217f9af8c7
vm_mtx does not recurse and is required for most low level vm operations. faults can not be taken without holding Giant. Memory subsystems can now call the base page allocators safely. Almost all atomic ops were removed as they are covered under the vm mutex. Alpha and ia64 now need to catch up to i386's trap handlers. FFS and NFS have been tested, other filesystems will need minor changes (grabbing the vm lock when twiddling page properties). Reviewed (partially) by: jake, jhb
1537 lines
41 KiB
C
1537 lines
41 KiB
C
/*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 John S. Dyson
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 David Greenman
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* The proverbial page-out daemon.
|
|
*/
|
|
|
|
#include "opt_vm.h"
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/vm_zone.h>
|
|
#include <vm/swap_pager.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <machine/mutex.h>
|
|
|
|
/*
|
|
* System initialization
|
|
*/
|
|
|
|
/* the kernel process "vm_pageout"*/
|
|
static void vm_pageout __P((void));
|
|
static int vm_pageout_clean __P((vm_page_t));
|
|
static void vm_pageout_scan __P((int pass));
|
|
static int vm_pageout_free_page_calc __P((vm_size_t count));
|
|
struct proc *pageproc;
|
|
|
|
static struct kproc_desc page_kp = {
|
|
"pagedaemon",
|
|
vm_pageout,
|
|
&pageproc
|
|
};
|
|
SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
/* the kernel process "vm_daemon"*/
|
|
static void vm_daemon __P((void));
|
|
static struct proc *vmproc;
|
|
|
|
static struct kproc_desc vm_kp = {
|
|
"vmdaemon",
|
|
vm_daemon,
|
|
&vmproc
|
|
};
|
|
SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
|
|
#endif
|
|
|
|
|
|
int vm_pages_needed=0; /* Event on which pageout daemon sleeps */
|
|
int vm_pageout_deficit=0; /* Estimated number of pages deficit */
|
|
int vm_pageout_pages_needed=0; /* flag saying that the pageout daemon needs pages */
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
static int vm_pageout_req_swapout; /* XXX */
|
|
static int vm_daemon_needed;
|
|
#endif
|
|
extern int vm_swap_size;
|
|
static int vm_max_launder = 32;
|
|
static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
|
|
static int vm_pageout_full_stats_interval = 0;
|
|
static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
|
|
static int defer_swap_pageouts=0;
|
|
static int disable_swap_pageouts=0;
|
|
|
|
#if defined(NO_SWAPPING)
|
|
static int vm_swap_enabled=0;
|
|
static int vm_swap_idle_enabled=0;
|
|
#else
|
|
static int vm_swap_enabled=1;
|
|
static int vm_swap_idle_enabled=0;
|
|
#endif
|
|
|
|
SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
|
|
CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, max_launder,
|
|
CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
|
|
CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
|
|
CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
|
|
CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
|
|
CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
|
|
|
|
#if defined(NO_SWAPPING)
|
|
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
|
|
CTLFLAG_RD, &vm_swap_enabled, 0, "");
|
|
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
|
|
CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
|
|
#else
|
|
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
|
|
CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
|
|
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
|
|
CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
|
|
#endif
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
|
|
CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
|
|
CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
|
|
|
|
#define VM_PAGEOUT_PAGE_COUNT 16
|
|
int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
|
|
|
|
int vm_page_max_wired; /* XXX max # of wired pages system-wide */
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
|
|
static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
|
|
static freeer_fcn_t vm_pageout_object_deactivate_pages;
|
|
static void vm_req_vmdaemon __P((void));
|
|
#endif
|
|
static void vm_pageout_page_stats(void);
|
|
|
|
/*
|
|
* vm_pageout_clean:
|
|
*
|
|
* Clean the page and remove it from the laundry.
|
|
*
|
|
* We set the busy bit to cause potential page faults on this page to
|
|
* block. Note the careful timing, however, the busy bit isn't set till
|
|
* late and we cannot do anything that will mess with the page.
|
|
*/
|
|
|
|
static int
|
|
vm_pageout_clean(m)
|
|
vm_page_t m;
|
|
{
|
|
register vm_object_t object;
|
|
vm_page_t mc[2*vm_pageout_page_count];
|
|
int pageout_count;
|
|
int ib, is, page_base;
|
|
vm_pindex_t pindex = m->pindex;
|
|
|
|
object = m->object;
|
|
|
|
/*
|
|
* It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
|
|
* with the new swapper, but we could have serious problems paging
|
|
* out other object types if there is insufficient memory.
|
|
*
|
|
* Unfortunately, checking free memory here is far too late, so the
|
|
* check has been moved up a procedural level.
|
|
*/
|
|
|
|
/*
|
|
* Don't mess with the page if it's busy, held, or special
|
|
*/
|
|
if ((m->hold_count != 0) ||
|
|
((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
|
|
return 0;
|
|
}
|
|
|
|
mc[vm_pageout_page_count] = m;
|
|
pageout_count = 1;
|
|
page_base = vm_pageout_page_count;
|
|
ib = 1;
|
|
is = 1;
|
|
|
|
/*
|
|
* Scan object for clusterable pages.
|
|
*
|
|
* We can cluster ONLY if: ->> the page is NOT
|
|
* clean, wired, busy, held, or mapped into a
|
|
* buffer, and one of the following:
|
|
* 1) The page is inactive, or a seldom used
|
|
* active page.
|
|
* -or-
|
|
* 2) we force the issue.
|
|
*
|
|
* During heavy mmap/modification loads the pageout
|
|
* daemon can really fragment the underlying file
|
|
* due to flushing pages out of order and not trying
|
|
* align the clusters (which leave sporatic out-of-order
|
|
* holes). To solve this problem we do the reverse scan
|
|
* first and attempt to align our cluster, then do a
|
|
* forward scan if room remains.
|
|
*/
|
|
|
|
more:
|
|
while (ib && pageout_count < vm_pageout_page_count) {
|
|
vm_page_t p;
|
|
|
|
if (ib > pindex) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
|
|
if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
if (((p->queue - p->pc) == PQ_CACHE) ||
|
|
(p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
vm_page_test_dirty(p);
|
|
if ((p->dirty & p->valid) == 0 ||
|
|
p->queue != PQ_INACTIVE ||
|
|
p->wire_count != 0 ||
|
|
p->hold_count != 0) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
mc[--page_base] = p;
|
|
++pageout_count;
|
|
++ib;
|
|
/*
|
|
* alignment boundry, stop here and switch directions. Do
|
|
* not clear ib.
|
|
*/
|
|
if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
|
|
break;
|
|
}
|
|
|
|
while (pageout_count < vm_pageout_page_count &&
|
|
pindex + is < object->size) {
|
|
vm_page_t p;
|
|
|
|
if ((p = vm_page_lookup(object, pindex + is)) == NULL)
|
|
break;
|
|
if (((p->queue - p->pc) == PQ_CACHE) ||
|
|
(p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
|
|
break;
|
|
}
|
|
vm_page_test_dirty(p);
|
|
if ((p->dirty & p->valid) == 0 ||
|
|
p->queue != PQ_INACTIVE ||
|
|
p->wire_count != 0 ||
|
|
p->hold_count != 0) {
|
|
break;
|
|
}
|
|
mc[page_base + pageout_count] = p;
|
|
++pageout_count;
|
|
++is;
|
|
}
|
|
|
|
/*
|
|
* If we exhausted our forward scan, continue with the reverse scan
|
|
* when possible, even past a page boundry. This catches boundry
|
|
* conditions.
|
|
*/
|
|
if (ib && pageout_count < vm_pageout_page_count)
|
|
goto more;
|
|
|
|
/*
|
|
* we allow reads during pageouts...
|
|
*/
|
|
return vm_pageout_flush(&mc[page_base], pageout_count, 0);
|
|
}
|
|
|
|
/*
|
|
* vm_pageout_flush() - launder the given pages
|
|
*
|
|
* The given pages are laundered. Note that we setup for the start of
|
|
* I/O ( i.e. busy the page ), mark it read-only, and bump the object
|
|
* reference count all in here rather then in the parent. If we want
|
|
* the parent to do more sophisticated things we may have to change
|
|
* the ordering.
|
|
*/
|
|
|
|
int
|
|
vm_pageout_flush(mc, count, flags)
|
|
vm_page_t *mc;
|
|
int count;
|
|
int flags;
|
|
{
|
|
register vm_object_t object;
|
|
int pageout_status[count];
|
|
int numpagedout = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Initiate I/O. Bump the vm_page_t->busy counter and
|
|
* mark the pages read-only.
|
|
*
|
|
* We do not have to fixup the clean/dirty bits here... we can
|
|
* allow the pager to do it after the I/O completes.
|
|
*
|
|
* NOTE! mc[i]->dirty may be partial or fragmented due to an
|
|
* edge case with file fragments.
|
|
*/
|
|
|
|
for (i = 0; i < count; i++) {
|
|
KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
|
|
vm_page_io_start(mc[i]);
|
|
vm_page_protect(mc[i], VM_PROT_READ);
|
|
}
|
|
|
|
object = mc[0]->object;
|
|
vm_object_pip_add(object, count);
|
|
|
|
vm_pager_put_pages(object, mc, count,
|
|
(flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
|
|
pageout_status);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
vm_page_t mt = mc[i];
|
|
|
|
switch (pageout_status[i]) {
|
|
case VM_PAGER_OK:
|
|
numpagedout++;
|
|
break;
|
|
case VM_PAGER_PEND:
|
|
numpagedout++;
|
|
break;
|
|
case VM_PAGER_BAD:
|
|
/*
|
|
* Page outside of range of object. Right now we
|
|
* essentially lose the changes by pretending it
|
|
* worked.
|
|
*/
|
|
pmap_clear_modify(mt);
|
|
vm_page_undirty(mt);
|
|
break;
|
|
case VM_PAGER_ERROR:
|
|
case VM_PAGER_FAIL:
|
|
/*
|
|
* If page couldn't be paged out, then reactivate the
|
|
* page so it doesn't clog the inactive list. (We
|
|
* will try paging out it again later).
|
|
*/
|
|
vm_page_activate(mt);
|
|
break;
|
|
case VM_PAGER_AGAIN:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the operation is still going, leave the page busy to
|
|
* block all other accesses. Also, leave the paging in
|
|
* progress indicator set so that we don't attempt an object
|
|
* collapse.
|
|
*/
|
|
if (pageout_status[i] != VM_PAGER_PEND) {
|
|
vm_object_pip_wakeup(object);
|
|
vm_page_io_finish(mt);
|
|
if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
|
|
vm_page_protect(mt, VM_PROT_READ);
|
|
}
|
|
}
|
|
return numpagedout;
|
|
}
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
/*
|
|
* vm_pageout_object_deactivate_pages
|
|
*
|
|
* deactivate enough pages to satisfy the inactive target
|
|
* requirements or if vm_page_proc_limit is set, then
|
|
* deactivate all of the pages in the object and its
|
|
* backing_objects.
|
|
*
|
|
* The object and map must be locked.
|
|
*
|
|
* Requires the vm_mtx
|
|
*/
|
|
static void
|
|
vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
|
|
vm_map_t map;
|
|
vm_object_t object;
|
|
vm_pindex_t desired;
|
|
int map_remove_only;
|
|
{
|
|
register vm_page_t p, next;
|
|
int rcount;
|
|
int remove_mode;
|
|
int s;
|
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
|
if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
|
|
return;
|
|
|
|
while (object) {
|
|
if (pmap_resident_count(vm_map_pmap(map)) <= desired)
|
|
return;
|
|
if (object->paging_in_progress)
|
|
return;
|
|
|
|
remove_mode = map_remove_only;
|
|
if (object->shadow_count > 1)
|
|
remove_mode = 1;
|
|
/*
|
|
* scan the objects entire memory queue
|
|
*/
|
|
rcount = object->resident_page_count;
|
|
p = TAILQ_FIRST(&object->memq);
|
|
while (p && (rcount-- > 0)) {
|
|
int actcount;
|
|
if (pmap_resident_count(vm_map_pmap(map)) <= desired)
|
|
return;
|
|
next = TAILQ_NEXT(p, listq);
|
|
cnt.v_pdpages++;
|
|
if (p->wire_count != 0 ||
|
|
p->hold_count != 0 ||
|
|
p->busy != 0 ||
|
|
(p->flags & (PG_BUSY|PG_UNMANAGED)) ||
|
|
!pmap_page_exists(vm_map_pmap(map), p)) {
|
|
p = next;
|
|
continue;
|
|
}
|
|
|
|
actcount = pmap_ts_referenced(p);
|
|
if (actcount) {
|
|
vm_page_flag_set(p, PG_REFERENCED);
|
|
} else if (p->flags & PG_REFERENCED) {
|
|
actcount = 1;
|
|
}
|
|
|
|
if ((p->queue != PQ_ACTIVE) &&
|
|
(p->flags & PG_REFERENCED)) {
|
|
vm_page_activate(p);
|
|
p->act_count += actcount;
|
|
vm_page_flag_clear(p, PG_REFERENCED);
|
|
} else if (p->queue == PQ_ACTIVE) {
|
|
if ((p->flags & PG_REFERENCED) == 0) {
|
|
p->act_count -= min(p->act_count, ACT_DECLINE);
|
|
if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
|
|
vm_page_protect(p, VM_PROT_NONE);
|
|
vm_page_deactivate(p);
|
|
} else {
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
|
|
splx(s);
|
|
}
|
|
} else {
|
|
vm_page_activate(p);
|
|
vm_page_flag_clear(p, PG_REFERENCED);
|
|
if (p->act_count < (ACT_MAX - ACT_ADVANCE))
|
|
p->act_count += ACT_ADVANCE;
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
|
|
splx(s);
|
|
}
|
|
} else if (p->queue == PQ_INACTIVE) {
|
|
vm_page_protect(p, VM_PROT_NONE);
|
|
}
|
|
p = next;
|
|
}
|
|
object = object->backing_object;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* deactivate some number of pages in a map, try to do it fairly, but
|
|
* that is really hard to do.
|
|
*/
|
|
static void
|
|
vm_pageout_map_deactivate_pages(map, desired)
|
|
vm_map_t map;
|
|
vm_pindex_t desired;
|
|
{
|
|
vm_map_entry_t tmpe;
|
|
vm_object_t obj, bigobj;
|
|
|
|
if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
|
|
return;
|
|
}
|
|
|
|
bigobj = NULL;
|
|
|
|
/*
|
|
* first, search out the biggest object, and try to free pages from
|
|
* that.
|
|
*/
|
|
tmpe = map->header.next;
|
|
while (tmpe != &map->header) {
|
|
if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
|
|
obj = tmpe->object.vm_object;
|
|
if ((obj != NULL) && (obj->shadow_count <= 1) &&
|
|
((bigobj == NULL) ||
|
|
(bigobj->resident_page_count < obj->resident_page_count))) {
|
|
bigobj = obj;
|
|
}
|
|
}
|
|
tmpe = tmpe->next;
|
|
}
|
|
|
|
if (bigobj)
|
|
vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
|
|
|
|
/*
|
|
* Next, hunt around for other pages to deactivate. We actually
|
|
* do this search sort of wrong -- .text first is not the best idea.
|
|
*/
|
|
tmpe = map->header.next;
|
|
while (tmpe != &map->header) {
|
|
if (pmap_resident_count(vm_map_pmap(map)) <= desired)
|
|
break;
|
|
if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
|
|
obj = tmpe->object.vm_object;
|
|
if (obj)
|
|
vm_pageout_object_deactivate_pages(map, obj, desired, 0);
|
|
}
|
|
tmpe = tmpe->next;
|
|
};
|
|
|
|
/*
|
|
* Remove all mappings if a process is swapped out, this will free page
|
|
* table pages.
|
|
*/
|
|
if (desired == 0)
|
|
pmap_remove(vm_map_pmap(map),
|
|
VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
|
|
vm_map_unlock(map);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
|
|
* to vnode deadlocks. We only do it for OBJT_DEFAULT and OBJT_SWAP objects
|
|
* which we know can be trivially freed.
|
|
*/
|
|
|
|
void
|
|
vm_pageout_page_free(vm_page_t m) {
|
|
vm_object_t object = m->object;
|
|
int type = object->type;
|
|
|
|
if (type == OBJT_SWAP || type == OBJT_DEFAULT)
|
|
vm_object_reference(object);
|
|
vm_page_busy(m);
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
vm_page_free(m);
|
|
if (type == OBJT_SWAP || type == OBJT_DEFAULT)
|
|
vm_object_deallocate(object);
|
|
}
|
|
|
|
/*
|
|
* vm_pageout_scan does the dirty work for the pageout daemon.
|
|
*/
|
|
static void
|
|
vm_pageout_scan(int pass)
|
|
{
|
|
vm_page_t m, next;
|
|
struct vm_page marker;
|
|
int save_page_shortage;
|
|
int save_inactive_count;
|
|
int page_shortage, maxscan, pcount;
|
|
int addl_page_shortage, addl_page_shortage_init;
|
|
struct proc *p, *bigproc;
|
|
vm_offset_t size, bigsize;
|
|
vm_object_t object;
|
|
int actcount;
|
|
int vnodes_skipped = 0;
|
|
int maxlaunder;
|
|
int s;
|
|
|
|
/*
|
|
* Do whatever cleanup that the pmap code can.
|
|
*/
|
|
pmap_collect();
|
|
|
|
addl_page_shortage_init = vm_pageout_deficit;
|
|
vm_pageout_deficit = 0;
|
|
|
|
/*
|
|
* Calculate the number of pages we want to either free or move
|
|
* to the cache.
|
|
*/
|
|
page_shortage = vm_paging_target() + addl_page_shortage_init;
|
|
save_page_shortage = page_shortage;
|
|
save_inactive_count = cnt.v_inactive_count;
|
|
|
|
/*
|
|
* Initialize our marker
|
|
*/
|
|
bzero(&marker, sizeof(marker));
|
|
marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
|
|
marker.queue = PQ_INACTIVE;
|
|
marker.wire_count = 1;
|
|
|
|
/*
|
|
* Start scanning the inactive queue for pages we can move to the
|
|
* cache or free. The scan will stop when the target is reached or
|
|
* we have scanned the entire inactive queue. Note that m->act_count
|
|
* is not used to form decisions for the inactive queue, only for the
|
|
* active queue.
|
|
*
|
|
* maxlaunder limits the number of dirty pages we flush per scan.
|
|
* For most systems a smaller value (16 or 32) is more robust under
|
|
* extreme memory and disk pressure because any unnecessary writes
|
|
* to disk can result in extreme performance degredation. However,
|
|
* systems with excessive dirty pages (especially when MAP_NOSYNC is
|
|
* used) will die horribly with limited laundering. If the pageout
|
|
* daemon cannot clean enough pages in the first pass, we let it go
|
|
* all out in succeeding passes.
|
|
*/
|
|
|
|
if ((maxlaunder = vm_max_launder) <= 1)
|
|
maxlaunder = 1;
|
|
if (pass)
|
|
maxlaunder = 10000;
|
|
|
|
rescan0:
|
|
addl_page_shortage = addl_page_shortage_init;
|
|
maxscan = cnt.v_inactive_count;
|
|
for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
|
|
m != NULL && maxscan-- > 0 && page_shortage > 0;
|
|
m = next) {
|
|
|
|
cnt.v_pdpages++;
|
|
|
|
if (m->queue != PQ_INACTIVE) {
|
|
goto rescan0;
|
|
}
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
|
|
|
/*
|
|
* skip marker pages
|
|
*/
|
|
if (m->flags & PG_MARKER)
|
|
continue;
|
|
|
|
if (m->hold_count) {
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
addl_page_shortage++;
|
|
continue;
|
|
}
|
|
/*
|
|
* Dont mess with busy pages, keep in the front of the
|
|
* queue, most likely are being paged out.
|
|
*/
|
|
if (m->busy || (m->flags & PG_BUSY)) {
|
|
addl_page_shortage++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the object is not being used, we ignore previous
|
|
* references.
|
|
*/
|
|
if (m->object->ref_count == 0) {
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
pmap_clear_reference(m);
|
|
|
|
/*
|
|
* Otherwise, if the page has been referenced while in the
|
|
* inactive queue, we bump the "activation count" upwards,
|
|
* making it less likely that the page will be added back to
|
|
* the inactive queue prematurely again. Here we check the
|
|
* page tables (or emulated bits, if any), given the upper
|
|
* level VM system not knowing anything about existing
|
|
* references.
|
|
*/
|
|
} else if (((m->flags & PG_REFERENCED) == 0) &&
|
|
(actcount = pmap_ts_referenced(m))) {
|
|
vm_page_activate(m);
|
|
m->act_count += (actcount + ACT_ADVANCE);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the upper level VM system knows about any page
|
|
* references, we activate the page. We also set the
|
|
* "activation count" higher than normal so that we will less
|
|
* likely place pages back onto the inactive queue again.
|
|
*/
|
|
if ((m->flags & PG_REFERENCED) != 0) {
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
actcount = pmap_ts_referenced(m);
|
|
vm_page_activate(m);
|
|
m->act_count += (actcount + ACT_ADVANCE + 1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the upper level VM system doesn't know anything about
|
|
* the page being dirty, we have to check for it again. As
|
|
* far as the VM code knows, any partially dirty pages are
|
|
* fully dirty.
|
|
*/
|
|
if (m->dirty == 0) {
|
|
vm_page_test_dirty(m);
|
|
} else {
|
|
vm_page_dirty(m);
|
|
}
|
|
|
|
/*
|
|
* Invalid pages can be easily freed
|
|
*/
|
|
if (m->valid == 0) {
|
|
vm_pageout_page_free(m);
|
|
cnt.v_dfree++;
|
|
--page_shortage;
|
|
|
|
/*
|
|
* Clean pages can be placed onto the cache queue. This
|
|
* effectively frees them.
|
|
*/
|
|
} else if (m->dirty == 0) {
|
|
vm_page_cache(m);
|
|
--page_shortage;
|
|
} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
|
|
/*
|
|
* Dirty pages need to be paged out, but flushing
|
|
* a page is extremely expensive verses freeing
|
|
* a clean page. Rather then artificially limiting
|
|
* the number of pages we can flush, we instead give
|
|
* dirty pages extra priority on the inactive queue
|
|
* by forcing them to be cycled through the queue
|
|
* twice before being flushed, after which the
|
|
* (now clean) page will cycle through once more
|
|
* before being freed. This significantly extends
|
|
* the thrash point for a heavily loaded machine.
|
|
*/
|
|
s = splvm();
|
|
vm_page_flag_set(m, PG_WINATCFLS);
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
} else if (maxlaunder > 0) {
|
|
/*
|
|
* We always want to try to flush some dirty pages if
|
|
* we encounter them, to keep the system stable.
|
|
* Normally this number is small, but under extreme
|
|
* pressure where there are insufficient clean pages
|
|
* on the inactive queue, we may have to go all out.
|
|
*/
|
|
int swap_pageouts_ok;
|
|
struct vnode *vp = NULL;
|
|
struct mount *mp;
|
|
|
|
object = m->object;
|
|
|
|
if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
|
|
swap_pageouts_ok = 1;
|
|
} else {
|
|
swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
|
|
swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
|
|
vm_page_count_min());
|
|
|
|
}
|
|
|
|
/*
|
|
* We don't bother paging objects that are "dead".
|
|
* Those objects are in a "rundown" state.
|
|
*/
|
|
if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The object is already known NOT to be dead. It
|
|
* is possible for the vget() to block the whole
|
|
* pageout daemon, but the new low-memory handling
|
|
* code should prevent it.
|
|
*
|
|
* The previous code skipped locked vnodes and, worse,
|
|
* reordered pages in the queue. This results in
|
|
* completely non-deterministic operation and, on a
|
|
* busy system, can lead to extremely non-optimal
|
|
* pageouts. For example, it can cause clean pages
|
|
* to be freed and dirty pages to be moved to the end
|
|
* of the queue. Since dirty pages are also moved to
|
|
* the end of the queue once-cleaned, this gives
|
|
* way too large a weighting to defering the freeing
|
|
* of dirty pages.
|
|
*
|
|
* XXX we need to be able to apply a timeout to the
|
|
* vget() lock attempt.
|
|
*/
|
|
|
|
if (object->type == OBJT_VNODE) {
|
|
vp = object->handle;
|
|
|
|
mp = NULL;
|
|
if (vp->v_type == VREG)
|
|
vn_start_write(vp, &mp, V_NOWAIT);
|
|
if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
|
|
vn_finished_write(mp);
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The page might have been moved to another
|
|
* queue during potential blocking in vget()
|
|
* above. The page might have been freed and
|
|
* reused for another vnode. The object might
|
|
* have been reused for another vnode.
|
|
*/
|
|
if (m->queue != PQ_INACTIVE ||
|
|
m->object != object ||
|
|
object->handle != vp) {
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
vput(vp);
|
|
vn_finished_write(mp);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The page may have been busied during the
|
|
* blocking in vput(); We don't move the
|
|
* page back onto the end of the queue so that
|
|
* statistics are more correct if we don't.
|
|
*/
|
|
if (m->busy || (m->flags & PG_BUSY)) {
|
|
vput(vp);
|
|
vn_finished_write(mp);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the page has become held, then skip it
|
|
*/
|
|
if (m->hold_count) {
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
vput(vp);
|
|
vn_finished_write(mp);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a page is dirty, then it is either being washed
|
|
* (but not yet cleaned) or it is still in the
|
|
* laundry. If it is still in the laundry, then we
|
|
* start the cleaning operation.
|
|
*
|
|
* This operation may cluster, invalidating the 'next'
|
|
* pointer. To prevent an inordinate number of
|
|
* restarts we use our marker to remember our place.
|
|
*
|
|
* decrement page_shortage on success to account for
|
|
* the (future) cleaned page. Otherwise we could wind
|
|
* up laundering or cleaning too many pages.
|
|
*/
|
|
s = splvm();
|
|
TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
|
|
splx(s);
|
|
if (vm_pageout_clean(m) != 0) {
|
|
--page_shortage;
|
|
--maxlaunder;
|
|
}
|
|
s = splvm();
|
|
next = TAILQ_NEXT(&marker, pageq);
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
|
|
splx(s);
|
|
if (vp) {
|
|
vput(vp);
|
|
vn_finished_write(mp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the number of pages we want to try to move from the
|
|
* active queue to the inactive queue.
|
|
*/
|
|
page_shortage = vm_paging_target() +
|
|
cnt.v_inactive_target - cnt.v_inactive_count;
|
|
page_shortage += addl_page_shortage;
|
|
|
|
/*
|
|
* Scan the active queue for things we can deactivate. We nominally
|
|
* track the per-page activity counter and use it to locate
|
|
* deactivation candidates.
|
|
*/
|
|
|
|
pcount = cnt.v_active_count;
|
|
m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
|
|
|
|
while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
|
|
|
|
/*
|
|
* This is a consistency check, and should likely be a panic
|
|
* or warning.
|
|
*/
|
|
if (m->queue != PQ_ACTIVE) {
|
|
break;
|
|
}
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
|
/*
|
|
* Don't deactivate pages that are busy.
|
|
*/
|
|
if ((m->busy != 0) ||
|
|
(m->flags & PG_BUSY) ||
|
|
(m->hold_count != 0)) {
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
m = next;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The count for pagedaemon pages is done after checking the
|
|
* page for eligibility...
|
|
*/
|
|
cnt.v_pdpages++;
|
|
|
|
/*
|
|
* Check to see "how much" the page has been used.
|
|
*/
|
|
actcount = 0;
|
|
if (m->object->ref_count != 0) {
|
|
if (m->flags & PG_REFERENCED) {
|
|
actcount += 1;
|
|
}
|
|
actcount += pmap_ts_referenced(m);
|
|
if (actcount) {
|
|
m->act_count += ACT_ADVANCE + actcount;
|
|
if (m->act_count > ACT_MAX)
|
|
m->act_count = ACT_MAX;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Since we have "tested" this bit, we need to clear it now.
|
|
*/
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
|
|
/*
|
|
* Only if an object is currently being used, do we use the
|
|
* page activation count stats.
|
|
*/
|
|
if (actcount && (m->object->ref_count != 0)) {
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
} else {
|
|
m->act_count -= min(m->act_count, ACT_DECLINE);
|
|
if (vm_pageout_algorithm ||
|
|
m->object->ref_count == 0 ||
|
|
m->act_count == 0) {
|
|
page_shortage--;
|
|
if (m->object->ref_count == 0) {
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
if (m->dirty == 0)
|
|
vm_page_cache(m);
|
|
else
|
|
vm_page_deactivate(m);
|
|
} else {
|
|
vm_page_deactivate(m);
|
|
}
|
|
} else {
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
}
|
|
}
|
|
m = next;
|
|
}
|
|
|
|
s = splvm();
|
|
|
|
/*
|
|
* We try to maintain some *really* free pages, this allows interrupt
|
|
* code to be guaranteed space. Since both cache and free queues
|
|
* are considered basically 'free', moving pages from cache to free
|
|
* does not effect other calculations.
|
|
*/
|
|
|
|
while (cnt.v_free_count < cnt.v_free_reserved) {
|
|
static int cache_rover = 0;
|
|
m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
|
|
if (!m)
|
|
break;
|
|
if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
|
|
m->busy ||
|
|
m->hold_count ||
|
|
m->wire_count) {
|
|
#ifdef INVARIANTS
|
|
printf("Warning: busy page %p found in cache\n", m);
|
|
#endif
|
|
vm_page_deactivate(m);
|
|
continue;
|
|
}
|
|
cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
|
|
vm_pageout_page_free(m);
|
|
cnt.v_dfree++;
|
|
}
|
|
splx(s);
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
/*
|
|
* Idle process swapout -- run once per second.
|
|
*/
|
|
if (vm_swap_idle_enabled) {
|
|
static long lsec;
|
|
if (time_second != lsec) {
|
|
vm_pageout_req_swapout |= VM_SWAP_IDLE;
|
|
vm_req_vmdaemon();
|
|
lsec = time_second;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we didn't get enough free pages, and we have skipped a vnode
|
|
* in a writeable object, wakeup the sync daemon. And kick swapout
|
|
* if we did not get enough free pages.
|
|
*/
|
|
if (vm_paging_target() > 0) {
|
|
if (vnodes_skipped && vm_page_count_min())
|
|
(void) speedup_syncer();
|
|
#if !defined(NO_SWAPPING)
|
|
if (vm_swap_enabled && vm_page_count_target()) {
|
|
vm_req_vmdaemon();
|
|
vm_pageout_req_swapout |= VM_SWAP_NORMAL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* make sure that we have swap space -- if we are low on memory and
|
|
* swap -- then kill the biggest process.
|
|
*
|
|
* We keep the process bigproc locked once we find it to keep anyone
|
|
* from messing with it; however, there is a possibility of
|
|
* deadlock if process B is bigproc and one of it's child processes
|
|
* attempts to propagate a signal to B while we are waiting for A's
|
|
* lock while walking this list. To avoid this, we don't block on
|
|
* the process lock but just skip a process if it is already locked.
|
|
*/
|
|
if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
|
|
bigproc = NULL;
|
|
bigsize = 0;
|
|
sx_slock(&allproc_lock);
|
|
LIST_FOREACH(p, &allproc, p_list) {
|
|
/*
|
|
* If this process is already locked, skip it.
|
|
*/
|
|
if (PROC_TRYLOCK(p) == 0)
|
|
continue;
|
|
/*
|
|
* if this is a system process, skip it
|
|
*/
|
|
if ((p->p_flag & P_SYSTEM) || (p->p_lock > 0) ||
|
|
(p->p_pid == 1) ||
|
|
((p->p_pid < 48) && (vm_swap_size != 0))) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
/*
|
|
* if the process is in a non-running type state,
|
|
* don't touch it.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
/*
|
|
* get the process size
|
|
*/
|
|
size = vmspace_resident_count(p->p_vmspace);
|
|
/*
|
|
* if the this process is bigger than the biggest one
|
|
* remember it.
|
|
*/
|
|
if (size > bigsize) {
|
|
if (bigproc != NULL)
|
|
PROC_UNLOCK(bigproc);
|
|
bigproc = p;
|
|
bigsize = size;
|
|
} else
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
if (bigproc != NULL) {
|
|
killproc(bigproc, "out of swap space");
|
|
mtx_lock_spin(&sched_lock);
|
|
bigproc->p_estcpu = 0;
|
|
bigproc->p_nice = PRIO_MIN;
|
|
resetpriority(bigproc);
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(bigproc);
|
|
wakeup(&cnt.v_free_count);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine tries to maintain the pseudo LRU active queue,
|
|
* so that during long periods of time where there is no paging,
|
|
* that some statistic accumulation still occurs. This code
|
|
* helps the situation where paging just starts to occur.
|
|
*/
|
|
static void
|
|
vm_pageout_page_stats()
|
|
{
|
|
int s;
|
|
vm_page_t m,next;
|
|
int pcount,tpcount; /* Number of pages to check */
|
|
static int fullintervalcount = 0;
|
|
int page_shortage;
|
|
int s0;
|
|
|
|
page_shortage =
|
|
(cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
|
|
(cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
|
|
|
|
if (page_shortage <= 0)
|
|
return;
|
|
|
|
s0 = splvm();
|
|
|
|
pcount = cnt.v_active_count;
|
|
fullintervalcount += vm_pageout_stats_interval;
|
|
if (fullintervalcount < vm_pageout_full_stats_interval) {
|
|
tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
|
|
if (pcount > tpcount)
|
|
pcount = tpcount;
|
|
} else {
|
|
fullintervalcount = 0;
|
|
}
|
|
|
|
m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
|
|
while ((m != NULL) && (pcount-- > 0)) {
|
|
int actcount;
|
|
|
|
if (m->queue != PQ_ACTIVE) {
|
|
break;
|
|
}
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
|
/*
|
|
* Don't deactivate pages that are busy.
|
|
*/
|
|
if ((m->busy != 0) ||
|
|
(m->flags & PG_BUSY) ||
|
|
(m->hold_count != 0)) {
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
m = next;
|
|
continue;
|
|
}
|
|
|
|
actcount = 0;
|
|
if (m->flags & PG_REFERENCED) {
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
actcount += 1;
|
|
}
|
|
|
|
actcount += pmap_ts_referenced(m);
|
|
if (actcount) {
|
|
m->act_count += ACT_ADVANCE + actcount;
|
|
if (m->act_count > ACT_MAX)
|
|
m->act_count = ACT_MAX;
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
} else {
|
|
if (m->act_count == 0) {
|
|
/*
|
|
* We turn off page access, so that we have
|
|
* more accurate RSS stats. We don't do this
|
|
* in the normal page deactivation when the
|
|
* system is loaded VM wise, because the
|
|
* cost of the large number of page protect
|
|
* operations would be higher than the value
|
|
* of doing the operation.
|
|
*/
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
vm_page_deactivate(m);
|
|
} else {
|
|
m->act_count -= min(m->act_count, ACT_DECLINE);
|
|
s = splvm();
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
m = next;
|
|
}
|
|
splx(s0);
|
|
}
|
|
|
|
static int
|
|
vm_pageout_free_page_calc(count)
|
|
vm_size_t count;
|
|
{
|
|
if (count < cnt.v_page_count)
|
|
return 0;
|
|
/*
|
|
* free_reserved needs to include enough for the largest swap pager
|
|
* structures plus enough for any pv_entry structs when paging.
|
|
*/
|
|
if (cnt.v_page_count > 1024)
|
|
cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
|
|
else
|
|
cnt.v_free_min = 4;
|
|
cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
|
|
cnt.v_interrupt_free_min;
|
|
cnt.v_free_reserved = vm_pageout_page_count +
|
|
cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
|
|
cnt.v_free_severe = cnt.v_free_min / 2;
|
|
cnt.v_free_min += cnt.v_free_reserved;
|
|
cnt.v_free_severe += cnt.v_free_reserved;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* vm_pageout is the high level pageout daemon.
|
|
*/
|
|
static void
|
|
vm_pageout()
|
|
{
|
|
int pass;
|
|
|
|
mtx_lock(&vm_mtx);
|
|
|
|
/*
|
|
* Initialize some paging parameters.
|
|
*/
|
|
|
|
cnt.v_interrupt_free_min = 2;
|
|
if (cnt.v_page_count < 2000)
|
|
vm_pageout_page_count = 8;
|
|
|
|
vm_pageout_free_page_calc(cnt.v_page_count);
|
|
/*
|
|
* v_free_target and v_cache_min control pageout hysteresis. Note
|
|
* that these are more a measure of the VM cache queue hysteresis
|
|
* then the VM free queue. Specifically, v_free_target is the
|
|
* high water mark (free+cache pages).
|
|
*
|
|
* v_free_reserved + v_cache_min (mostly means v_cache_min) is the
|
|
* low water mark, while v_free_min is the stop. v_cache_min must
|
|
* be big enough to handle memory needs while the pageout daemon
|
|
* is signalled and run to free more pages.
|
|
*/
|
|
if (cnt.v_free_count > 6144)
|
|
cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
|
|
else
|
|
cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
|
|
|
|
if (cnt.v_free_count > 2048) {
|
|
cnt.v_cache_min = cnt.v_free_target;
|
|
cnt.v_cache_max = 2 * cnt.v_cache_min;
|
|
cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
|
|
} else {
|
|
cnt.v_cache_min = 0;
|
|
cnt.v_cache_max = 0;
|
|
cnt.v_inactive_target = cnt.v_free_count / 4;
|
|
}
|
|
if (cnt.v_inactive_target > cnt.v_free_count / 3)
|
|
cnt.v_inactive_target = cnt.v_free_count / 3;
|
|
|
|
/* XXX does not really belong here */
|
|
if (vm_page_max_wired == 0)
|
|
vm_page_max_wired = cnt.v_free_count / 3;
|
|
|
|
if (vm_pageout_stats_max == 0)
|
|
vm_pageout_stats_max = cnt.v_free_target;
|
|
|
|
/*
|
|
* Set interval in seconds for stats scan.
|
|
*/
|
|
if (vm_pageout_stats_interval == 0)
|
|
vm_pageout_stats_interval = 5;
|
|
if (vm_pageout_full_stats_interval == 0)
|
|
vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
|
|
|
|
|
|
/*
|
|
* Set maximum free per pass
|
|
*/
|
|
if (vm_pageout_stats_free_max == 0)
|
|
vm_pageout_stats_free_max = 5;
|
|
|
|
curproc->p_flag |= P_BUFEXHAUST;
|
|
swap_pager_swap_init();
|
|
pass = 0;
|
|
/*
|
|
* The pageout daemon is never done, so loop forever.
|
|
*/
|
|
while (TRUE) {
|
|
int error;
|
|
int s = splvm();
|
|
|
|
/*
|
|
* If we have enough free memory, wakeup waiters. Do
|
|
* not clear vm_pages_needed until we reach our target,
|
|
* otherwise we may be woken up over and over again and
|
|
* waste a lot of cpu.
|
|
*/
|
|
if (vm_pages_needed && !vm_page_count_min()) {
|
|
if (vm_paging_needed() <= 0)
|
|
vm_pages_needed = 0;
|
|
wakeup(&cnt.v_free_count);
|
|
}
|
|
if (vm_pages_needed) {
|
|
/*
|
|
* Still not done, take a second pass without waiting
|
|
* (unlimited dirty cleaning), otherwise sleep a bit
|
|
* and try again.
|
|
*/
|
|
++pass;
|
|
if (pass > 1)
|
|
msleep(&vm_pages_needed, &vm_mtx, PVM,
|
|
"psleep", hz/2);
|
|
} else {
|
|
/*
|
|
* Good enough, sleep & handle stats. Prime the pass
|
|
* for the next run.
|
|
*/
|
|
if (pass > 1)
|
|
pass = 1;
|
|
else
|
|
pass = 0;
|
|
error = msleep(&vm_pages_needed, &vm_mtx,
|
|
PVM, "psleep", vm_pageout_stats_interval * hz);
|
|
if (error && !vm_pages_needed) {
|
|
splx(s);
|
|
pass = 0;
|
|
vm_pageout_page_stats();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (vm_pages_needed)
|
|
cnt.v_pdwakeups++;
|
|
splx(s);
|
|
vm_pageout_scan(pass);
|
|
vm_pageout_deficit = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
pagedaemon_wakeup()
|
|
{
|
|
if (!vm_pages_needed && curproc != pageproc) {
|
|
vm_pages_needed++;
|
|
wakeup(&vm_pages_needed);
|
|
}
|
|
}
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
static void
|
|
vm_req_vmdaemon()
|
|
{
|
|
static int lastrun = 0;
|
|
|
|
if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
|
|
wakeup(&vm_daemon_needed);
|
|
lastrun = ticks;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vm_daemon()
|
|
{
|
|
struct proc *p;
|
|
|
|
mtx_lock(&vm_mtx);
|
|
|
|
while (TRUE) {
|
|
msleep(&vm_daemon_needed, &vm_mtx, PPAUSE, "psleep", 0);
|
|
if (vm_pageout_req_swapout) {
|
|
swapout_procs(vm_pageout_req_swapout);
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
|
vm_pageout_req_swapout = 0;
|
|
}
|
|
/*
|
|
* scan the processes for exceeding their rlimits or if
|
|
* process is swapped out -- deactivate pages
|
|
*/
|
|
|
|
mtx_unlock(&vm_mtx);
|
|
sx_slock(&allproc_lock);
|
|
LIST_FOREACH(p, &allproc, p_list) {
|
|
vm_pindex_t limit, size;
|
|
|
|
/*
|
|
* if this is a system process or if we have already
|
|
* looked at this process, skip it.
|
|
*/
|
|
if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
|
|
continue;
|
|
}
|
|
/*
|
|
* if the process is in a non-running type state,
|
|
* don't touch it.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
continue;
|
|
}
|
|
/*
|
|
* get a limit
|
|
*/
|
|
limit = OFF_TO_IDX(
|
|
qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
|
|
p->p_rlimit[RLIMIT_RSS].rlim_max));
|
|
|
|
/*
|
|
* let processes that are swapped out really be
|
|
* swapped out set the limit to nothing (will force a
|
|
* swap-out.)
|
|
*/
|
|
if ((p->p_sflag & PS_INMEM) == 0)
|
|
limit = 0; /* XXX */
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
mtx_lock(&vm_mtx);
|
|
size = vmspace_resident_count(p->p_vmspace);
|
|
if (limit >= 0 && size >= limit) {
|
|
vm_pageout_map_deactivate_pages(
|
|
&p->p_vmspace->vm_map, limit);
|
|
}
|
|
mtx_unlock(&vm_mtx);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
mtx_lock(&vm_mtx);
|
|
}
|
|
}
|
|
#endif
|