {
ahc_clear_msg_state(ahc);
ahc_outb(ahc, RETURN_1, EXIT_MSG_LOOP);
} else
ahc_outb(ahc, RETURN_1, CONT_MSG_LOOP);
}
/*
* See if we sent a particular extended message to the target.
* If "full" is true, the target saw the full message.
* If "full" is false, the target saw at least the first
* byte of the message.
*/
static int
ahc_sent_msg(struct ahc_softc *ahc, u_int msgtype, int full)
{
int found;
int index;
found = FALSE;
index = 0;
while (index < ahc->msgout_len) {
if ((ahc->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
|| ahc->msgout_buf[index] == MSG_MESSAGE_REJECT)
index++;
else if (ahc->msgout_buf[index] >= MSG_SIMPLE_Q_TAG
&& ahc->msgout_buf[index] < MSG_IGN_WIDE_RESIDUE) {
/* Skip tag type and tag id */
index += 2;
} else if (ahc->msgout_buf[index] == MSG_EXTENDED) {
/* Found a candidate */
if (ahc->msgout_buf[index+2] == msgtype) {
u_int end_index;
end_index = index + 1
+ ahc->msgout_buf[index + 1];
if (full) {
if (ahc->msgout_index > end_index)
found = TRUE;
} else if (ahc->msgout_index > index)
found = TRUE;
}
break;
} else {
panic("ahc_sent_msg: Inconsistent msg buffer");
}
}
return (found);
}
static int
ahc_parse_msg(struct ahc_softc *ahc, struct cam_path *path,
struct ahc_devinfo *devinfo)
{
int reject;
int done;
int response;
u_int targ_scsirate;
done = FALSE;
response = FALSE;
reject = FALSE;
targ_scsirate = ahc->transinfo[devinfo->target_offset].scsirate;
/*
* Parse as much of the message as is availible,
* rejecting it if we don't support it. When
* the entire message is availible and has been
* handled, return TRUE indicating that we have
* parsed an entire message.
*
* In the case of extended messages, we accept the length
* byte outright and perform more checking once we know the
* extended message type.
*/
if (ahc->msgin_buf[0] == MSG_MESSAGE_REJECT) {
response = ahc_handle_msg_reject(ahc, devinfo);
done = TRUE;
} else if (ahc->msgin_buf[0] == MSG_NOOP) {
done = TRUE;
} else if (ahc->msgin_buf[0] != MSG_EXTENDED) {
reject = TRUE;
} else if (ahc->msgin_index >= 2) {
switch (ahc->msgin_buf[2]) {
case MSG_EXT_SDTR:
{
struct ahc_syncrate *syncrate;
u_int period;
u_int offset;
u_int saved_offset;
if (ahc->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have both args before validating
* and acting on this message.
*
* Add one to MSG_EXT_SDTR_LEN to account for
* the extended message preamble.
*/
if (ahc->msgin_index < (MSG_EXT_SDTR_LEN + 1))
break;
period = ahc->msgin_buf[3];
saved_offset = offset = ahc->msgin_buf[4];
syncrate = ahc_devlimited_syncrate(ahc, &period);
ahc_validate_offset(ahc, syncrate, &offset,
targ_scsirate & WIDEXFER);
ahc_set_syncrate(ahc, devinfo, path,
syncrate, period, offset,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL);
/*
* See if we initiated Sync Negotiation
* and didn't have to fall down to async
* transfers.
*/
if (ahc_sent_msg(ahc, MSG_EXT_SDTR, /*full*/TRUE)) {
/* We started it */
if (saved_offset != offset) {
/* Went too low - force async */
reject = TRUE;
}
} else {
/*
* Send our own SDTR in reply
*/
if (bootverbose)
printf("Sending SDTR!\n");
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_sdtr(ahc, period, offset);
ahc->msgout_index = 0;
response = TRUE;
}
done = TRUE;
break;
}
case MSG_EXT_WDTR:
{
u_int bus_width;
u_int sending_reply;
sending_reply = FALSE;
if (ahc->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have our arg before validating
* and acting on this message.
*
* Add one to MSG_EXT_WDTR_LEN to account for
* the extended message preamble.
*/
if (ahc->msgin_index < (MSG_EXT_WDTR_LEN + 1))
break;
if (devinfo->role == ROLE_TARGET) {
reject = TRUE;
break;
}
bus_width = ahc->msgin_buf[3];
if (ahc_sent_msg(ahc, MSG_EXT_WDTR, /*full*/TRUE)) {
/*
* Don't send a WDTR back to the
* target, since we asked first.
*/
switch (bus_width){
default:
/*
* How can we do anything greater
* than 16bit transfers on a 16bit
* bus?
*/
reject = TRUE;
printf("%s: target %d requested %dBit "
"transfers. Rejecting...\n",
ahc_name(ahc), devinfo->target,
8 * (0x01 << bus_width));
/* FALLTHROUGH */
case MSG_EXT_WDTR_BUS_8_BIT:
bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
case MSG_EXT_WDTR_BUS_16_BIT:
break;
}
} else {
/*
* Send our own WDTR in reply
*/
if (bootverbose)
printf("Sending WDTR!\n");
switch (bus_width) {
default:
if (ahc->features & AHC_WIDE) {
/* Respond Wide */
bus_width =
MSG_EXT_WDTR_BUS_16_BIT;
break;
}
/* FALLTHROUGH */
case MSG_EXT_WDTR_BUS_8_BIT:
bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_wdtr(ahc, bus_width);
ahc->msgout_index = 0;
response = TRUE;
sending_reply = TRUE;
}
ahc_set_width(ahc, devinfo, path, bus_width,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL);
/* After a wide message, we are async */
ahc_set_syncrate(ahc, devinfo, path,
/*syncrate*/NULL, /*period*/0,
/*offset*/0, AHC_TRANS_ACTIVE);
if (sending_reply == FALSE && reject == FALSE) {
struct ahc_target_tinfo *tinfo;
tinfo = &ahc->transinfo[devinfo->target_offset];
if (tinfo->goal.period) {
struct ahc_syncrate *rate;
u_int period;
u_int offset;
/* Start the sync negotiation */
period = tinfo->goal.period;
rate = ahc_devlimited_syncrate(ahc,
&period);
offset = tinfo->goal.offset;
ahc_validate_offset(ahc, rate, &offset,
tinfo->current.width);
ahc->msgout_index = 0;
ahc->msgout_len = 0;
ahc_construct_sdtr(ahc, period, offset);
ahc->msgout_index = 0;
response = TRUE;
}
}
done = TRUE;
break;
}
default:
/* Unknown extended message. Reject it. */
reject = TRUE;
break;
}
}
if (reject) {
/*
* Assert attention and setup to
* reject the message.
*/
ahc->msgout_index = 0;
ahc->msgout_len = 1;
ahc->msgout_buf[0] = MSG_MESSAGE_REJECT;
done = TRUE;
response = TRUE;
}
if (done && !response)
/* Clear the outgoing message buffer */
ahc->msgout_len = 0;
return (done);
}
static void
ahc_handle_devreset(struct ahc_softc *ahc, int target, char channel,
cam_status status, ac_code acode, char *message,
int verbose_only)
{
struct ahc_devinfo devinfo;
struct cam_path *path;
int found;
int error;
ahc_compile_devinfo(&devinfo, target, CAM_LUN_WILDCARD, channel,
ROLE_UNKNOWN);
error = ahc_create_path(ahc, &devinfo, &path);
/*
* Go back to async/narrow transfers and renegotiate.
* ahc_set_width and ahc_set_syncrate can cope with NULL
* paths.
*/
ahc_set_width(ahc, &devinfo, path, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR);
ahc_set_syncrate(ahc, &devinfo, path, /*syncrate*/NULL,
/*period*/0, /*offset*/0, AHC_TRANS_CUR);
found = ahc_abort_scbs(ahc, target, channel, CAM_LUN_WILDCARD,
SCB_LIST_NULL, status);
if (error == CAM_REQ_CMP && acode != 0)
xpt_async(AC_SENT_BDR, path, NULL);
if (error == CAM_REQ_CMP)
xpt_free_path(path);
if (message != NULL
&& (verbose_only == 0 || bootverbose != 0))
printf("%s: %s on %c:%d. %d SCBs aborted\n", ahc_name(ahc),
message, channel, target, found);
}
/*
* We have an scb which has been processed by the
* adaptor, now we look to see how the operation
* went.
*/
static void
ahc_done(struct ahc_softc *ahc, struct scb *scb)
{
union ccb *ccb;
CAM_DEBUG(scb->ccb->ccb_h.path, CAM_DEBUG_TRACE,
("ahc_done - scb %d\n", scb->hscb->tag));
ccb = scb->ccb;
LIST_REMOVE(&ccb->ccb_h, sim_links.le);
untimeout(ahc_timeout, (caddr_t)scb, ccb->ccb_h.timeout_ch);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(ahc->dmat, scb->dmamap, op);
bus_dmamap_unload(ahc->dmat, scb->dmamap);
}
/*
* Unbusy this target/channel/lun.
* XXX if we are holding two commands per lun,
* send the next command.
*/
ahc_index_busy_tcl(ahc, scb->hscb->tcl, /*unbusy*/TRUE);
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
ccb->ccb_h.status = CAM_REQ_CMP;
ahc_free_scb(ahc, scb);
xpt_done(ccb);
return;
}
/*
* If the recovery SCB completes, we have to be
* out of our timeout.
*/
if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
struct ccb_hdr *ccbh;
/*
* We were able to complete the command successfully,
* so reinstate the timeouts for all other pending
* commands.
*/
ccbh = ahc->pending_ccbs.lh_first;
while (ccbh != NULL) {
struct scb *pending_scb;
pending_scb = (struct scb *)ccbh->ccb_scb_ptr;
ccbh->timeout_ch =
timeout(ahc_timeout, pending_scb,
(ccbh->timeout * hz)/1000);
ccbh = LIST_NEXT(ccbh, sim_links.le);
}
/*
* Ensure that we didn't put a second instance of this
* SCB into the QINFIFO.
*/
ahc_search_qinfifo(ahc, SCB_TARGET(scb), SCB_CHANNEL(scb),
SCB_LUN(scb), scb->hscb->tag, /*status*/0,
SEARCH_REMOVE);
if (ahc_ccb_status(ccb) == CAM_BDR_SENT)
ahc_set_ccb_status(ccb, CAM_CMD_TIMEOUT);
xpt_print_path(ccb->ccb_h.path);
printf("no longer in timeout, status = %x\n",
ccb->ccb_h.status);
}
/* Don't clobber any existing error state */
if (ahc_ccb_status(ccb) == CAM_REQ_INPROG) {
ccb->ccb_h.status |= CAM_REQ_CMP;
} else if ((scb->flags & SCB_SENSE) != 0) {
/* We performed autosense retrieval */
scb->ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ahc_free_scb(ahc, scb);
xpt_done(ccb);
}
/*
* Determine the number of SCBs available on the controller
*/
int
ahc_probe_scbs(struct ahc_softc *ahc) {
int i;
for (i = 0; i < AHC_SCB_MAX; i++) {
ahc_outb(ahc, SCBPTR, i);
ahc_outb(ahc, SCB_CONTROL, i);
if (ahc_inb(ahc, SCB_CONTROL) != i)
break;
ahc_outb(ahc, SCBPTR, 0);
if (ahc_inb(ahc, SCB_CONTROL) != 0)
break;
}
return (i);
}
/*
* Start the board, ready for normal operation
*/
int
ahc_init(struct ahc_softc *ahc)
{
int max_targ = 15;
int i;
int term;
u_int scsi_conf;
u_int scsiseq_template;
#ifdef AHC_PRINT_SRAM
printf("Scratch Ram:");
for (i = 0x20; i < 0x5f; i++) {
if (((i % 8) == 0) && (i != 0)) {
printf ("\n ");
}
printf (" 0x%x", ahc_inb(ahc, i));
}
if ((ahc->features & AHC_MORE_SRAM) != 0) {
for (i = 0x70; i < 0x7f; i++) {
if (((i % 8) == 0) && (i != 0)) {
printf ("\n ");
}
printf (" 0x%x", ahc_inb(ahc, i));
}
}
printf ("\n");
#endif
/*
* Assume we have a board at this stage and it has been reset.
*/
if ((ahc->flags & AHC_USEDEFAULTS) != 0) {
ahc->our_id = ahc->our_id_b = 7;
}
/*
* Default to allowing initiator operations.
*/
ahc->flags |= AHC_INITIATORMODE;
/*
* XXX Would be better to use a per device flag, but PCI and EISA
* devices don't have them yet.
*/
if ((AHC_TMODE_ENABLE & (0x01 << ahc->unit)) != 0) {
ahc->flags |= AHC_TARGETMODE;
if ((ahc->features & AHC_ULTRA2) == 0)
/* Only have space for both on the Ultra2 chips */
ahc->flags &= ~AHC_INITIATORMODE;
}
if ((ahc->features & AHC_TWIN) != 0) {
printf("Twin Channel, A SCSI Id=%d, B SCSI Id=%d, primary %c, ",
ahc->our_id, ahc->our_id_b,
ahc->flags & AHC_CHANNEL_B_PRIMARY? 'B': 'A');
} else {
if ((ahc->features & AHC_WIDE) != 0) {
printf("Wide ");
} else {
printf("Single ");
}
printf("Channel %c, SCSI Id=%d, ", ahc->channel, ahc->our_id);
}
ahc_outb(ahc, SEQ_FLAGS, 0);
/* Determine the number of SCBs and initialize them */
if (ahc->scb_data->maxhscbs == 0) {
ahc->scb_data->maxhscbs = ahc_probe_scbs(ahc);
/* SCB 0 heads the free list */
ahc_outb(ahc, FREE_SCBH, 0);
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
ahc_outb(ahc, SCBPTR, i);
/* Clear the control byte. */
ahc_outb(ahc, SCB_CONTROL, 0);
/* Set the next pointer */
ahc_outb(ahc, SCB_NEXT, i+1);
/* Make the tag number invalid */
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
}
/* Make that the last SCB terminates the free list */
ahc_outb(ahc, SCBPTR, i-1);
ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL);
/* Ensure we clear the 0 SCB's control byte. */
ahc_outb(ahc, SCBPTR, 0);
ahc_outb(ahc, SCB_CONTROL, 0);
ahc->scb_data->maxhscbs = i;
}
if (ahc->scb_data->maxhscbs == 0)
panic("%s: No SCB space found", ahc_name(ahc));
if (ahc->scb_data->maxhscbs < AHC_SCB_MAX) {
ahc->flags |= AHC_PAGESCBS;
ahc->scb_data->maxscbs = AHC_SCB_MAX;
printf("%d/%d SCBs\n", ahc->scb_data->maxhscbs,
ahc->scb_data->maxscbs);
} else {
ahc->scb_data->maxscbs = ahc->scb_data->maxhscbs;
ahc->flags &= ~AHC_PAGESCBS;
printf("%d SCBs\n", ahc->scb_data->maxhscbs);
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC) {
printf("%s: hardware scb %d bytes; kernel scb %d bytes; "
"ahc_dma %d bytes\n",
ahc_name(ahc),
sizeof(struct hardware_scb),
sizeof(struct scb),
sizeof(struct ahc_dma_seg));
}
#endif /* AHC_DEBUG */
/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels*/
if (ahc->features & AHC_TWIN) {
/*
* The device is gated to channel B after a chip reset,
* so set those values first
*/
term = (ahc->flags & AHC_TERM_ENB_B) != 0 ? STPWEN : 0;
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id_b);
else
ahc_outb(ahc, SCSIID, ahc->our_id_b);
scsi_conf = ahc_inb(ahc, SCSICONF + 1);
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|term|ENSTIMER|ACTNEGEN);
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
#if 0
if ((scsi_conf & RESET_SCSI) != 0
&& (ahc->flags & AHC_INITIATORMODE) != 0)
ahc->flags |= AHC_RESET_BUS_B;
#else
if ((ahc->flags & AHC_INITIATORMODE) != 0)
ahc->flags |= AHC_RESET_BUS_B;
#endif
/* Select Channel A */
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) & ~SELBUSB);
}
term = (ahc->flags & AHC_TERM_ENB_A) != 0 ? STPWEN : 0;
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id);
else
ahc_outb(ahc, SCSIID, ahc->our_id);
scsi_conf = ahc_inb(ahc, SCSICONF);
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|term
|ENSTIMER|ACTNEGEN);
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
if ((ahc->features & AHC_ULTRA2) != 0) {
/* Wait for our transceiver status to settle */
i = 1000000;
while (--i && ((ahc_inb(ahc, SBLKCTL) & (ENAB40|ENAB20)) == 0))
DELAY(100);
if (i == 0)
panic("%s: Transceiver state never settled\n",
ahc_name(ahc));
}
#if 0
if ((scsi_conf & RESET_SCSI) != 0
&& (ahc->flags & AHC_INITIATORMODE) != 0)
ahc->flags |= AHC_RESET_BUS_A;
#else
if ((ahc->flags & AHC_INITIATORMODE) != 0)
ahc->flags |= AHC_RESET_BUS_A;
#endif
/*
* Look at the information that board initialization or
* the board bios has left us. In the lower four bits of each
* target's scratch space any value other than 0 indicates
* that we should initiate synchronous transfers. If it's zero,
* the user or the BIOS has decided to disable synchronous
* negotiation to that target so we don't activate the needsdtr
* flag.
*/
ahc->ultraenb = 0;
ahc->tagenable = ALL_TARGETS_MASK;
/* Grab the disconnection disable table and invert it for our needs */
if (ahc->flags & AHC_USEDEFAULTS) {
printf("%s: Host Adapter Bios disabled. Using default SCSI "
"device parameters\n", ahc_name(ahc));
ahc->flags |= AHC_EXTENDED_TRANS_A|AHC_EXTENDED_TRANS_B|
AHC_TERM_ENB_A|AHC_TERM_ENB_B;
ahc->discenable = ALL_TARGETS_MASK;
if ((ahc->features & AHC_ULTRA) != 0)
ahc->ultraenb = 0xffff;
} else {
ahc->discenable = ~((ahc_inb(ahc, DISC_DSB + 1) << 8)
| ahc_inb(ahc, DISC_DSB));
if ((ahc->features & (AHC_ULTRA|AHC_ULTRA2)) != 0)
ahc->ultraenb = (ahc_inb(ahc, ULTRA_ENB + 1) << 8)
| ahc_inb(ahc, ULTRA_ENB);
}
if ((ahc->features & (AHC_WIDE|AHC_TWIN)) == 0)
max_targ = 7;
for (i = 0; i <= max_targ; i++) {
struct ahc_target_tinfo *transinfo;
transinfo = &ahc->transinfo[i];
/* Default to async narrow across the board */
bzero(transinfo, sizeof(*transinfo));
if (ahc->flags & AHC_USEDEFAULTS) {
if ((ahc->features & AHC_WIDE) != 0)
transinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
/*
* These will be truncated when we determine the
* connection type we have with the target.
*/
transinfo->user.period = ahc_syncrates->period;
transinfo->user.offset = ~0;
} else {
u_int scsirate;
u_int16_t mask;
/* Take the settings leftover in scratch RAM. */
scsirate = ahc_inb(ahc, TARG_SCSIRATE + i);
mask = (0x01 << i);
if ((ahc->features & AHC_ULTRA2) != 0) {
u_int offset;
if ((scsirate & SOFS) == 0x0F) {
/*
* Haven't negotiated yet,
* so the format is different.
*/
scsirate = (scsirate & SXFR) >> 4
| (ahc->ultraenb & mask)
? 0x18 : 0x10
| (scsirate & WIDEXFER);
offset = MAX_OFFSET_ULTRA2;
} else
offset = ahc_inb(ahc, TARG_OFFSET + i);
ahc_find_period(ahc, scsirate,
AHC_SYNCRATE_ULTRA2);
if (offset == 0)
transinfo->user.period = 0;
else
transinfo->user.offset = ~0;
} else if ((scsirate & SOFS) != 0) {
transinfo->user.period =
ahc_find_period(ahc, scsirate,
(ahc->ultraenb & mask)
? AHC_SYNCRATE_ULTRA
: AHC_SYNCRATE_FAST);
if ((scsirate & SOFS) != 0
&& transinfo->user.period != 0) {
transinfo->user.offset = ~0;
}
}
if ((scsirate & WIDEXFER) != 0
&& (ahc->features & AHC_WIDE) != 0) {
transinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
}
}
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC)
printf("NEEDSDTR == 0x%x\nNEEDWDTR == 0x%x\n"
"DISCENABLE == 0x%x\nULTRAENB == 0x%x\n",
ahc->needsdtr_orig, ahc->needwdtr_orig,
ahc->discenable, ahc->ultraenb);
#endif
/*
* Allocate enough "hardware scbs" to handle
* the maximum number of concurrent transactions
* we can have active. We have to use contigmalloc
* if this array crosses a page boundary since the
* sequencer depends on this array being physically
* contiguous.
*/
if (ahc->scb_data->hscbs == NULL) {
size_t array_size;
array_size = ahc->scb_data->maxscbs*sizeof(struct hardware_scb);
if (array_size > PAGE_SIZE) {
ahc->scb_data->hscbs = (struct hardware_scb *)
contigmalloc(array_size, M_DEVBUF,
M_NOWAIT, 0ul, 0xffffffff,
PAGE_SIZE, 0x10000);
} else {
ahc->scb_data->hscbs = (struct hardware_scb *)
malloc(array_size, M_DEVBUF, M_NOWAIT);
}
if (ahc->scb_data->hscbs == NULL) {
printf("%s: unable to allocate hardware SCB array. "
"Failing attach\n", ahc_name(ahc));
return (-1);
}
/* At least the control byte of each hscb needs to be zeroed */
bzero(ahc->scb_data->hscbs, array_size);
}
if ((ahc->flags & AHC_TARGETMODE) != 0) {
size_t array_size;
array_size = AHC_TMODE_CMDS * sizeof(struct target_cmd);
ahc->targetcmds = contigmalloc(array_size, M_DEVBUF,
M_NOWAIT, 0ul, 0xffffffff,
PAGE_SIZE, 0x10000);
if (ahc->targetcmds == NULL) {
printf("%s: unable to allocate targetcmd array. "
"Failing attach\n", ahc_name(ahc));
return (-1);
}
/* All target command blocks start out invalid. */
for (i = 0; i < AHC_TMODE_CMDS; i++)
ahc->targetcmds[i].cmd_valid = 0;
ahc_outb(ahc, KERNEL_TQINPOS, 0);
ahc_outb(ahc, TQINPOS, 0);
}
/*
* Tell the sequencer where it can find the our arrays in memory.
*/
{
u_int32_t physaddr;
/* Tell the sequencer where it can find the hscb array. */
physaddr = vtophys(ahc->scb_data->hscbs);
ahc_outb(ahc, HSCB_ADDR, physaddr & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 1, (physaddr >> 8) & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 2, (physaddr >> 16) & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 3, (physaddr >> 24) & 0xFF);
ahc->hscb_busaddr = physaddr;
physaddr = vtophys(ahc->qoutfifo);
ahc_outb(ahc, SCBID_ADDR, physaddr & 0xFF);
ahc_outb(ahc, SCBID_ADDR + 1, (physaddr >> 8) & 0xFF);
ahc_outb(ahc, SCBID_ADDR + 2, (physaddr >> 16) & 0xFF);
ahc_outb(ahc, SCBID_ADDR + 3, (physaddr >> 24) & 0xFF);
if ((ahc->flags & AHC_TARGETMODE) != 0) {
physaddr = vtophys(ahc->targetcmds);
ahc_outb(ahc, TMODE_CMDADDR, physaddr & 0xFF);
ahc_outb(ahc, TMODE_CMDADDR + 1,
(physaddr >> 8) & 0xFF);
ahc_outb(ahc, TMODE_CMDADDR + 2,
(physaddr >> 16) & 0xFF);
ahc_outb(ahc, TMODE_CMDADDR + 3,
(physaddr >> 24) & 0xFF);
ahc_outb(ahc, CMDSIZE_TABLE, 5);
ahc_outb(ahc, CMDSIZE_TABLE + 1, 9);
ahc_outb(ahc, CMDSIZE_TABLE + 2, 9);
ahc_outb(ahc, CMDSIZE_TABLE + 3, 0);
ahc_outb(ahc, CMDSIZE_TABLE + 4, 15);
ahc_outb(ahc, CMDSIZE_TABLE + 5, 11);
ahc_outb(ahc, CMDSIZE_TABLE + 6, 0);
ahc_outb(ahc, CMDSIZE_TABLE + 7, 0);
}
/* There are no untagged SCBs active yet. */
for (i = 0; i < sizeof(ahc->untagged_scbs); i++) {
ahc->untagged_scbs[i] = SCB_LIST_NULL;
}
for (i = 0; i < sizeof(ahc->qoutfifo); i++) {
ahc->qoutfifo[i] = SCB_LIST_NULL;
}
}
/* Our Q FIFOs are empty. */
ahc_outb(ahc, KERNEL_QINPOS, 0);
ahc_outb(ahc, QINPOS, 0);
ahc_outb(ahc, QOUTPOS, 0);
/* Don't have any special messages to send to targets */
ahc_outb(ahc, TARGET_MSG_REQUEST, 0);
ahc_outb(ahc, TARGET_MSG_REQUEST + 1, 0);
/*
* Use the built in queue management registers
* if they are available.
*/
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, QOFF_CTLSTA, SCB_QSIZE_256);
ahc_outb(ahc, SDSCB_QOFF, 0);
ahc_outb(ahc, SNSCB_QOFF, 0);
ahc_outb(ahc, HNSCB_QOFF, 0);
}
/* We don't have any waiting selections */
ahc_outb(ahc, WAITING_SCBH, SCB_LIST_NULL);
/* Our disconnection list is empty too */
ahc_outb(ahc, DISCONNECTED_SCBH, SCB_LIST_NULL);
/* Message out buffer starts empty */
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
/*
* Setup the allowed SCSI Sequences based on operational mode.
* If we are a target, we'll enalbe select in operations once
* we've had a lun enabled.
*/
scsiseq_template = ENSELO|ENAUTOATNO|ENAUTOATNP;
if ((ahc->flags & AHC_INITIATORMODE) != 0)
scsiseq_template |= ENRSELI;
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq_template);
/*
* Load the Sequencer program and Enable the adapter
* in "fast" mode.
*/
if (bootverbose)
printf("%s: Downloading Sequencer Program...",
ahc_name(ahc));
ahc_loadseq(ahc);
/* We have to wait until after any system dumps... */
at_shutdown(ahc_shutdown, ahc, SHUTDOWN_FINAL);
return (0);
}
static cam_status
ahc_find_tmode_devs(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb,
struct tmode_tstate **tstate, struct tmode_lstate **lstate,
int notfound_failure)
{
int our_id;
/*
* If we are not configured for target mode, someone
* is really confused to be sending this to us.
*/
if ((ahc->flags & AHC_TARGETMODE) == 0)
return (CAM_REQ_INVALID);
/* Range check target and lun */
if (cam_sim_bus(sim) == 0)
our_id = ahc->our_id;
else
our_id = ahc->our_id_b;
if (ccb->ccb_h.target_id > ((ahc->features & AHC_WIDE) ? 15 : 7)
|| ((ahc->features & AHC_MULTI_TID) == 0
&& (ccb->ccb_h.target_id != our_id)))
return (CAM_TID_INVALID);
if (ccb->ccb_h.target_lun > 8)
return (CAM_LUN_INVALID);
*tstate = ahc->enabled_targets[ccb->ccb_h.target_id];
*lstate = NULL;
if (*tstate != NULL)
*lstate = (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
if (notfound_failure != 0 && *lstate == NULL)
return (CAM_PATH_INVALID);
return (CAM_REQ_CMP);
}
static void
ahc_action(struct cam_sim *sim, union ccb *ccb)
{
struct ahc_softc *ahc;
struct tmode_lstate *lstate;
int target_id;
int s;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahc_action\n"));
ahc = (struct ahc_softc *)cam_sim_softc(sim);
target_id = ccb->ccb_h.target_id;
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO:/* Continue Host Target I/O Connection*/
{
struct tmode_tstate *tstate;
cam_status status;
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
SLIST_INSERT_HEAD(&lstate->accept_tios, &ccb->ccb_h,
sim_links.sle);
ccb->ccb_h.status = CAM_REQ_INPROG;
break;
}
/*
* The target_id represents the target we attempt to
* select. In target mode, this is the initiator of
* the original command.
*/
target_id = ccb->csio.init_id;
/* FALLTHROUGH */
}
case XPT_SCSI_IO: /* Execute the requested I/O operation */
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
{
struct scb *scb;
struct hardware_scb *hscb;
struct ahc_target_tinfo *tinfo;
u_int16_t mask;
/*
* get an scb to use.
*/
if ((scb = ahc_get_scb(ahc)) == NULL) {
int s;
s = splcam();
ahc->flags |= AHC_RESOURCE_SHORTAGE;
splx(s);
xpt_freeze_simq(ahc->sim, /*count*/1);
ahc_set_ccb_status(ccb, CAM_REQUEUE_REQ);
xpt_done(ccb);
return;
}
hscb = scb->hscb;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_SUBTRACE,
("start scb(%p)\n", scb));
scb->ccb = ccb;
/*
* So we can find the SCB when an abort is requested
*/
ccb->ccb_h.ccb_scb_ptr = scb;
ccb->ccb_h.ccb_ahc_ptr = ahc;
/*
* Put all the arguments for the xfer in the scb
*/
hscb->tcl = ((target_id << 4) & 0xF0)
| (SIM_IS_SCSIBUS_B(ahc, sim) ? SELBUSB : 0)
| (ccb->ccb_h.target_lun & 0x07);
mask = SCB_TARGET_MASK(scb);
tinfo = &ahc->transinfo[SCB_TARGET_OFFSET(scb)];
hscb->scsirate = tinfo->scsirate;
hscb->scsioffset = tinfo->current.offset;
if ((ahc->ultraenb & mask) != 0)
hscb->control |= ULTRAENB;
if ((ahc->discenable & mask) != 0
&& (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) == 0)
hscb->control |= DISCENB;
if (ccb->ccb_h.func_code == XPT_RESET_DEV) {
hscb->cmdpointer = NULL;
scb->flags |= SCB_DEVICE_RESET;
hscb->control |= MK_MESSAGE;
ahc_execute_scb(scb, NULL, 0, 0);
} else {
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
if (ahc->pending_device == lstate) {
scb->flags |= SCB_TARGET_IMMEDIATE;
ahc->pending_device = NULL;
}
hscb->control |= TARGET_SCB;
hscb->cmdpointer = IDENTIFY_SEEN;
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) {
hscb->cmdpointer |= SPHASE_PENDING;
hscb->status = ccb->csio.scsi_status;
}
/* Overloaded with tag ID */
hscb->cmdlen = ccb->csio.tag_id;
/*
* Overloaded with our target ID to
* use for reselection.
*/
hscb->next = ccb->ccb_h.target_id;
}
if (ccb->ccb_h.flags & CAM_TAG_ACTION_VALID)
hscb->control |= ccb->csio.tag_action;
ahc_setup_data(ahc, &ccb->csio, scb);
}
break;
}
case XPT_NOTIFY_ACK:
case XPT_IMMED_NOTIFY:
{
struct tmode_tstate *tstate;
struct tmode_lstate *lstate;
cam_status status;
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
if (ccb->ccb_h.func_code == XPT_NOTIFY_ACK) {
/* Clear notification state */
}
SLIST_INSERT_HEAD(&lstate->immed_notifies, &ccb->ccb_h,
sim_links.sle);
ccb->ccb_h.status = CAM_REQ_INPROG;
break;
}
case XPT_EN_LUN: /* Enable LUN as a target */
{
struct tmode_tstate *tstate;
struct tmode_lstate *lstate;
struct ccb_en_lun *cel;
cam_status status;
int target;
int lun;
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate, &lstate,
/* notfound_failure*/FALSE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
cel = &ccb->cel;
target = ccb->ccb_h.target_id;
lun = ccb->ccb_h.target_lun;
if (cel->enable != 0) {
u_int scsiseq;
/* Are we already enabled?? */
if (lstate != NULL) {
ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
xpt_done(ccb);
break;
}
if (cel->grp6_len != 0
|| cel->grp7_len != 0) {
/*
* Don't (yet?) support vendor
* specific commands.
*/
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
/*
* Seems to be okay.
* Setup our data structures.
*/
if (tstate == NULL) {
tstate = malloc(sizeof(*tstate),
M_DEVBUF, M_NOWAIT);
if (tstate == NULL) {
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(ccb);
break;
}
bzero(tstate, sizeof(*tstate));
ahc->enabled_targets[target] = tstate;
}
lstate = malloc(sizeof(*lstate), M_DEVBUF, M_NOWAIT);
if (lstate == NULL) {
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(ccb);
break;
}
bzero(lstate, sizeof(*lstate));
SLIST_INIT(&lstate->accept_tios);
SLIST_INIT(&lstate->immed_notifies);
tstate->enabled_luns[lun] = lstate;
pause_sequencer(ahc);
if ((ahc->features & AHC_MULTI_TID) != 0) {
u_int16_t targid_mask;
targid_mask = ahc_inb(ahc, TARGID)
| (ahc_inb(ahc, TARGID + 1) << 8);
targid_mask |= (0x01 << target);
ahc_outb(ahc, TARGID, targid_mask);
ahc_outb(ahc, TARGID+1, (targid_mask >> 8));
}
/* Allow select-in operations */
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
scsiseq |= ENSELI;
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq);
scsiseq = ahc_inb(ahc, SCSISEQ);
scsiseq |= ENSELI;
ahc_outb(ahc, SCSISEQ, scsiseq);
unpause_sequencer(ahc, /*always?*/FALSE);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_print_path(ccb->ccb_h.path);
printf("Lun now enabled for target mode\n");
xpt_done(ccb);
break;
} else {
struct ccb_hdr *elm;
/* XXX Fully Implement Disable */
if (lstate == NULL) {
ccb->ccb_h.status = CAM_LUN_INVALID;
xpt_done(ccb);
break;
}
ccb->ccb_h.status = CAM_REQ_CMP;
LIST_FOREACH(elm, &ahc->pending_ccbs, sim_links.le) {
if (elm->func_code == XPT_CONT_TARGET_IO
&& !xpt_path_comp(elm->path, ccb->ccb_h.path)){
printf("CTIO pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
}
if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
printf("ATIOs pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
}
if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
printf("INOTs pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
}
if (ccb->ccb_h.status == CAM_REQ_CMP) {
int i, empty;
free(lstate, M_DEVBUF);
tstate->enabled_luns[lun] = NULL;
/* Can we clean up the target too? */
for (empty = 1, i = 0; i < 8; i++)
if (tstate->enabled_luns[i] != NULL) {
empty = 0;
break;
}
if (empty) {
printf("Target Empty\n");
free(tstate, M_DEVBUF);
ahc->enabled_targets[target] = NULL;
pause_sequencer(ahc);
if (ahc->features & AHC_MULTI_TID) {
u_int16_t targid_mask;
targid_mask =
ahc_inb(ahc, TARGID)
| (ahc_inb(ahc, TARGID + 1)
<< 8);
targid_mask &= (0x01 << target);
ahc_outb(ahc, TARGID,
targid_mask);
ahc_outb(ahc, TARGID+1,
(targid_mask >> 8));
}
for (empty = 1, i = 0; i < 16; i++)
if (ahc->enabled_targets[i]
!= NULL) {
empty = 0;
break;
}
if (empty) {
/* Disallow select-in */
u_int scsiseq;
printf("No targets\n");
scsiseq =
ahc_inb(ahc,
SCSISEQ_TEMPLATE);
scsiseq &= ~ENSELI;
ahc_outb(ahc, SCSISEQ_TEMPLATE,
scsiseq);
scsiseq = ahc_inb(ahc, SCSISEQ);
scsiseq &= ~ENSELI;
ahc_outb(ahc, SCSISEQ, scsiseq);
}
unpause_sequencer(ahc,
/*always?*/FALSE);
}
}
xpt_done(ccb);
break;
}
break;
}
case XPT_ABORT: /* Abort the specified CCB */
{
ahc_abort_ccb(ahc, sim, ccb);
break;
}
case XPT_SET_TRAN_SETTINGS:
{
struct ahc_devinfo devinfo;
struct ccb_trans_settings *cts;
struct ahc_target_tinfo *tinfo;
u_int update_type;
int s;
cts = &ccb->cts;
ahc_compile_devinfo(&devinfo, cts->ccb_h.target_id,
cts->ccb_h.target_lun,
SIM_IS_SCSIBUS_B(ahc, sim) ? 'B' : 'A',
ROLE_UNKNOWN);
tinfo = &ahc->transinfo[devinfo.target_offset];
update_type = 0;
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
update_type |= AHC_TRANS_GOAL;
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
update_type |= AHC_TRANS_USER;
s = splcam();
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
ahc->discenable |= devinfo.target_mask;
else
ahc->discenable &= ~devinfo.target_mask;
}
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
ahc->tagenable |= devinfo.target_mask;
else
ahc->tagenable &= ~devinfo.target_mask;
}
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) {
switch (cts->bus_width) {
case MSG_EXT_WDTR_BUS_16_BIT:
if ((ahc->features & AHC_WIDE) != 0)
break;
/* FALLTHROUGH to 8bit */
case MSG_EXT_WDTR_BUS_32_BIT:
case MSG_EXT_WDTR_BUS_8_BIT:
default:
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
ahc_set_width(ahc, &devinfo, cts->ccb_h.path,
cts->bus_width, update_type);
}
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) {
struct ahc_syncrate *syncrate;
u_int maxsync;
if ((ahc->features & AHC_ULTRA2) != 0)
maxsync = AHC_SYNCRATE_ULTRA2;
else if ((ahc->features & AHC_ULTRA) != 0)
maxsync = AHC_SYNCRATE_ULTRA;
else
maxsync = AHC_SYNCRATE_FAST;
if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
cts->sync_offset = 0;
syncrate = ahc_find_syncrate(ahc, &cts->sync_period,
maxsync);
ahc_validate_offset(ahc, syncrate, &cts->sync_offset,
MSG_EXT_WDTR_BUS_8_BIT);
/* We use a period of 0 to represent async */
if (cts->sync_offset == 0)
cts->sync_period = 0;
ahc_set_syncrate(ahc, &devinfo, cts->ccb_h.path,
syncrate, cts->sync_period,
cts->sync_offset, update_type);
}
splx(s);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ahc_devinfo devinfo;
struct ccb_trans_settings *cts;
struct ahc_target_tinfo *targ_info;
struct ahc_transinfo *tinfo;
int s;
cts = &ccb->cts;
ahc_compile_devinfo(&devinfo, cts->ccb_h.target_id,
cts->ccb_h.target_lun,
SIM_IS_SCSIBUS_B(ahc, sim) ? 'B' : 'A',
ROLE_UNKNOWN);
targ_info = &ahc->transinfo[devinfo.target_offset];
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
tinfo = &targ_info->current;
else
tinfo = &targ_info->user;
s = splcam();
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
if ((ahc->discenable & devinfo.target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((ahc->tagenable & devinfo.target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
cts->sync_period = tinfo->period;
cts->sync_offset = tinfo->offset;
cts->bus_width = tinfo->width;
splx(s);
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_DISC_VALID
| CCB_TRANS_TQ_VALID;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
int extended;
ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L * 1024L) / ccg->block_size);
extended = SIM_IS_SCSIBUS_B(ahc, sim)
? ahc->flags & AHC_EXTENDED_TRANS_B
: ahc->flags & AHC_EXTENDED_TRANS_A;
if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
struct cam_path *path;
char channel;
int found;
s = splcam();
if (SIM_IS_SCSIBUS_B(ahc, sim)) {
channel = 'B';
path = ahc->path_b;
} else {
channel = 'A';
path = ahc->path;
}
found = ahc_reset_channel(ahc, channel, /*initiate reset*/TRUE);
splx(s);
if (bootverbose) {
xpt_print_path(path);
printf("SCSI bus reset delivered. "
"%d SCBs aborted.\n", found);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
if ((ahc->features & AHC_WIDE) != 0)
cpi->hba_inquiry |= PI_WIDE_16;
if ((ahc->flags & AHC_TARGETMODE) != 0) {
cpi->target_sprt = PIT_PROCESSOR
| PIT_DISCONNECT
| PIT_TERM_IO;
} else {
cpi->target_sprt = 0;
}
cpi->hba_misc = (ahc->flags & AHC_INITIATORMODE)
? 0 : PIM_NOINITIATOR;
cpi->hba_eng_cnt = 0;
cpi->max_target = (ahc->features & AHC_WIDE) ? 15 : 7;
cpi->max_lun = 7;
if (SIM_IS_SCSIBUS_B(ahc, sim)) {
cpi->initiator_id = ahc->our_id_b;
if ((ahc->flags & AHC_RESET_BUS_B) == 0)
cpi->hba_misc |= PIM_NOBUSRESET;
} else {
cpi->initiator_id = ahc->our_id;
if ((ahc->flags & AHC_RESET_BUS_A) == 0)
cpi->hba_misc |= PIM_NOBUSRESET;
}
cpi->bus_id = cam_sim_bus(sim);
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
ahc_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
{
struct ahc_softc *ahc;
struct cam_sim *sim;
sim = (struct cam_sim *)callback_arg;
ahc = (struct ahc_softc *)cam_sim_softc(sim);
switch (code) {
case AC_LOST_DEVICE:
{
struct ahc_devinfo devinfo;
ahc_compile_devinfo(&devinfo, xpt_path_target_id(path),
xpt_path_lun_id(path),
SIM_IS_SCSIBUS_B(ahc, sim) ? 'B' : 'A',
ROLE_UNKNOWN);
/*
* Revert to async/narrow transfers
* for the next device.
*/
pause_sequencer(ahc);
ahc_set_width(ahc, &devinfo, path, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_GOAL|AHC_TRANS_CUR);
ahc_set_syncrate(ahc, &devinfo, path, /*syncrate*/NULL,
/*period*/0, /*offset*/0,
AHC_TRANS_GOAL|AHC_TRANS_CUR);
unpause_sequencer(ahc, /*unpause always*/FALSE);
break;
}
default:
break;
}
}
static void
ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments,
int error)
{
struct scb *scb;
union ccb *ccb;
struct ahc_softc *ahc;
int s;
scb = (struct scb *)arg;
ccb = scb->ccb;
ahc = (struct ahc_softc *)ccb->ccb_h.ccb_ahc_ptr;
if (nsegments != 0) {
struct ahc_dma_seg *sg;
bus_dma_segment_t *end_seg;
bus_dmasync_op_t op;
end_seg = dm_segs + nsegments;
/* Copy the first SG into the data pointer area */
scb->hscb->SG_pointer = scb->ahc_dmaphys;
scb->hscb->data = dm_segs->ds_addr;
scb->hscb->datalen = dm_segs->ds_len;
dm_segs++;
/* Copy the remaining segments into our SG list */
sg = scb->ahc_dma;
while (dm_segs < end_seg) {
sg->addr = dm_segs->ds_addr;
sg->len = dm_segs->ds_len;
sg++;
dm_segs++;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(ahc->dmat, scb->dmamap, op);
} else {
scb->hscb->SG_pointer = 0;
scb->hscb->data = 0;
scb->hscb->datalen = 0;
}
scb->sg_count = scb->hscb->SG_count = nsegments;
s = splcam();
/*
* Last time we need to check if this SCB needs to
* be aborted.
*/
if (ahc_ccb_status(ccb) != CAM_REQ_INPROG) {
if (nsegments != 0)
bus_dmamap_unload(ahc->dmat, scb->dmamap);
ahc_free_scb(ahc, scb);
xpt_done(ccb);
splx(s);
return;
}
/* Busy this tcl if we are untagged */
if ((scb->hscb->control & TAG_ENB) == 0)
ahc_busy_tcl(ahc, scb);
LIST_INSERT_HEAD(&ahc->pending_ccbs, &ccb->ccb_h,
sim_links.le);
scb->flags |= SCB_ACTIVE;
ccb->ccb_h.status |= CAM_SIM_QUEUED;
ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, (caddr_t)scb,
(ccb->ccb_h.timeout * hz) / 1000);
if ((scb->flags & SCB_TARGET_IMMEDIATE) != 0) {
if ((ahc->flags & AHC_PAGESCBS) == 0)
ahc_outb(ahc, SCBPTR, scb->hscb->tag);
pause_sequencer(ahc);
ahc_outb(ahc, SCB_TAG, scb->hscb->tag);
ahc_outb(ahc, RETURN_1, CONT_MSG_LOOP);
unpause_sequencer(ahc, /*unpause_always*/FALSE);
} else {
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
pause_sequencer(ahc);
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
unpause_sequencer(ahc, /*unpause_always*/FALSE);
}
}
splx(s);
}
static void
ahc_poll(struct cam_sim *sim)
{
ahc_intr(cam_sim_softc(sim));
}
static void
ahc_setup_data(struct ahc_softc *ahc, struct ccb_scsiio *csio,
struct scb *scb)
{
struct hardware_scb *hscb;
struct ccb_hdr *ccb_h;
hscb = scb->hscb;
ccb_h = &csio->ccb_h;
if (ccb_h->func_code == XPT_SCSI_IO) {
hscb->cmdlen = csio->cdb_len;
if ((ccb_h->flags & CAM_CDB_POINTER) != 0) {
if ((ccb_h->flags & CAM_CDB_PHYS) == 0)
if (hscb->cmdlen <= 16) {
memcpy(hscb->cmdstore,
csio->cdb_io.cdb_ptr,
hscb->cmdlen);
hscb->cmdpointer =
hscb->cmdstore_busaddr;
} else
hscb->cmdpointer =
vtophys(csio->cdb_io.cdb_ptr);
else
hscb->cmdpointer =
(u_int32_t)csio->cdb_io.cdb_ptr;
} else {
/*
* CCB CDB Data Storage area is only 16 bytes
* so no additional testing is required
*/
memcpy(hscb->cmdstore, csio->cdb_io.cdb_bytes,
hscb->cmdlen);
hscb->cmdpointer = hscb->cmdstore_busaddr;
}
}
/* Only use S/G if there is a transfer */
if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) {
/* We've been given a pointer to a single buffer */
if ((ccb_h->flags & CAM_DATA_PHYS) == 0) {
int s;
int error;
s = splsoftvm();
error = bus_dmamap_load(ahc->dmat,
scb->dmamap,
csio->data_ptr,
csio->dxfer_len,
ahc_execute_scb,
scb, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(ahc->sim,
/*count*/1);
scb->ccb->ccb_h.status |=
CAM_RELEASE_SIMQ;
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
if (csio->dxfer_len > AHC_MAXTRANSFER_SIZE)
panic("ahc_setup_data - Transfer size "
"larger than can device max");
seg.ds_addr = (bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
ahc_execute_scb(scb, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((ccb_h->flags & CAM_DATA_PHYS) != 0)
panic("ahc_setup_data - Physical segment "
"pointers unsupported");
if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0)
panic("ahc_setup_data - Virtual segment "
"addresses unsupported");
/* Just use the segments provided */
segs = (struct bus_dma_segment *)csio->data_ptr;
ahc_execute_scb(scb, segs, csio->sglist_cnt, 0);
}
if (ccb_h->func_code == XPT_CONT_TARGET_IO) {
hscb->cmdpointer |= DPHASE_PENDING;
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN)
hscb->cmdpointer |= (TARGET_DATA_IN << 8);
}
} else {
ahc_execute_scb(scb, NULL, 0, 0);
}
}
static void
ahc_freeze_devq(struct ahc_softc *ahc, struct cam_path *path)
{
int target;
char channel;
int lun;
target = xpt_path_target_id(path);
lun = xpt_path_lun_id(path);
channel = xpt_path_sim(path)->bus_id == 0 ? 'A' : 'B';
ahc_search_qinfifo(ahc, target, channel, lun,
/*tag*/SCB_LIST_NULL, CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
}
/*
* An scb (and hence an scb entry on the board) is put onto the
* free list.
*/
static void
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
int opri;
hscb = scb->hscb;
opri = splcam();
if ((ahc->flags & AHC_RESOURCE_SHORTAGE) != 0
&& (scb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
scb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
ahc->flags &= ~AHC_RESOURCE_SHORTAGE;
}
/* Clean up for the next user */
scb->flags = SCB_FREE;
hscb->control = 0;
hscb->status = 0;
STAILQ_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links);
splx(opri);
}
/*
* Get a free scb, either one already assigned to a hardware slot
* on the adapter or one that will require an SCB to be paged out before
* use. If there are none, see if we can allocate a new SCB. Otherwise
* either return an error or sleep.
*/
static struct scb *
ahc_get_scb(struct ahc_softc *ahc)
{
struct scb *scbp;
int opri;
opri = splcam();
if ((scbp = STAILQ_FIRST(&ahc->scb_data->free_scbs))) {
STAILQ_REMOVE_HEAD(&ahc->scb_data->free_scbs, links);
} else if (ahc->scb_data->numscbs < ahc->scb_data->maxscbs) {
scbp = ahc_alloc_scb(ahc);
if (scbp == NULL)
printf("%s: Can't malloc SCB\n", ahc_name(ahc));
}
splx(opri);
return (scbp);
}
static struct scb *
ahc_alloc_scb(struct ahc_softc *ahc)
{
static struct ahc_dma_seg *next_sg_array = NULL;
static int sg_arrays_free = 0;
struct scb *newscb;
int error;
newscb = (struct scb *) malloc(sizeof(struct scb), M_DEVBUF, M_NOWAIT);
if (newscb != NULL) {
bzero(newscb, sizeof(struct scb));
error = bus_dmamap_create(ahc->dmat, /*flags*/0,
&newscb->dmamap);
if (error != 0)
printf("%s: Unable to allocate SCB dmamap - error %d\n",
ahc_name(ahc), error);
if (error == 0 && next_sg_array == NULL) {
size_t alloc_size = sizeof(struct ahc_dma_seg)
* AHC_NSEG;
sg_arrays_free = PAGE_SIZE / alloc_size;
alloc_size *= sg_arrays_free;
if (alloc_size == 0)
panic("%s: SG list doesn't fit in a page",
ahc_name(ahc));
next_sg_array = (struct ahc_dma_seg *)
malloc(alloc_size, M_DEVBUF, M_NOWAIT);
}
if (error == 0 && next_sg_array != NULL) {
struct hardware_scb *hscb;
newscb->ahc_dma = next_sg_array;
newscb->ahc_dmaphys = vtophys(next_sg_array);
sg_arrays_free--;
if (sg_arrays_free == 0)
next_sg_array = NULL;
else
next_sg_array = &next_sg_array[AHC_NSEG];
hscb = &ahc->scb_data->hscbs[ahc->scb_data->numscbs];
newscb->hscb = hscb;
hscb->control = 0;
hscb->status = 0;
hscb->tag = ahc->scb_data->numscbs;
hscb->residual_data_count[2] = 0;
hscb->residual_data_count[1] = 0;
hscb->residual_data_count[0] = 0;
hscb->residual_SG_count = 0;
hscb->cmdstore_busaddr =
ahc_hscb_busaddr(ahc, hscb->tag)
+ offsetof(struct hardware_scb, cmdstore);
/*
* Place in the scbarray
* Never is removed.
*/
ahc->scb_data->scbarray[hscb->tag] = newscb;
ahc->scb_data->numscbs++;
} else {
free(newscb, M_DEVBUF);
newscb = NULL;
}
}
return newscb;
}
static void
ahc_loadseq(struct ahc_softc *ahc)
{
struct patch *cur_patch;
int i;
int downloaded;
int skip_addr;
u_int8_t download_consts[4];
/* Setup downloadable constant table */
#if 0
/* No downloaded constants are currently defined. */
download_consts[TMODE_NUMCMDS] = ahc->num_targetcmds;
#endif
cur_patch = patches;
downloaded = 0;
skip_addr = 0;
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahc_outb(ahc, SEQADDR0, 0);
ahc_outb(ahc, SEQADDR1, 0);
for (i = 0; i < sizeof(seqprog)/4; i++) {
if (ahc_check_patch(ahc, &cur_patch, i, &skip_addr) == 0) {
/*
* Don't download this instruction as it
* is in a patch that was removed.
*/
continue;
}
ahc_download_instr(ahc, i, download_consts);
downloaded++;
}
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE);
restart_sequencer(ahc);
if (bootverbose)
printf(" %d instructions downloaded\n", downloaded);
}
static int
ahc_check_patch(struct ahc_softc *ahc, struct patch **start_patch,
int start_instr, int *skip_addr)
{
struct patch *cur_patch;
struct patch *last_patch;
int num_patches;
num_patches = sizeof(patches)/sizeof(struct patch);
last_patch = &patches[num_patches];
cur_patch = *start_patch;
while (cur_patch < last_patch && start_instr == cur_patch->begin) {
if (cur_patch->patch_func(ahc) == 0) {
/* Start rejecting code */
*skip_addr = start_instr + cur_patch->skip_instr;
cur_patch += cur_patch->skip_patch;
} else {
/* Accepted this patch. Advance to the next
* one and wait for our intruction pointer to
* hit this point.
*/
cur_patch++;
}
}
*start_patch = cur_patch;
if (start_instr < *skip_addr)
/* Still skipping */
return (0);
return (1);
}
static void
ahc_download_instr(struct ahc_softc *ahc, int instrptr, u_int8_t *dconsts)
{
union ins_formats instr;
struct ins_format1 *fmt1_ins;
struct ins_format3 *fmt3_ins;
u_int opcode;
/* Structure copy */
instr = *(union ins_formats*)&seqprog[instrptr * 4];
fmt1_ins = &instr.format1;
fmt3_ins = NULL;
/* Pull the opcode */
opcode = instr.format1.opcode;
switch (opcode) {
case AIC_OP_JMP:
case AIC_OP_JC:
case AIC_OP_JNC:
case AIC_OP_CALL:
case AIC_OP_JNE:
case AIC_OP_JNZ:
case AIC_OP_JE:
case AIC_OP_JZ:
{
struct patch *cur_patch;
int address_offset;
u_int address;
int skip_addr;
int i;
fmt3_ins = &instr.format3;
address_offset = 0;
address = fmt3_ins->address;
cur_patch = patches;
skip_addr = 0;
for (i = 0; i < address;) {
ahc_check_patch(ahc, &cur_patch, i, &skip_addr);
if (skip_addr > i) {
int end_addr;
end_addr = MIN(address, skip_addr);
address_offset += end_addr - i;
i = skip_addr;
} else {
i++;
}
}
address -= address_offset;
fmt3_ins->address = address;
/* FALLTHROUGH */
}
case AIC_OP_OR:
case AIC_OP_AND:
case AIC_OP_XOR:
case AIC_OP_ADD:
case AIC_OP_ADC:
case AIC_OP_BMOV:
if (fmt1_ins->parity != 0) {
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
}
fmt1_ins->parity = 0;
/* FALLTHROUGH */
case AIC_OP_ROL:
if ((ahc->features & AHC_ULTRA2) != 0) {
int i, count;
/* Calculate odd parity for the instruction */
for (i = 0, count = 0; i < 31; i++) {
u_int32_t mask;
mask = 0x01 << i;
if ((instr.integer & mask) != 0)
count++;
}
if ((count & 0x01) == 0)
instr.format1.parity = 1;
} else {
/* Compress the instruction for older sequencers */
if (fmt3_ins != NULL) {
instr.integer =
fmt3_ins->immediate
| (fmt3_ins->source << 8)
| (fmt3_ins->address << 16)
| (fmt3_ins->opcode << 25);
} else {
instr.integer =
fmt1_ins->immediate
| (fmt1_ins->source << 8)
| (fmt1_ins->destination << 16)
| (fmt1_ins->ret << 24)
| (fmt1_ins->opcode << 25);
}
}
ahc_outsb(ahc, SEQRAM, instr.bytes, 4);
break;
default:
panic("Unknown opcode encountered in seq program");
break;
}
}
static void
ahc_set_recoveryscb(struct ahc_softc *ahc, struct scb *scb) {
if ((scb->flags & SCB_RECOVERY_SCB) == 0) {
struct ccb_hdr *ccbh;
scb->flags |= SCB_RECOVERY_SCB;
/*
* Take all queued, but not sent SCBs out of the equation.
* Also ensure that no new CCBs are queued to us while we
* try to fix this problem.
*/
if ((scb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
xpt_freeze_simq(ahc->sim, /*count*/1);
scb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
/*
* Go through all of our pending SCBs and remove
* any scheduled timeouts for them. We will reschedule
* them after we've successfully fixed this problem.
*/
ccbh = ahc->pending_ccbs.lh_first;
while (ccbh != NULL) {
struct scb *pending_scb;
pending_scb = (struct scb *)ccbh->ccb_scb_ptr;
untimeout(ahc_timeout, pending_scb, ccbh->timeout_ch);
ccbh = ccbh->sim_links.le.le_next;
}
}
}
static void
ahc_timeout(void *arg)
{
struct scb *scb;
struct ahc_softc *ahc;
int s, found;
u_int bus_state;
int target;
int lun;
char channel;
scb = (struct scb *)arg;
ahc = (struct ahc_softc *)scb->ccb->ccb_h.ccb_ahc_ptr;
s = splcam();
/*
* Ensure that the card doesn't do anything
* behind our back. Also make sure that we
* didn't "just" miss an interrupt that would
* affect this timeout.
*/
do {
ahc_intr(ahc);
pause_sequencer(ahc);
} while (ahc_inb(ahc, INTSTAT) & INT_PEND);
if ((scb->flags & SCB_ACTIVE) == 0) {
/* Previous timeout took care of me already */
printf("Timedout SCB handled by another timeout\n");
unpause_sequencer(ahc, /*unpause_always*/TRUE);
splx(s);
return;
}
target = SCB_TARGET(scb);
channel = SCB_CHANNEL(scb);
lun = SCB_LUN(scb);
xpt_print_path(scb->ccb->ccb_h.path);
printf("SCB 0x%x - timed out ", scb->hscb->tag);
/*
* Take a snapshot of the bus state and print out
* some information so we can track down driver bugs.
*/
bus_state = ahc_inb(ahc, LASTPHASE);
switch(bus_state)
{
case P_DATAOUT:
printf("in dataout phase");
break;
case P_DATAIN:
printf("in datain phase");
break;
case P_COMMAND:
printf("in command phase");
break;
case P_MESGOUT:
printf("in message out phase");
break;
case P_STATUS:
printf("in status phase");
break;
case P_MESGIN:
printf("in message in phase");
break;
case P_BUSFREE:
printf("while idle, LASTPHASE == 0x%x",
bus_state);
break;
default:
/*
* We aren't in a valid phase, so assume we're
* idle.
*/
printf("invalid phase, LASTPHASE == 0x%x",
bus_state);
bus_state = P_BUSFREE;
break;
}
printf(", SEQADDR == 0x%x\n",
ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8));
#if 0
printf(", SCSISIGI == 0x%x\n", ahc_inb(ahc, SCSISIGI));
printf("SIMODE1 = 0x%x\n", ahc_inb(ahc, SIMODE1));
printf("INTSTAT = 0x%x\n", ahc_inb(ahc, INTSTAT));
printf("SSTAT1 == 0x%x\n", ahc_inb(ahc, SSTAT1));
printf("SCSIRATE == 0x%x\n", ahc_inb(ahc, SCSIRATE));
printf("CCSCBCTL == 0x%x\n", ahc_inb(ahc, CCSCBCTL));
printf("CCSCBCNT == 0x%x\n", ahc_inb(ahc, CCSCBCNT));
printf("DFCNTRL == 0x%x\n", ahc_inb(ahc, DFCNTRL));
printf("DFSTATUS == 0x%x\n", ahc_inb(ahc, DFSTATUS));
printf("CCHCNT == 0x%x\n", ahc_inb(ahc, CCHCNT));
#endif
if (scb->flags & SCB_DEVICE_RESET) {
/*
* Been down this road before.
* Do a full bus reset.
*/
bus_reset:
ahc_set_ccb_status(scb->ccb, CAM_CMD_TIMEOUT);
found = ahc_reset_channel(ahc, channel, /*Initiate Reset*/TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahc_name(ahc), channel, found);
} else {
/*
* If we are a target, transition to bus free and report
* the timeout.
*
* The target/initiator that is holding up the bus may not
* be the same as the one that triggered this timeout
* (different commands have different timeout lengths).
* If the bus is idle and we are actiing as the initiator
* for this request, queue a BDR message to the timed out
* target. Otherwise, if the timed out transaction is
* active:
* Initiator transaction:
* Stuff the message buffer with a BDR message and assert
* ATN in the hopes that the target will let go of the bus
* and go to the mesgout phase. If this fails, we'll
* get another timeout 2 seconds later which will attempt
* a bus reset.
*
* Target transaction:
* Transition to BUS FREE and report the error.
* It's good to be the target!
*/
u_int active_scb_index;
active_scb_index = ahc_inb(ahc, SCB_TAG);
if (bus_state != P_BUSFREE
&& (active_scb_index < ahc->scb_data->numscbs)) {
struct scb *active_scb;
/*
* If the active SCB is not from our device,
* assume that another device is hogging the bus
* and wait for it's timeout to expire before
* taking additional action.
*/
active_scb = ahc->scb_data->scbarray[active_scb_index];
if (active_scb->hscb->tcl != scb->hscb->tcl
&& (scb->flags & SCB_OTHERTCL_TIMEOUT) == 0) {
struct ccb_hdr *ccbh;
u_int newtimeout;
scb->flags |= SCB_OTHERTCL_TIMEOUT;
newtimeout = MAX(active_scb->ccb->ccb_h.timeout,
scb->ccb->ccb_h.timeout);
ccbh = &scb->ccb->ccb_h;
scb->ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, scb,
(newtimeout * hz) / 1000);
splx(s);
return;
}
/* It's us */
if ((scb->hscb->control & TARGET_SCB) != 0) {
/*
* Send back any queued up transactions
* and properly record the error condition.
*/
ahc_freeze_devq(ahc, scb->ccb->ccb_h.path);
ahc_set_ccb_status(scb->ccb, CAM_CMD_TIMEOUT);
ahc_freeze_ccb(scb->ccb);
ahc_done(ahc, scb);
/* Will clear us from the bus */
restart_sequencer(ahc);
return;
}
ahc_set_recoveryscb(ahc, active_scb);
ahc_outb(ahc, MSG_OUT, MSG_BUS_DEV_RESET);
ahc_outb(ahc, SCSISIGO, bus_state|ATNO);
xpt_print_path(active_scb->ccb->ccb_h.path);
printf("BDR message in message buffer\n");
active_scb->flags |= SCB_DEVICE_RESET;
active_scb->ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, (caddr_t)active_scb, 2 * hz);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
} else {
int disconnected;
if (bus_state != P_BUSFREE
&& (ahc_inb(ahc, SSTAT0) & TARGET) != 0) {
/* Hung target selection. Goto busfree */
printf("%s: Hung target selection\n",
ahc_name(ahc));
restart_sequencer(ahc);
return;
}
if (ahc_search_qinfifo(ahc, target, channel, lun,
scb->hscb->tag, /*status*/0,
SEARCH_COUNT) > 0) {
disconnected = FALSE;
} else {
disconnected = TRUE;
}
if (disconnected) {
ahc_set_recoveryscb(ahc, scb);
/*
* Simply set the MK_MESSAGE control bit.
*/
scb->hscb->control |= MK_MESSAGE;
scb->flags |= SCB_QUEUED_MSG
| SCB_DEVICE_RESET;
/*
* Remove this SCB from the disconnected
* list so that a reconnect at this point
* causes a BDR.
*/
ahc_search_disc_list(ahc, target, channel, lun,
scb->hscb->tag);
ahc_index_busy_tcl(ahc, scb->hscb->tcl,
/*unbusy*/TRUE);
/*
* Actually re-queue this SCB in case we can
* select the device before it reconnects.
* Clear out any entries in the QINFIFO first
* so we are the next SCB for this target
* to run.
*/
ahc_search_qinfifo(ahc, SCB_TARGET(scb),
channel, SCB_LUN(scb),
SCB_LIST_NULL,
CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
xpt_print_path(scb->ccb->ccb_h.path);
printf("Queuing a BDR SCB\n");
ahc->qinfifo[ahc->qinfifonext++] =
scb->hscb->tag;
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF,
ahc->qinfifonext);
} else {
ahc_outb(ahc, KERNEL_QINPOS,
ahc->qinfifonext);
}
scb->ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, (caddr_t)scb, 2 * hz);
unpause_sequencer(ahc, /*unpause_always*/FALSE);
} else {
/* Go "immediatly" to the bus reset */
/* This shouldn't happen */
ahc_set_recoveryscb(ahc, scb);
xpt_print_path(scb->ccb->ccb_h.path);
printf("SCB %d: Immediate reset. "
"Flags = 0x%x\n", scb->hscb->tag,
scb->flags);
goto bus_reset;
}
}
}
splx(s);
}
static int
ahc_search_qinfifo(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag, u_int32_t status,
ahc_search_action action)
{
struct scb *scbp;
u_int8_t qinpos;
u_int8_t qintail;
int found;
qinpos = ahc_inb(ahc, QINPOS);
qintail = ahc->qinfifonext;
found = 0;
/*
* Start with an empty queue. Entries that are not chosen
* for removal will be re-added to the queue as we go.
*/
ahc->qinfifonext = qinpos;
while (qinpos != qintail) {
scbp = ahc->scb_data->scbarray[ahc->qinfifo[qinpos]];
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
/*
* We found an scb that needs to be removed.
*/
switch (action) {
case SEARCH_COMPLETE:
if (ahc_ccb_status(scbp->ccb) == CAM_REQ_INPROG)
ahc_set_ccb_status(scbp->ccb, status);
ahc_freeze_ccb(scbp->ccb);
ahc_done(ahc, scbp);
break;
case SEARCH_COUNT:
ahc->qinfifo[ahc->qinfifonext++] =
scbp->hscb->tag;
break;
case SEARCH_REMOVE:
break;
}
found++;
} else {
ahc->qinfifo[ahc->qinfifonext++] = scbp->hscb->tag;
}
qinpos++;
}
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
}
return (found);
}
static void
ahc_abort_ccb(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb)
{
union ccb *abort_ccb;
abort_ccb = ccb->cab.abort_ccb;
switch (abort_ccb->ccb_h.func_code) {
case XPT_ACCEPT_TARGET_IO:
case XPT_IMMED_NOTIFY:
case XPT_CONT_TARGET_IO:
{
struct tmode_tstate *tstate;
struct tmode_lstate *lstate;
struct ccb_hdr_slist *list;
cam_status status;
status = ahc_find_tmode_devs(ahc, sim, abort_ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
break;
}
if (abort_ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO)
list = &lstate->accept_tios;
else if (abort_ccb->ccb_h.func_code == XPT_IMMED_NOTIFY)
list = &lstate->immed_notifies;
else
list = NULL;
if (list != NULL) {
struct ccb_hdr *curelm;
int found;
curelm = SLIST_FIRST(list);
found = 0;
if (curelm == &abort_ccb->ccb_h) {
found = 1;
SLIST_REMOVE_HEAD(list, sim_links.sle);
} else {
while(curelm != NULL) {
struct ccb_hdr *nextelm;
nextelm =
SLIST_NEXT(curelm, sim_links.sle);
if (nextelm == &abort_ccb->ccb_h) {
found = 1;
SLIST_NEXT(curelm,
sim_links.sle) =
SLIST_NEXT(nextelm,
sim_links.sle);
break;
}
curelm = nextelm;
}
}
if (found)
abort_ccb->ccb_h.status = CAM_REQ_ABORTED;
else {
printf("Not found\n");
ccb->ccb_h.status = CAM_PATH_INVALID;
}
break;
}
/* FALLTHROUGH */
}
case XPT_SCSI_IO:
/* XXX Fully implement the hard ones */
ccb->ccb_h.status = CAM_UA_ABORT;
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
/*
* Abort all SCBs that match the given description (target/channel/lun/tag),
* setting their status to the passed in status if the status has not already
* been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
* is paused before it is called.
*/
static int
ahc_abort_scbs(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag, u_int32_t status)
{
struct scb *scbp;
u_int active_scb;
int i;
int found;
/* restore this when we're done */
active_scb = ahc_inb(ahc, SCBPTR);
found = ahc_search_qinfifo(ahc, target, channel, lun, tag,
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
/*
* Search waiting for selection list.
*/
{
u_int8_t next, prev;
next = ahc_inb(ahc, WAITING_SCBH); /* Start at head of list. */
prev = SCB_LIST_NULL;
while (next != SCB_LIST_NULL) {
u_int8_t scb_index;
ahc_outb(ahc, SCBPTR, next);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index >= ahc->scb_data->numscbs) {
panic("Waiting List inconsistency. "
"SCB index == %d, yet numscbs == %d.",
scb_index, ahc->scb_data->numscbs);
}
scbp = ahc->scb_data->scbarray[scb_index];
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
next = ahc_abort_wscb(ahc, next, prev);
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
}
}
/*
* Go through the disconnected list and remove any entries we
* have queued for completion, 0'ing their control byte too.
*/
ahc_search_disc_list(ahc, target, channel, lun, tag);
/*
* Go through the hardware SCB array looking for commands that
* were active but not on any list.
*/
for(i = 0; i < ahc->scb_data->maxhscbs; i++) {
u_int scbid;
ahc_outb(ahc, SCBPTR, i);
scbid = ahc_inb(ahc, SCB_TAG);
if (scbid < ahc->scb_data->numscbs) {
scbp = ahc->scb_data->scbarray[scbid];
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
ahc_add_curscb_to_free_list(ahc);
}
}
}
/*
* Go through the pending CCB list and look for
* commands for this target that are still active.
* These are other tagged commands that were
* disconnected when the reset occured.
*/
{
struct ccb_hdr *ccb_h;
ccb_h = ahc->pending_ccbs.lh_first;
while (ccb_h != NULL) {
scbp = (struct scb *)ccb_h->ccb_scb_ptr;
ccb_h = ccb_h->sim_links.le.le_next;
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
if (ahc_ccb_status(scbp->ccb) == CAM_REQ_INPROG)
ahc_set_ccb_status(scbp->ccb, status);
ahc_freeze_ccb(scbp->ccb);
ahc_done(ahc, scbp);
found++;
}
}
}
ahc_outb(ahc, SCBPTR, active_scb);
return found;
}
static int
ahc_search_disc_list(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag)
{
struct scb *scbp;
u_int next;
u_int prev;
u_int count;
u_int active_scb;
count = 0;
next = ahc_inb(ahc, DISCONNECTED_SCBH);
prev = SCB_LIST_NULL;
/* restore this when we're done */
active_scb = ahc_inb(ahc, SCBPTR);
while (next != SCB_LIST_NULL) {
u_int scb_index;
ahc_outb(ahc, SCBPTR, next);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index >= ahc->scb_data->numscbs) {
panic("Disconnected List inconsistency. "
"SCB index == %d, yet numscbs == %d.",
scb_index, ahc->scb_data->numscbs);
}
scbp = ahc->scb_data->scbarray[scb_index];
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
next = ahc_rem_scb_from_disc_list(ahc, prev,
next);
count++;
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
}
ahc_outb(ahc, SCBPTR, active_scb);
return (count);
}
static u_int
ahc_rem_scb_from_disc_list(struct ahc_softc *ahc, u_int prev, u_int scbptr)
{
u_int next;
ahc_outb(ahc, SCBPTR, scbptr);
next = ahc_inb(ahc, SCB_NEXT);
ahc_outb(ahc, SCB_CONTROL, 0);
ahc_add_curscb_to_free_list(ahc);
if (prev != SCB_LIST_NULL) {
ahc_outb(ahc, SCBPTR, prev);
ahc_outb(ahc, SCB_NEXT, next);
} else
ahc_outb(ahc, DISCONNECTED_SCBH, next);
return next;
}
static void
ahc_add_curscb_to_free_list(struct ahc_softc *ahc)
{
/* Invalidate the tag so that ahc_find_scb doesn't think it's active */
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
ahc_outb(ahc, SCB_NEXT, ahc_inb(ahc, FREE_SCBH));
ahc_outb(ahc, FREE_SCBH, ahc_inb(ahc, SCBPTR));
}
/*
* Manipulate the waiting for selection list and return the
* scb that follows the one that we remove.
*/
static u_int
ahc_abort_wscb(struct ahc_softc *ahc, u_int scbpos, u_int prev)
{
u_int curscb, next;
/*
* Select the SCB we want to abort and
* pull the next pointer out of it.
*/
curscb = ahc_inb(ahc, SCBPTR);
ahc_outb(ahc, SCBPTR, scbpos);
next = ahc_inb(ahc, SCB_NEXT);
/* Clear the necessary fields */
ahc_outb(ahc, SCB_CONTROL, 0);
ahc_add_curscb_to_free_list(ahc);
/* update the waiting list */
if (prev == SCB_LIST_NULL) {
/* First in the list */
ahc_outb(ahc, WAITING_SCBH, next);
/*
* Ensure we aren't attempting to perform
* selection for this entry.
*/
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
} else {
/*
* Select the scb that pointed to us
* and update its next pointer.
*/
ahc_outb(ahc, SCBPTR, prev);
ahc_outb(ahc, SCB_NEXT, next);
}
/*
* Point us back at the original scb position.
*/
ahc_outb(ahc, SCBPTR, curscb);
return next;
}
static void
ahc_clear_intstat(struct ahc_softc *ahc)
{
/* Clear any interrupt conditions this may have caused */
ahc_outb(ahc, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO);
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
|CLRBUSFREE|CLRSCSIPERR|CLRPHASECHG|
CLRREQINIT);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
}
static void
ahc_reset_current_bus(struct ahc_softc *ahc)
{
u_int8_t scsiseq;
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENSCSIRST);
scsiseq = ahc_inb(ahc, SCSISEQ);
ahc_outb(ahc, SCSISEQ, scsiseq | SCSIRSTO);
DELAY(AHC_BUSRESET_DELAY);
/* Turn off the bus reset */
ahc_outb(ahc, SCSISEQ, scsiseq & ~SCSIRSTO);
ahc_clear_intstat(ahc);
/* Re-enable reset interrupts */
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) | ENSCSIRST);
}
static int
ahc_reset_channel(struct ahc_softc *ahc, char channel, int initiate_reset)
{
u_int target, max_target;
int found;
u_int8_t sblkctl;
char cur_channel;
struct cam_path *path;
pause_sequencer(ahc);
/*
* Clean up all the state information for the
* pending transactions on this bus.
*/
found = ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, channel,
CAM_LUN_WILDCARD, SCB_LIST_NULL,
CAM_SCSI_BUS_RESET);
path = channel == 'B' ? ahc->path_b : ahc->path;
/* Notify the XPT that a bus reset occurred */
xpt_async(AC_BUS_RESET, path, NULL);
/*
* Revert to async/narrow transfers until we renegotiate.
*/
max_target = (ahc->features & AHC_WIDE) ? 15 : 7;
for (target = 0; target <= max_target; target++) {
struct ahc_devinfo devinfo;
ahc_compile_devinfo(&devinfo, target, CAM_LUN_WILDCARD,
channel, ROLE_UNKNOWN);
ahc_set_width(ahc, &devinfo, path, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR);
ahc_set_syncrate(ahc, &devinfo, path, /*syncrate*/NULL,
/*period*/0, /*offset*/0, AHC_TRANS_CUR);
}
/*
* Reset the bus if we are initiating this reset and
* restart/unpause the sequencer
*/
sblkctl = ahc_inb(ahc, SBLKCTL);
cur_channel = 'A';
if ((ahc->features & AHC_TWIN) != 0
&& ((sblkctl & SELBUSB) != 0))
cur_channel = 'B';
if (cur_channel != channel) {
/* Case 1: Command for another bus is active
* Stealthily reset the other bus without
* upsetting the current bus.
*/
ahc_outb(ahc, SBLKCTL, sblkctl ^ SELBUSB);
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
if (initiate_reset)
ahc_reset_current_bus(ahc);
ahc_clear_intstat(ahc);
ahc_outb(ahc, SBLKCTL, sblkctl);
unpause_sequencer(ahc, /*unpause_always*/FALSE);
} else {
/* Case 2: A command from this bus is active or we're idle */
ahc_clear_msg_state(ahc);
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
if (initiate_reset)
ahc_reset_current_bus(ahc);
ahc_clear_intstat(ahc);
restart_sequencer(ahc);
}
return found;
}
static int
ahc_match_scb (struct scb *scb, int target, char channel, int lun, u_int tag)
{
int targ = SCB_TARGET(scb);
char chan = SCB_CHANNEL(scb);
int slun = SCB_LUN(scb);
int match;
match = ((chan == channel) || (channel == ALL_CHANNELS));
if (match != 0)
match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
if (match != 0)
match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
if (match != 0)
match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
return match;
}
static void
ahc_construct_sdtr(struct ahc_softc *ahc, u_int period, u_int offset)
{
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXTENDED;
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXT_SDTR_LEN;
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXT_SDTR;
ahc->msgout_buf[ahc->msgout_index++] = period;
ahc->msgout_buf[ahc->msgout_index++] = offset;
ahc->msgout_len += 5;
}
static void
ahc_construct_wdtr(struct ahc_softc *ahc, u_int bus_width)
{
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXTENDED;
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXT_WDTR_LEN;
ahc->msgout_buf[ahc->msgout_index++] = MSG_EXT_WDTR;
ahc->msgout_buf[ahc->msgout_index++] = bus_width;
ahc->msgout_len += 4;
}
static void
ahc_calc_residual(struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
/*
* If the disconnected flag is still set, this is bogus
* residual information left over from a sequencer
* pagin/pageout, so ignore this case.
*/
if ((scb->hscb->control & DISCONNECTED) == 0) {
u_int32_t resid;
int resid_sgs;
int sg;
/*
* Remainder of the SG where the transfer
* stopped.
*/
resid = (hscb->residual_data_count[2] << 16)
| (hscb->residual_data_count[1] <<8)
| (hscb->residual_data_count[0]);
/*
* Add up the contents of all residual
* SG segments that are after the SG where
* the transfer stopped.
*/
resid_sgs = scb->hscb->residual_SG_count - 1/*current*/;
sg = scb->sg_count - resid_sgs - 1/*first SG*/;
while (resid_sgs > 0) {
resid += scb->ahc_dma[sg].len;
sg++;
resid_sgs--;
}
if ((scb->flags & SCB_SENSE) == 0) {
scb->ccb->csio.resid = resid;
} else {
scb->ccb->csio.sense_resid = resid;
}
}
/*
* Clean out the residual information in this SCB for its
* next consumer.
*/
hscb->residual_data_count[0] = 0;
hscb->residual_data_count[1] = 0;
hscb->residual_data_count[2] = 0;
hscb->residual_SG_count = 0;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC) {
sc_print_addr(xs->sc_link);
printf("Handled Residual of %ld bytes\n" ,xs->resid);
}
#endif
}
static void
ahc_update_pending_syncrates(struct ahc_softc *ahc)
{
/*
* Traverse the pending SCB list and ensure that all of the
* SCBs there have the proper settings.
*/
struct ccb_hdr *ccbh;
int pending_ccb_count;
int i;
u_int saved_scbptr;
/*
* We were able to complete the command successfully,
* so reinstate the timeouts for all other pending
* commands.
*/
ccbh = LIST_FIRST(&ahc->pending_ccbs);
pending_ccb_count = 0;
while (ccbh != NULL) {
struct scb *pending_scb;
struct hardware_scb *pending_hscb;
struct ahc_target_tinfo *tinfo;
struct ahc_devinfo devinfo;
pending_scb = (struct scb *)ccbh->ccb_scb_ptr;
pending_hscb = pending_scb->hscb;
ahc_compile_devinfo(&devinfo, SCB_TARGET(pending_scb),
SCB_LUN(pending_scb),
SCB_CHANNEL(pending_scb),
ROLE_UNKNOWN);
tinfo = &ahc->transinfo[devinfo.target_offset];
pending_hscb->control &= ~ULTRAENB;
if ((ahc->ultraenb & devinfo.target_mask) != 0)
pending_hscb->control |= ULTRAENB;
pending_hscb->scsirate = tinfo->scsirate;
pending_hscb->scsioffset = tinfo->current.offset;
pending_ccb_count++;
ccbh = LIST_NEXT(ccbh, sim_links.le);
}
if (pending_ccb_count == 0)
return;
saved_scbptr = ahc_inb(ahc, SCBPTR);
/* Ensure that the hscbs down on the card match the new information */
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
u_int scb_tag;
ahc_outb(ahc, SCBPTR, i);
scb_tag = ahc_inb(ahc, SCB_TAG);
if (scb_tag != SCB_LIST_NULL) {
struct scb *pending_scb;
struct hardware_scb *pending_hscb;
struct ahc_target_tinfo *tinfo;
struct ahc_devinfo devinfo;
u_int control;
pending_scb = ahc->scb_data->scbarray[scb_tag];
pending_hscb = pending_scb->hscb;
ahc_compile_devinfo(&devinfo, SCB_TARGET(pending_scb),
SCB_LUN(pending_scb),
SCB_CHANNEL(pending_scb),
ROLE_UNKNOWN);
tinfo = &ahc->transinfo[devinfo.target_offset];
control = ahc_inb(ahc, SCB_CONTROL);
control &= ~ULTRAENB;
if ((ahc->ultraenb & devinfo.target_mask) != 0)
control |= ULTRAENB;
ahc_outb(ahc, SCB_CONTROL, control);
ahc_outb(ahc, SCB_SCSIRATE, tinfo->scsirate);
ahc_outb(ahc, SCB_SCSIOFFSET, tinfo->current.offset);
}
}
ahc_outb(ahc, SCBPTR, saved_scbptr);
}
#if UNUSED
static void
ahc_dump_targcmd(struct target_cmd *cmd)
{
u_int8_t *byte;
u_int8_t *last_byte;
int i;
byte = &cmd->initiator_channel;
/* Debugging info for received commands */
last_byte = &cmd[1].initiator_channel;
i = 0;
while (byte < last_byte) {
if (i == 0)
printf("\t");
printf("%#x", *byte++);
i++;
if (i == 8) {
printf("\n");
i = 0;
} else {
printf(", ");
}
}
}
#endif
static void
ahc_shutdown(int howto, void *arg)
{
struct ahc_softc *ahc;
int i;
ahc = (struct ahc_softc *)arg;
ahc_reset(ahc);
ahc_outb(ahc, SCSISEQ, 0);
ahc_outb(ahc, SXFRCTL0, 0);
ahc_outb(ahc, DSPCISTATUS, 0);
for (i = TARG_SCSIRATE; i < HA_274_BIOSCTRL; i++)
ahc_outb(ahc, i, 0);
}