freebsd-dev/contrib/libstdc++/include/std/std_valarray.h
2004-07-28 03:12:05 +00:00

1018 lines
34 KiB
C++

// The template and inlines for the -*- C++ -*- valarray class.
// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2004
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
/** @file valarray
* This is a Standard C++ Library header. You should @c #include this header
* in your programs, rather than any of the "st[dl]_*.h" implementation files.
*/
#ifndef _GLIBCXX_VALARRAY
#define _GLIBCXX_VALARRAY 1
#pragma GCC system_header
#include <bits/c++config.h>
#include <cstddef>
#include <cmath>
#include <cstdlib>
#include <numeric>
#include <algorithm>
#include <debug/debug.h>
namespace std
{
template<class _Clos, typename _Tp>
class _Expr;
template<typename _Tp1, typename _Tp2>
class _ValArray;
template<class _Oper, template<class, class> class _Meta, class _Dom>
struct _UnClos;
template<class _Oper,
template<class, class> class _Meta1,
template<class, class> class _Meta2,
class _Dom1, class _Dom2>
class _BinClos;
template<template<class, class> class _Meta, class _Dom>
class _SClos;
template<template<class, class> class _Meta, class _Dom>
class _GClos;
template<template<class, class> class _Meta, class _Dom>
class _IClos;
template<template<class, class> class _Meta, class _Dom>
class _ValFunClos;
template<template<class, class> class _Meta, class _Dom>
class _RefFunClos;
template<class _Tp> class valarray; // An array of type _Tp
class slice; // BLAS-like slice out of an array
template<class _Tp> class slice_array;
class gslice; // generalized slice out of an array
template<class _Tp> class gslice_array;
template<class _Tp> class mask_array; // masked array
template<class _Tp> class indirect_array; // indirected array
} // namespace std
#include <bits/valarray_array.h>
#include <bits/valarray_before.h>
namespace std
{
/**
* @brief Smart array designed to support numeric processing.
*
* A valarray is an array that provides constraints intended to allow for
* effective optimization of numeric array processing by reducing the
* aliasing that can result from pointer representations. It represents a
* one-dimensional array from which different multidimensional subsets can
* be accessed and modified.
*
* @param Tp Type of object in the array.
*/
template<class _Tp>
class valarray
{
template<class _Op>
struct _UnaryOp
{
typedef typename __fun<_Op, _Tp>::result_type __rt;
typedef _Expr<_UnClos<_Op, _ValArray, _Tp>, __rt> _Rt;
};
public:
typedef _Tp value_type;
// _lib.valarray.cons_ construct/destroy:
/// Construct an empty array.
valarray();
/// Construct an array with @a n elements.
explicit valarray(size_t);
/// Construct an array with @a n elements initialized to @a t.
valarray(const _Tp&, size_t);
/// Construct an array initialized to the first @a n elements of @a t.
valarray(const _Tp* __restrict__, size_t);
/// Copy constructor.
valarray(const valarray&);
/// Construct an array with the same size and values in @a sa.
valarray(const slice_array<_Tp>&);
/// Construct an array with the same size and values in @a ga.
valarray(const gslice_array<_Tp>&);
/// Construct an array with the same size and values in @a ma.
valarray(const mask_array<_Tp>&);
/// Construct an array with the same size and values in @a ia.
valarray(const indirect_array<_Tp>&);
template<class _Dom>
valarray(const _Expr<_Dom,_Tp>& __e);
~valarray();
// _lib.valarray.assign_ assignment:
/**
* @brief Assign elements to an array.
*
* Assign elements of array to values in @a v. Results are undefined
* if @a v is not the same size as this array.
*
* @param v Valarray to get values from.
*/
valarray<_Tp>& operator=(const valarray<_Tp>&);
/**
* @brief Assign elements to a value.
*
* Assign all elements of array to @a t.
*
* @param t Value for elements.
*/
valarray<_Tp>& operator=(const _Tp&);
/**
* @brief Assign elements to an array subset.
*
* Assign elements of array to values in @a sa. Results are undefined
* if @a sa is not the same size as this array.
*
* @param sa Array slice to get values from.
*/
valarray<_Tp>& operator=(const slice_array<_Tp>&);
/**
* @brief Assign elements to an array subset.
*
* Assign elements of array to values in @a ga. Results are undefined
* if @a ga is not the same size as this array.
*
* @param ga Array slice to get values from.
*/
valarray<_Tp>& operator=(const gslice_array<_Tp>&);
/**
* @brief Assign elements to an array subset.
*
* Assign elements of array to values in @a ma. Results are undefined
* if @a ma is not the same size as this array.
*
* @param ma Array slice to get values from.
*/
valarray<_Tp>& operator=(const mask_array<_Tp>&);
/**
* @brief Assign elements to an array subset.
*
* Assign elements of array to values in @a ia. Results are undefined
* if @a ia is not the same size as this array.
*
* @param ia Array slice to get values from.
*/
valarray<_Tp>& operator=(const indirect_array<_Tp>&);
template<class _Dom> valarray<_Tp>&
operator= (const _Expr<_Dom,_Tp>&);
// _lib.valarray.access_ element access:
/**
* Return a reference to the i'th array element.
*
* @param i Index of element to return.
* @return Reference to the i'th element.
*/
_Tp& operator[](size_t);
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 389. Const overload of valarray::operator[] returns by value.
const _Tp& operator[](size_t) const;
// _lib.valarray.sub_ subset operations:
/**
* @brief Return an array subset.
*
* Returns a new valarray containing the elements of the array
* indicated by the slice argument. The new valarray is the size of
* the input slice. @see slice.
*
* @param s The source slice.
* @return New valarray containing elements in @a s.
*/
_Expr<_SClos<_ValArray,_Tp>, _Tp> operator[](slice) const;
/**
* @brief Return a reference to an array subset.
*
* Returns a new valarray containing the elements of the array
* indicated by the slice argument. The new valarray is the size of
* the input slice. @see slice.
*
* @param s The source slice.
* @return New valarray containing elements in @a s.
*/
slice_array<_Tp> operator[](slice);
/**
* @brief Return an array subset.
*
* Returns a slice_array referencing the elements of the array
* indicated by the slice argument. @see gslice.
*
* @param s The source slice.
* @return Slice_array referencing elements indicated by @a s.
*/
_Expr<_GClos<_ValArray,_Tp>, _Tp> operator[](const gslice&) const;
/**
* @brief Return a reference to an array subset.
*
* Returns a new valarray containing the elements of the array
* indicated by the gslice argument. The new valarray is
* the size of the input gslice. @see gslice.
*
* @param s The source gslice.
* @return New valarray containing elements in @a s.
*/
gslice_array<_Tp> operator[](const gslice&);
/**
* @brief Return an array subset.
*
* Returns a new valarray containing the elements of the array
* indicated by the argument. The input is a valarray of bool which
* represents a bitmask indicating which elements should be copied into
* the new valarray. Each element of the array is added to the return
* valarray if the corresponding element of the argument is true.
*
* @param m The valarray bitmask.
* @return New valarray containing elements indicated by @a m.
*/
valarray<_Tp> operator[](const valarray<bool>&) const;
/**
* @brief Return a reference to an array subset.
*
* Returns a new mask_array referencing the elements of the array
* indicated by the argument. The input is a valarray of bool which
* represents a bitmask indicating which elements are part of the
* subset. Elements of the array are part of the subset if the
* corresponding element of the argument is true.
*
* @param m The valarray bitmask.
* @return New valarray containing elements indicated by @a m.
*/
mask_array<_Tp> operator[](const valarray<bool>&);
/**
* @brief Return an array subset.
*
* Returns a new valarray containing the elements of the array
* indicated by the argument. The elements in the argument are
* interpreted as the indices of elements of this valarray to copy to
* the return valarray.
*
* @param i The valarray element index list.
* @return New valarray containing elements in @a s.
*/
_Expr<_IClos<_ValArray, _Tp>, _Tp>
operator[](const valarray<size_t>&) const;
/**
* @brief Return a reference to an array subset.
*
* Returns an indirect_array referencing the elements of the array
* indicated by the argument. The elements in the argument are
* interpreted as the indices of elements of this valarray to include
* in the subset. The returned indirect_array refers to these
* elements.
*
* @param i The valarray element index list.
* @return Indirect_array referencing elements in @a i.
*/
indirect_array<_Tp> operator[](const valarray<size_t>&);
// _lib.valarray.unary_ unary operators:
/// Return a new valarray by applying unary + to each element.
typename _UnaryOp<__unary_plus>::_Rt operator+() const;
/// Return a new valarray by applying unary - to each element.
typename _UnaryOp<__negate>::_Rt operator-() const;
/// Return a new valarray by applying unary ~ to each element.
typename _UnaryOp<__bitwise_not>::_Rt operator~() const;
/// Return a new valarray by applying unary ! to each element.
typename _UnaryOp<__logical_not>::_Rt operator!() const;
// _lib.valarray.cassign_ computed assignment:
/// Multiply each element of array by @a t.
valarray<_Tp>& operator*=(const _Tp&);
/// Divide each element of array by @a t.
valarray<_Tp>& operator/=(const _Tp&);
/// Set each element e of array to e % @a t.
valarray<_Tp>& operator%=(const _Tp&);
/// Add @a t to each element of array.
valarray<_Tp>& operator+=(const _Tp&);
/// Subtract @a t to each element of array.
valarray<_Tp>& operator-=(const _Tp&);
/// Set each element e of array to e ^ @a t.
valarray<_Tp>& operator^=(const _Tp&);
/// Set each element e of array to e & @a t.
valarray<_Tp>& operator&=(const _Tp&);
/// Set each element e of array to e | @a t.
valarray<_Tp>& operator|=(const _Tp&);
/// Left shift each element e of array by @a t bits.
valarray<_Tp>& operator<<=(const _Tp&);
/// Right shift each element e of array by @a t bits.
valarray<_Tp>& operator>>=(const _Tp&);
/// Multiply elements of array by corresponding elements of @a v.
valarray<_Tp>& operator*=(const valarray<_Tp>&);
/// Divide elements of array by corresponding elements of @a v.
valarray<_Tp>& operator/=(const valarray<_Tp>&);
/// Modulo elements of array by corresponding elements of @a v.
valarray<_Tp>& operator%=(const valarray<_Tp>&);
/// Add corresponding elements of @a v to elements of array.
valarray<_Tp>& operator+=(const valarray<_Tp>&);
/// Subtract corresponding elements of @a v from elements of array.
valarray<_Tp>& operator-=(const valarray<_Tp>&);
/// Logical xor corresponding elements of @a v with elements of array.
valarray<_Tp>& operator^=(const valarray<_Tp>&);
/// Logical or corresponding elements of @a v with elements of array.
valarray<_Tp>& operator|=(const valarray<_Tp>&);
/// Logical and corresponding elements of @a v with elements of array.
valarray<_Tp>& operator&=(const valarray<_Tp>&);
/// Left shift elements of array by corresponding elements of @a v.
valarray<_Tp>& operator<<=(const valarray<_Tp>&);
/// Right shift elements of array by corresponding elements of @a v.
valarray<_Tp>& operator>>=(const valarray<_Tp>&);
template<class _Dom>
valarray<_Tp>& operator*=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator/=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator%=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator+=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator-=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator^=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator|=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator&=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator<<=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator>>=(const _Expr<_Dom,_Tp>&);
// _lib.valarray.members_ member functions:
/// Return the number of elements in array.
size_t size() const;
/**
* @brief Return the sum of all elements in the array.
*
* Accumulates the sum of all elements into a Tp using +=. The order
* of adding the elements is unspecified.
*/
_Tp sum() const;
/// Return the minimum element using operator<().
_Tp min() const;
/// Return the maximum element using operator<().
_Tp max() const;
// // FIXME: Extension
// _Tp product () const;
/**
* @brief Return a shifted array.
*
* A new valarray is constructed as a copy of this array with elements
* in shifted positions. For an element with index i, the new position
* is i - n. The new valarray is the same size as the current one.
* New elements without a value are set to 0. Elements whos new
* position is outside the bounds of the array are discarded.
*
* Positive arguments shift toward index 0, discarding elements [0, n).
* Negative arguments discard elements from the top of the array.
*
* @param n Number of element positions to shift.
* @return New valarray with elements in shifted positions.
*/
valarray<_Tp> shift (int) const;
/**
* @brief Return a rotated array.
*
* A new valarray is constructed as a copy of this array with elements
* in shifted positions. For an element with index i, the new position
* is (i - n) % size(). The new valarray is the same size as the
* current one. Elements that are shifted beyond the array bounds are
* shifted into the other end of the array. No elements are lost.
*
* Positive arguments shift toward index 0, wrapping around the top.
* Negative arguments shift towards the top, wrapping around to 0.
*
* @param n Number of element positions to rotate.
* @return New valarray with elements in shifted positions.
*/
valarray<_Tp> cshift(int) const;
/**
* @brief Apply a function to the array.
*
* Returns a new valarray with elements assigned to the result of
* applying func to the corresponding element of this array. The new
* array is the same size as this one.
*
* @param func Function of Tp returning Tp to apply.
* @return New valarray with transformed elements.
*/
_Expr<_ValFunClos<_ValArray,_Tp>,_Tp> apply(_Tp func(_Tp)) const;
/**
* @brief Apply a function to the array.
*
* Returns a new valarray with elements assigned to the result of
* applying func to the corresponding element of this array. The new
* array is the same size as this one.
*
* @param func Function of const Tp& returning Tp to apply.
* @return New valarray with transformed elements.
*/
_Expr<_RefFunClos<_ValArray,_Tp>,_Tp> apply(_Tp func(const _Tp&)) const;
/**
* @brief Resize array.
*
* Resize this array to be @a size and set all elements to @a c. All
* references and iterators are invalidated.
*
* @param size New array size.
* @param c New value for all elements.
*/
void resize(size_t __size, _Tp __c = _Tp());
private:
size_t _M_size;
_Tp* __restrict__ _M_data;
friend class _Array<_Tp>;
};
template<typename _Tp>
inline const _Tp&
valarray<_Tp>::operator[](size_t __i) const
{
__glibcxx_requires_subscript(__i);
return _M_data[__i];
}
template<typename _Tp>
inline _Tp&
valarray<_Tp>::operator[](size_t __i)
{
__glibcxx_requires_subscript(__i);
return _M_data[__i];
}
} // std::
#include <bits/valarray_after.h>
#include <bits/slice_array.h>
#include <bits/gslice.h>
#include <bits/gslice_array.h>
#include <bits/mask_array.h>
#include <bits/indirect_array.h>
namespace std
{
template<typename _Tp>
inline
valarray<_Tp>::valarray() : _M_size(0), _M_data(0) {}
template<typename _Tp>
inline
valarray<_Tp>::valarray(size_t __n)
: _M_size(__n), _M_data(__valarray_get_storage<_Tp>(__n))
{ std::__valarray_default_construct(_M_data, _M_data + __n); }
template<typename _Tp>
inline
valarray<_Tp>::valarray(const _Tp& __t, size_t __n)
: _M_size(__n), _M_data(__valarray_get_storage<_Tp>(__n))
{ std::__valarray_fill_construct(_M_data, _M_data + __n, __t); }
template<typename _Tp>
inline
valarray<_Tp>::valarray(const _Tp* __restrict__ __p, size_t __n)
: _M_size(__n), _M_data(__valarray_get_storage<_Tp>(__n))
{
_GLIBCXX_DEBUG_ASSERT(__p != 0 || __n == 0);
std::__valarray_copy_construct(__p, __p + __n, _M_data);
}
template<typename _Tp>
inline
valarray<_Tp>::valarray(const valarray<_Tp>& __v)
: _M_size(__v._M_size), _M_data(__valarray_get_storage<_Tp>(__v._M_size))
{ std::__valarray_copy_construct(__v._M_data, __v._M_data + _M_size, _M_data); }
template<typename _Tp>
inline
valarray<_Tp>::valarray(const slice_array<_Tp>& __sa)
: _M_size(__sa._M_sz), _M_data(__valarray_get_storage<_Tp>(__sa._M_sz))
{
std::__valarray_copy
(__sa._M_array, __sa._M_sz, __sa._M_stride, _Array<_Tp>(_M_data));
}
template<typename _Tp>
inline
valarray<_Tp>::valarray(const gslice_array<_Tp>& __ga)
: _M_size(__ga._M_index.size()),
_M_data(__valarray_get_storage<_Tp>(_M_size))
{
std::__valarray_copy
(__ga._M_array, _Array<size_t>(__ga._M_index),
_Array<_Tp>(_M_data), _M_size);
}
template<typename _Tp>
inline
valarray<_Tp>::valarray(const mask_array<_Tp>& __ma)
: _M_size(__ma._M_sz), _M_data(__valarray_get_storage<_Tp>(__ma._M_sz))
{
std::__valarray_copy
(__ma._M_array, __ma._M_mask, _Array<_Tp>(_M_data), _M_size);
}
template<typename _Tp>
inline
valarray<_Tp>::valarray(const indirect_array<_Tp>& __ia)
: _M_size(__ia._M_sz), _M_data(__valarray_get_storage<_Tp>(__ia._M_sz))
{
std::__valarray_copy
(__ia._M_array, __ia._M_index, _Array<_Tp>(_M_data), _M_size);
}
template<typename _Tp> template<class _Dom>
inline
valarray<_Tp>::valarray(const _Expr<_Dom, _Tp>& __e)
: _M_size(__e.size()), _M_data(__valarray_get_storage<_Tp>(_M_size))
{ std::__valarray_copy(__e, _M_size, _Array<_Tp>(_M_data)); }
template<typename _Tp>
inline
valarray<_Tp>::~valarray()
{
std::__valarray_destroy_elements(_M_data, _M_data + _M_size);
std::__valarray_release_memory(_M_data);
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator=(const valarray<_Tp>& __v)
{
_GLIBCXX_DEBUG_ASSERT(_M_size == __v._M_size);
std::__valarray_copy(__v._M_data, _M_size, _M_data);
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator=(const _Tp& __t)
{
std::__valarray_fill(_M_data, _M_size, __t);
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator=(const slice_array<_Tp>& __sa)
{
_GLIBCXX_DEBUG_ASSERT(_M_size == __sa._M_sz);
std::__valarray_copy(__sa._M_array, __sa._M_sz,
__sa._M_stride, _Array<_Tp>(_M_data));
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator=(const gslice_array<_Tp>& __ga)
{
_GLIBCXX_DEBUG_ASSERT(_M_size == __ga._M_index.size());
std::__valarray_copy(__ga._M_array, _Array<size_t>(__ga._M_index),
_Array<_Tp>(_M_data), _M_size);
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator=(const mask_array<_Tp>& __ma)
{
_GLIBCXX_DEBUG_ASSERT(_M_size == __ma._M_sz);
std::__valarray_copy(__ma._M_array, __ma._M_mask,
_Array<_Tp>(_M_data), _M_size);
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator=(const indirect_array<_Tp>& __ia)
{
_GLIBCXX_DEBUG_ASSERT(_M_size == __ia._M_sz);
std::__valarray_copy(__ia._M_array, __ia._M_index,
_Array<_Tp>(_M_data), _M_size);
return *this;
}
template<typename _Tp> template<class _Dom>
inline valarray<_Tp>&
valarray<_Tp>::operator=(const _Expr<_Dom, _Tp>& __e)
{
_GLIBCXX_DEBUG_ASSERT(_M_size == __e.size());
std::__valarray_copy(__e, _M_size, _Array<_Tp>(_M_data));
return *this;
}
template<typename _Tp>
inline _Expr<_SClos<_ValArray,_Tp>, _Tp>
valarray<_Tp>::operator[](slice __s) const
{
typedef _SClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure, _Tp>(_Closure (_Array<_Tp>(_M_data), __s));
}
template<typename _Tp>
inline slice_array<_Tp>
valarray<_Tp>::operator[](slice __s)
{
return slice_array<_Tp>(_Array<_Tp>(_M_data), __s);
}
template<typename _Tp>
inline _Expr<_GClos<_ValArray,_Tp>, _Tp>
valarray<_Tp>::operator[](const gslice& __gs) const
{
typedef _GClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure, _Tp>
(_Closure(_Array<_Tp>(_M_data), __gs._M_index->_M_index));
}
template<typename _Tp>
inline gslice_array<_Tp>
valarray<_Tp>::operator[](const gslice& __gs)
{
return gslice_array<_Tp>
(_Array<_Tp>(_M_data), __gs._M_index->_M_index);
}
template<typename _Tp>
inline valarray<_Tp>
valarray<_Tp>::operator[](const valarray<bool>& __m) const
{
size_t __s = 0;
size_t __e = __m.size();
for (size_t __i=0; __i<__e; ++__i)
if (__m[__i]) ++__s;
return valarray<_Tp>(mask_array<_Tp>(_Array<_Tp>(_M_data), __s,
_Array<bool> (__m)));
}
template<typename _Tp>
inline mask_array<_Tp>
valarray<_Tp>::operator[](const valarray<bool>& __m)
{
size_t __s = 0;
size_t __e = __m.size();
for (size_t __i=0; __i<__e; ++__i)
if (__m[__i]) ++__s;
return mask_array<_Tp>(_Array<_Tp>(_M_data), __s, _Array<bool>(__m));
}
template<typename _Tp>
inline _Expr<_IClos<_ValArray,_Tp>, _Tp>
valarray<_Tp>::operator[](const valarray<size_t>& __i) const
{
typedef _IClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure, _Tp>(_Closure(*this, __i));
}
template<typename _Tp>
inline indirect_array<_Tp>
valarray<_Tp>::operator[](const valarray<size_t>& __i)
{
return indirect_array<_Tp>(_Array<_Tp>(_M_data), __i.size(),
_Array<size_t>(__i));
}
template<class _Tp>
inline size_t
valarray<_Tp>::size() const
{ return _M_size; }
template<class _Tp>
inline _Tp
valarray<_Tp>::sum() const
{
_GLIBCXX_DEBUG_ASSERT(_M_size > 0);
return std::__valarray_sum(_M_data, _M_data + _M_size);
}
// template<typename _Tp>
// inline _Tp
// valarray<_Tp>::product () const
// {
// return __valarray_product(_M_data, _M_data + _M_size);
// }
template <class _Tp>
inline valarray<_Tp>
valarray<_Tp>::shift(int __n) const
{
_Tp* const __a = static_cast<_Tp*>
(__builtin_alloca(sizeof(_Tp) * _M_size));
if (__n == 0) // no shift
std::__valarray_copy_construct(_M_data, _M_data + _M_size, __a);
else if (__n > 0) // __n > 0: shift left
{
if (size_t(__n) > _M_size)
std::__valarray_default_construct(__a, __a + __n);
else
{
std::__valarray_copy_construct(_M_data+__n, _M_data + _M_size, __a);
std::__valarray_default_construct(__a+_M_size-__n, __a + _M_size);
}
}
else // __n < 0: shift right
{
std::__valarray_copy_construct (_M_data, _M_data+_M_size+__n, __a-__n);
std::__valarray_default_construct(__a, __a - __n);
}
return valarray<_Tp> (__a, _M_size);
}
template <class _Tp>
inline valarray<_Tp>
valarray<_Tp>::cshift (int __n) const
{
_Tp* const __a = static_cast<_Tp*>
(__builtin_alloca (sizeof(_Tp) * _M_size));
if (__n == 0) // no cshift
std::__valarray_copy_construct(_M_data, _M_data + _M_size, __a);
else if (__n > 0) // cshift left
{
std::__valarray_copy_construct(_M_data, _M_data+__n, __a+_M_size-__n);
std::__valarray_copy_construct(_M_data+__n, _M_data + _M_size, __a);
}
else // cshift right
{
std::__valarray_copy_construct
(_M_data + _M_size+__n, _M_data + _M_size, __a);
std::__valarray_copy_construct
(_M_data, _M_data + _M_size+__n, __a - __n);
}
return valarray<_Tp>(__a, _M_size);
}
template <class _Tp>
inline void
valarray<_Tp>::resize (size_t __n, _Tp __c)
{
// This complication is so to make valarray<valarray<T> > work
// even though it is not required by the standard. Nobody should
// be saying valarray<valarray<T> > anyway. See the specs.
std::__valarray_destroy_elements(_M_data, _M_data + _M_size);
if (_M_size != __n)
{
std::__valarray_release_memory(_M_data);
_M_size = __n;
_M_data = __valarray_get_storage<_Tp>(__n);
}
std::__valarray_fill_construct(_M_data, _M_data + __n, __c);
}
template<typename _Tp>
inline _Tp
valarray<_Tp>::min() const
{
_GLIBCXX_DEBUG_ASSERT(_M_size > 0);
return *std::min_element (_M_data, _M_data+_M_size);
}
template<typename _Tp>
inline _Tp
valarray<_Tp>::max() const
{
_GLIBCXX_DEBUG_ASSERT(_M_size > 0);
return *std::max_element (_M_data, _M_data+_M_size);
}
template<class _Tp>
inline _Expr<_ValFunClos<_ValArray,_Tp>,_Tp>
valarray<_Tp>::apply(_Tp func(_Tp)) const
{
typedef _ValFunClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure,_Tp>(_Closure(*this, func));
}
template<class _Tp>
inline _Expr<_RefFunClos<_ValArray,_Tp>,_Tp>
valarray<_Tp>::apply(_Tp func(const _Tp &)) const
{
typedef _RefFunClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure,_Tp>(_Closure(*this, func));
}
#define _DEFINE_VALARRAY_UNARY_OPERATOR(_Op, _Name) \
template<typename _Tp> \
inline typename valarray<_Tp>::template _UnaryOp<_Name>::_Rt \
valarray<_Tp>::operator _Op() const \
{ \
typedef _UnClos<_Name,_ValArray,_Tp> _Closure; \
typedef typename __fun<_Name, _Tp>::result_type _Rt; \
return _Expr<_Closure, _Rt>(_Closure(*this)); \
}
_DEFINE_VALARRAY_UNARY_OPERATOR(+, __unary_plus)
_DEFINE_VALARRAY_UNARY_OPERATOR(-, __negate)
_DEFINE_VALARRAY_UNARY_OPERATOR(~, __bitwise_not)
_DEFINE_VALARRAY_UNARY_OPERATOR (!, __logical_not)
#undef _DEFINE_VALARRAY_UNARY_OPERATOR
#define _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(_Op, _Name) \
template<class _Tp> \
inline valarray<_Tp>& \
valarray<_Tp>::operator _Op##=(const _Tp &__t) \
{ \
_Array_augmented_##_Name(_Array<_Tp>(_M_data), _M_size, __t); \
return *this; \
} \
\
template<class _Tp> \
inline valarray<_Tp>& \
valarray<_Tp>::operator _Op##=(const valarray<_Tp> &__v) \
{ \
_GLIBCXX_DEBUG_ASSERT(_M_size == __v._M_size); \
_Array_augmented_##_Name(_Array<_Tp>(_M_data), _M_size, \
_Array<_Tp>(__v._M_data)); \
return *this; \
}
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(+, __plus)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(-, __minus)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(*, __multiplies)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(/, __divides)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(%, __modulus)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(^, __bitwise_xor)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(&, __bitwise_and)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(|, __bitwise_or)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(<<, __shift_left)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(>>, __shift_right)
#undef _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT
#define _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(_Op, _Name) \
template<class _Tp> template<class _Dom> \
inline valarray<_Tp>& \
valarray<_Tp>::operator _Op##=(const _Expr<_Dom,_Tp>& __e) \
{ \
_Array_augmented_##_Name(_Array<_Tp>(_M_data), __e, _M_size); \
return *this; \
}
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(+, __plus)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(-, __minus)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(*, __multiplies)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(/, __divides)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(%, __modulus)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(^, __bitwise_xor)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(&, __bitwise_and)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(|, __bitwise_or)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(<<, __shift_left)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(>>, __shift_right)
#undef _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT
#define _DEFINE_BINARY_OPERATOR(_Op, _Name) \
template<typename _Tp> \
inline _Expr<_BinClos<_Name,_ValArray,_ValArray,_Tp,_Tp>, \
typename __fun<_Name, _Tp>::result_type> \
operator _Op(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \
{ \
_GLIBCXX_DEBUG_ASSERT(__v.size() == __w.size()); \
typedef _BinClos<_Name,_ValArray,_ValArray,_Tp,_Tp> _Closure; \
typedef typename __fun<_Name, _Tp>::result_type _Rt; \
return _Expr<_Closure, _Rt>(_Closure(__v, __w)); \
} \
\
template<typename _Tp> \
inline _Expr<_BinClos<_Name,_ValArray,_Constant,_Tp,_Tp>, \
typename __fun<_Name, _Tp>::result_type> \
operator _Op(const valarray<_Tp>& __v, const _Tp& __t) \
{ \
typedef _BinClos<_Name,_ValArray,_Constant,_Tp,_Tp> _Closure; \
typedef typename __fun<_Name, _Tp>::result_type _Rt; \
return _Expr<_Closure, _Rt>(_Closure(__v, __t)); \
} \
\
template<typename _Tp> \
inline _Expr<_BinClos<_Name,_Constant,_ValArray,_Tp,_Tp>, \
typename __fun<_Name, _Tp>::result_type> \
operator _Op(const _Tp& __t, const valarray<_Tp>& __v) \
{ \
typedef _BinClos<_Name,_Constant,_ValArray,_Tp,_Tp> _Closure; \
typedef typename __fun<_Name, _Tp>::result_type _Rt; \
return _Expr<_Closure, _Tp>(_Closure(__t, __v)); \
}
_DEFINE_BINARY_OPERATOR(+, __plus)
_DEFINE_BINARY_OPERATOR(-, __minus)
_DEFINE_BINARY_OPERATOR(*, __multiplies)
_DEFINE_BINARY_OPERATOR(/, __divides)
_DEFINE_BINARY_OPERATOR(%, __modulus)
_DEFINE_BINARY_OPERATOR(^, __bitwise_xor)
_DEFINE_BINARY_OPERATOR(&, __bitwise_and)
_DEFINE_BINARY_OPERATOR(|, __bitwise_or)
_DEFINE_BINARY_OPERATOR(<<, __shift_left)
_DEFINE_BINARY_OPERATOR(>>, __shift_right)
_DEFINE_BINARY_OPERATOR(&&, __logical_and)
_DEFINE_BINARY_OPERATOR(||, __logical_or)
_DEFINE_BINARY_OPERATOR(==, __equal_to)
_DEFINE_BINARY_OPERATOR(!=, __not_equal_to)
_DEFINE_BINARY_OPERATOR(<, __less)
_DEFINE_BINARY_OPERATOR(>, __greater)
_DEFINE_BINARY_OPERATOR(<=, __less_equal)
_DEFINE_BINARY_OPERATOR(>=, __greater_equal)
} // namespace std
#endif /* _GLIBCXX_VALARRAY */