freebsd-dev/sys/amd64/linux/linux_machdep.c
2015-05-24 16:07:11 +00:00

493 lines
12 KiB
C

/*-
* Copyright (c) 2013 Dmitry Chagin
* Copyright (c) 2004 Tim J. Robbins
* Copyright (c) 2002 Doug Rabson
* Copyright (c) 2000 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/capability.h>
#include <sys/dirent.h>
#include <sys/file.h>
#include <sys/fcntl.h>
#include <sys/filedesc.h>
#include <sys/clock.h>
#include <sys/imgact.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/syscallsubr.h>
#include <sys/sysproto.h>
#include <sys/vnode.h>
#include <sys/unistd.h>
#include <sys/wait.h>
#include <security/mac/mac_framework.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/segments.h>
#include <machine/specialreg.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <amd64/linux/linux.h>
#include <amd64/linux/linux_proto.h>
#include <compat/linux/linux_ipc.h>
#include <compat/linux/linux_file.h>
#include <compat/linux/linux_misc.h>
#include <compat/linux/linux_signal.h>
#include <compat/linux/linux_util.h>
#include <compat/linux/linux_emul.h>
int
linux_to_bsd_sigaltstack(int lsa)
{
int bsa = 0;
if (lsa & LINUX_SS_DISABLE)
bsa |= SS_DISABLE;
if (lsa & LINUX_SS_ONSTACK)
bsa |= SS_ONSTACK;
return (bsa);
}
int
bsd_to_linux_sigaltstack(int bsa)
{
int lsa = 0;
if (bsa & SS_DISABLE)
lsa |= LINUX_SS_DISABLE;
if (bsa & SS_ONSTACK)
lsa |= LINUX_SS_ONSTACK;
return (lsa);
}
int
linux_execve(struct thread *td, struct linux_execve_args *args)
{
struct image_args eargs;
char *path;
int error;
LCONVPATHEXIST(td, args->path, &path);
LINUX_CTR(execve);
error = exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp,
args->envp);
free(path, M_TEMP);
if (error == 0)
error = linux_common_execve(td, &eargs);
return (error);
}
int
linux_set_upcall_kse(struct thread *td, register_t stack)
{
if (stack)
td->td_frame->tf_rsp = stack;
/*
* The newly created Linux thread returns
* to the user space by the same path that a parent do.
*/
td->td_frame->tf_rax = 0;
return (0);
}
#define STACK_SIZE (2 * 1024 * 1024)
#define GUARD_SIZE (4 * PAGE_SIZE)
int
linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
{
struct proc *p = td->td_proc;
struct mmap_args /* {
caddr_t addr;
size_t len;
int prot;
int flags;
int fd;
long pad;
off_t pos;
} */ bsd_args;
int error;
struct file *fp;
cap_rights_t rights;
LINUX_CTR6(mmap2, "0x%lx, %ld, %ld, 0x%08lx, %ld, 0x%lx",
args->addr, args->len, args->prot,
args->flags, args->fd, args->pgoff);
error = 0;
bsd_args.flags = 0;
fp = NULL;
/*
* Linux mmap(2):
* You must specify exactly one of MAP_SHARED and MAP_PRIVATE
*/
if (! ((args->flags & LINUX_MAP_SHARED) ^
(args->flags & LINUX_MAP_PRIVATE)))
return (EINVAL);
if (args->flags & LINUX_MAP_SHARED)
bsd_args.flags |= MAP_SHARED;
if (args->flags & LINUX_MAP_PRIVATE)
bsd_args.flags |= MAP_PRIVATE;
if (args->flags & LINUX_MAP_FIXED)
bsd_args.flags |= MAP_FIXED;
if (args->flags & LINUX_MAP_ANON)
bsd_args.flags |= MAP_ANON;
else
bsd_args.flags |= MAP_NOSYNC;
if (args->flags & LINUX_MAP_GROWSDOWN)
bsd_args.flags |= MAP_STACK;
/*
* PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
* on Linux/i386. We do this to ensure maximum compatibility.
* Linux/ia64 does the same in i386 emulation mode.
*/
bsd_args.prot = args->prot;
if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
bsd_args.prot |= PROT_READ | PROT_EXEC;
/* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : args->fd;
if (bsd_args.fd != -1) {
/*
* Linux follows Solaris mmap(2) description:
* The file descriptor fildes is opened with
* read permission, regardless of the
* protection options specified.
*/
error = fget(td, bsd_args.fd,
cap_rights_init(&rights, CAP_MMAP), &fp);
if (error != 0 )
return (error);
if (fp->f_type != DTYPE_VNODE) {
fdrop(fp, td);
return (EINVAL);
}
/* Linux mmap() just fails for O_WRONLY files */
if (!(fp->f_flag & FREAD)) {
fdrop(fp, td);
return (EACCES);
}
fdrop(fp, td);
}
if (args->flags & LINUX_MAP_GROWSDOWN) {
/*
* The Linux MAP_GROWSDOWN option does not limit auto
* growth of the region. Linux mmap with this option
* takes as addr the inital BOS, and as len, the initial
* region size. It can then grow down from addr without
* limit. However, Linux threads has an implicit internal
* limit to stack size of STACK_SIZE. Its just not
* enforced explicitly in Linux. But, here we impose
* a limit of (STACK_SIZE - GUARD_SIZE) on the stack
* region, since we can do this with our mmap.
*
* Our mmap with MAP_STACK takes addr as the maximum
* downsize limit on BOS, and as len the max size of
* the region. It then maps the top SGROWSIZ bytes,
* and auto grows the region down, up to the limit
* in addr.
*
* If we don't use the MAP_STACK option, the effect
* of this code is to allocate a stack region of a
* fixed size of (STACK_SIZE - GUARD_SIZE).
*/
if ((caddr_t)PTRIN(args->addr) + args->len >
p->p_vmspace->vm_maxsaddr) {
/*
* Some Linux apps will attempt to mmap
* thread stacks near the top of their
* address space. If their TOS is greater
* than vm_maxsaddr, vm_map_growstack()
* will confuse the thread stack with the
* process stack and deliver a SEGV if they
* attempt to grow the thread stack past their
* current stacksize rlimit. To avoid this,
* adjust vm_maxsaddr upwards to reflect
* the current stacksize rlimit rather
* than the maximum possible stacksize.
* It would be better to adjust the
* mmap'ed region, but some apps do not check
* mmap's return value.
*/
PROC_LOCK(p);
p->p_vmspace->vm_maxsaddr = (char *)USRSTACK -
lim_cur(p, RLIMIT_STACK);
PROC_UNLOCK(p);
}
/*
* This gives us our maximum stack size and a new BOS.
* If we're using VM_STACK, then mmap will just map
* the top SGROWSIZ bytes, and let the stack grow down
* to the limit at BOS. If we're not using VM_STACK
* we map the full stack, since we don't have a way
* to autogrow it.
*/
if (args->len > STACK_SIZE - GUARD_SIZE) {
bsd_args.addr = (caddr_t)PTRIN(args->addr);
bsd_args.len = args->len;
} else {
bsd_args.addr = (caddr_t)PTRIN(args->addr) -
(STACK_SIZE - GUARD_SIZE - args->len);
bsd_args.len = STACK_SIZE - GUARD_SIZE;
}
} else {
bsd_args.addr = (caddr_t)PTRIN(args->addr);
bsd_args.len = args->len;
}
bsd_args.pos = (off_t)args->pgoff;
error = sys_mmap(td, &bsd_args);
LINUX_CTR2(mmap2, "return: %d (%p)",
error, td->td_retval[0]);
return (error);
}
int
linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
{
struct mprotect_args bsd_args;
LINUX_CTR(mprotect);
bsd_args.addr = uap->addr;
bsd_args.len = uap->len;
bsd_args.prot = uap->prot;
if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
bsd_args.prot |= PROT_READ | PROT_EXEC;
return (sys_mprotect(td, &bsd_args));
}
int
linux_iopl(struct thread *td, struct linux_iopl_args *args)
{
int error;
LINUX_CTR(iopl);
if (args->level > 3)
return (EINVAL);
if ((error = priv_check(td, PRIV_IO)) != 0)
return (error);
if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
return (error);
td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
(args->level * (PSL_IOPL / 3));
return (0);
}
int
linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
{
l_sigset_t lmask;
sigset_t sigmask;
int error;
LINUX_CTR2(rt_sigsuspend, "%p, %ld",
uap->newset, uap->sigsetsize);
if (uap->sigsetsize != sizeof(l_sigset_t))
return (EINVAL);
error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
if (error)
return (error);
linux_to_bsd_sigset(&lmask, &sigmask);
return (kern_sigsuspend(td, sigmask));
}
int
linux_pause(struct thread *td, struct linux_pause_args *args)
{
struct proc *p = td->td_proc;
sigset_t sigmask;
LINUX_CTR(pause);
PROC_LOCK(p);
sigmask = td->td_sigmask;
PROC_UNLOCK(p);
return (kern_sigsuspend(td, sigmask));
}
int
linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
{
stack_t ss, oss;
l_stack_t lss;
int error;
LINUX_CTR2(sigaltstack, "%p, %p", uap->uss, uap->uoss);
if (uap->uss != NULL) {
error = copyin(uap->uss, &lss, sizeof(l_stack_t));
if (error)
return (error);
ss.ss_sp = PTRIN(lss.ss_sp);
ss.ss_size = lss.ss_size;
ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
}
error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
(uap->uoss != NULL) ? &oss : NULL);
if (!error && uap->uoss != NULL) {
lss.ss_sp = PTROUT(oss.ss_sp);
lss.ss_size = oss.ss_size;
lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
}
return (error);
}
/* XXX do all */
int
linux_arch_prctl(struct thread *td, struct linux_arch_prctl_args *args)
{
int error;
struct pcb *pcb;
LINUX_CTR2(arch_prctl, "0x%x, %p", args->code, args->addr);
error = ENOTSUP;
pcb = td->td_pcb;
switch (args->code) {
case LINUX_ARCH_GET_GS:
error = copyout(&pcb->pcb_gsbase, (unsigned long *)args->addr,
sizeof(args->addr));
break;
case LINUX_ARCH_SET_GS:
if (args->addr >= VM_MAXUSER_ADDRESS)
return(EPERM);
break;
case LINUX_ARCH_GET_FS:
error = copyout(&pcb->pcb_fsbase, (unsigned long *)args->addr,
sizeof(args->addr));
break;
case LINUX_ARCH_SET_FS:
error = linux_set_cloned_tls(td, (void *)args->addr);
break;
default:
error = EINVAL;
}
return (error);
}
int
linux_set_cloned_tls(struct thread *td, void *desc)
{
struct pcb *pcb;
if ((uint64_t)desc >= VM_MAXUSER_ADDRESS)
return (EPERM);
pcb = td->td_pcb;
pcb->pcb_fsbase = (register_t)desc;
td->td_frame->tf_fs = _ufssel;
return (0);
}
void
linux_to_bsd_sigset(l_sigset_t *lss, sigset_t *bss)
{
int b, l;
SIGEMPTYSET(*bss);
for (l = 1; l <= LINUX_NSIG; l++) {
if (LINUX_SIGISMEMBER(*lss, l)) {
if (l <= LINUX_SIGTBLSZ)
b = linux_to_bsd_signal[_SIG_IDX(l)];
else
b = l;
if (b)
SIGADDSET(*bss, b);
}
}
}
void
bsd_to_linux_sigset(sigset_t *bss, l_sigset_t *lss)
{
int b, l;
LINUX_SIGEMPTYSET(*lss);
for (b = 1; b <= LINUX_NSIG; b++) {
if (SIGISMEMBER(*bss, b)) {
if (b <= LINUX_SIGTBLSZ)
l = bsd_to_linux_signal[_SIG_IDX(b)];
else
l = b;
if (l)
LINUX_SIGADDSET(*lss, l);
}
}
}