1492 lines
35 KiB
C
1492 lines
35 KiB
C
/*-
|
|
* Copyright (c) 2010-2011 Solarflare Communications, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed in part by Philip Paeps under contract for
|
|
* Solarflare Communications, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/tcp.h>
|
|
|
|
#include "common/efx.h"
|
|
|
|
#include "sfxge.h"
|
|
#include "sfxge_tx.h"
|
|
|
|
/* Set the block level to ensure there is space to generate a
|
|
* large number of descriptors for TSO. With minimum MSS and
|
|
* maximum mbuf length we might need more than a ring-ful of
|
|
* descriptors, but this should not happen in practice except
|
|
* due to deliberate attack. In that case we will truncate
|
|
* the output at a packet boundary. Allow for a reasonable
|
|
* minimum MSS of 512.
|
|
*/
|
|
#define SFXGE_TSO_MAX_DESC ((65535 / 512) * 2 + SFXGE_TX_MAPPING_MAX_SEG - 1)
|
|
#define SFXGE_TXQ_BLOCK_LEVEL (SFXGE_NDESCS - SFXGE_TSO_MAX_DESC)
|
|
|
|
/* Forward declarations. */
|
|
static inline void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
|
|
static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
|
|
static void sfxge_tx_qunblock(struct sfxge_txq *txq);
|
|
static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
|
|
const bus_dma_segment_t *dma_seg, int n_dma_seg);
|
|
|
|
void
|
|
sfxge_tx_qcomplete(struct sfxge_txq *txq)
|
|
{
|
|
struct sfxge_softc *sc;
|
|
struct sfxge_evq *evq;
|
|
unsigned int completed;
|
|
|
|
sc = txq->sc;
|
|
evq = sc->evq[txq->evq_index];
|
|
|
|
mtx_assert(&evq->lock, MA_OWNED);
|
|
|
|
completed = txq->completed;
|
|
while (completed != txq->pending) {
|
|
struct sfxge_tx_mapping *stmp;
|
|
unsigned int id;
|
|
|
|
id = completed++ & (SFXGE_NDESCS - 1);
|
|
|
|
stmp = &txq->stmp[id];
|
|
if (stmp->flags & TX_BUF_UNMAP) {
|
|
bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
|
|
if (stmp->flags & TX_BUF_MBUF) {
|
|
struct mbuf *m = stmp->u.mbuf;
|
|
do
|
|
m = m_free(m);
|
|
while (m != NULL);
|
|
} else {
|
|
free(stmp->u.heap_buf, M_SFXGE);
|
|
}
|
|
stmp->flags = 0;
|
|
}
|
|
}
|
|
txq->completed = completed;
|
|
|
|
/* Check whether we need to unblock the queue. */
|
|
mb();
|
|
if (txq->blocked) {
|
|
unsigned int level;
|
|
|
|
level = txq->added - txq->completed;
|
|
if (level <= SFXGE_TXQ_UNBLOCK_LEVEL)
|
|
sfxge_tx_qunblock(txq);
|
|
}
|
|
}
|
|
|
|
#ifdef SFXGE_HAVE_MQ
|
|
|
|
/*
|
|
* Reorder the put list and append it to the get list.
|
|
*/
|
|
static void
|
|
sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
|
|
{
|
|
struct sfxge_tx_dpl *stdp;
|
|
struct mbuf *mbuf, *get_next, **get_tailp;
|
|
volatile uintptr_t *putp;
|
|
uintptr_t put;
|
|
unsigned int count;
|
|
|
|
mtx_assert(&txq->lock, MA_OWNED);
|
|
|
|
stdp = &txq->dpl;
|
|
|
|
/* Acquire the put list. */
|
|
putp = &stdp->std_put;
|
|
put = atomic_readandclear_ptr(putp);
|
|
mbuf = (void *)put;
|
|
|
|
if (mbuf == NULL)
|
|
return;
|
|
|
|
/* Reverse the put list. */
|
|
get_tailp = &mbuf->m_nextpkt;
|
|
get_next = NULL;
|
|
|
|
count = 0;
|
|
do {
|
|
struct mbuf *put_next;
|
|
|
|
put_next = mbuf->m_nextpkt;
|
|
mbuf->m_nextpkt = get_next;
|
|
get_next = mbuf;
|
|
mbuf = put_next;
|
|
|
|
count++;
|
|
} while (mbuf != NULL);
|
|
|
|
/* Append the reversed put list to the get list. */
|
|
KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
|
|
*stdp->std_getp = get_next;
|
|
stdp->std_getp = get_tailp;
|
|
stdp->std_count += count;
|
|
}
|
|
|
|
#endif /* SFXGE_HAVE_MQ */
|
|
|
|
static void
|
|
sfxge_tx_qreap(struct sfxge_txq *txq)
|
|
{
|
|
mtx_assert(SFXGE_TXQ_LOCK(txq), MA_OWNED);
|
|
|
|
txq->reaped = txq->completed;
|
|
}
|
|
|
|
static void
|
|
sfxge_tx_qlist_post(struct sfxge_txq *txq)
|
|
{
|
|
unsigned int old_added;
|
|
unsigned int level;
|
|
int rc;
|
|
|
|
mtx_assert(SFXGE_TXQ_LOCK(txq), MA_OWNED);
|
|
|
|
KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
|
|
KASSERT(txq->n_pend_desc <= SFXGE_TSO_MAX_DESC,
|
|
("txq->n_pend_desc too large"));
|
|
KASSERT(!txq->blocked, ("txq->blocked"));
|
|
|
|
old_added = txq->added;
|
|
|
|
/* Post the fragment list. */
|
|
rc = efx_tx_qpost(txq->common, txq->pend_desc, txq->n_pend_desc,
|
|
txq->reaped, &txq->added);
|
|
KASSERT(rc == 0, ("efx_tx_qpost() failed"));
|
|
|
|
/* If efx_tx_qpost() had to refragment, our information about
|
|
* buffers to free may be associated with the wrong
|
|
* descriptors.
|
|
*/
|
|
KASSERT(txq->added - old_added == txq->n_pend_desc,
|
|
("efx_tx_qpost() refragmented descriptors"));
|
|
|
|
level = txq->added - txq->reaped;
|
|
KASSERT(level <= SFXGE_NDESCS, ("overfilled TX queue"));
|
|
|
|
/* Clear the fragment list. */
|
|
txq->n_pend_desc = 0;
|
|
|
|
/* Have we reached the block level? */
|
|
if (level < SFXGE_TXQ_BLOCK_LEVEL)
|
|
return;
|
|
|
|
/* Reap, and check again */
|
|
sfxge_tx_qreap(txq);
|
|
level = txq->added - txq->reaped;
|
|
if (level < SFXGE_TXQ_BLOCK_LEVEL)
|
|
return;
|
|
|
|
txq->blocked = 1;
|
|
|
|
/*
|
|
* Avoid a race with completion interrupt handling that could leave
|
|
* the queue blocked.
|
|
*/
|
|
mb();
|
|
sfxge_tx_qreap(txq);
|
|
level = txq->added - txq->reaped;
|
|
if (level < SFXGE_TXQ_BLOCK_LEVEL) {
|
|
mb();
|
|
txq->blocked = 0;
|
|
}
|
|
}
|
|
|
|
static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
|
|
{
|
|
bus_dmamap_t *used_map;
|
|
bus_dmamap_t map;
|
|
bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
|
|
unsigned int id;
|
|
struct sfxge_tx_mapping *stmp;
|
|
efx_buffer_t *desc;
|
|
int n_dma_seg;
|
|
int rc;
|
|
int i;
|
|
|
|
KASSERT(!txq->blocked, ("txq->blocked"));
|
|
|
|
if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
|
|
prefetch_read_many(mbuf->m_data);
|
|
|
|
if (txq->init_state != SFXGE_TXQ_STARTED) {
|
|
rc = EINTR;
|
|
goto reject;
|
|
}
|
|
|
|
/* Load the packet for DMA. */
|
|
id = txq->added & (SFXGE_NDESCS - 1);
|
|
stmp = &txq->stmp[id];
|
|
rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
|
|
mbuf, dma_seg, &n_dma_seg, 0);
|
|
if (rc == EFBIG) {
|
|
/* Try again. */
|
|
struct mbuf *new_mbuf = m_collapse(mbuf, M_DONTWAIT,
|
|
SFXGE_TX_MAPPING_MAX_SEG);
|
|
if (new_mbuf == NULL)
|
|
goto reject;
|
|
++txq->collapses;
|
|
mbuf = new_mbuf;
|
|
rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
|
|
stmp->map, mbuf,
|
|
dma_seg, &n_dma_seg, 0);
|
|
}
|
|
if (rc != 0)
|
|
goto reject;
|
|
|
|
/* Make the packet visible to the hardware. */
|
|
bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
|
|
|
|
used_map = &stmp->map;
|
|
|
|
if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
|
|
rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg);
|
|
if (rc < 0)
|
|
goto reject_mapped;
|
|
stmp = &txq->stmp[rc];
|
|
} else {
|
|
/* Add the mapping to the fragment list, and set flags
|
|
* for the buffer.
|
|
*/
|
|
i = 0;
|
|
for (;;) {
|
|
desc = &txq->pend_desc[i];
|
|
desc->eb_addr = dma_seg[i].ds_addr;
|
|
desc->eb_size = dma_seg[i].ds_len;
|
|
if (i == n_dma_seg - 1) {
|
|
desc->eb_eop = 1;
|
|
break;
|
|
}
|
|
desc->eb_eop = 0;
|
|
i++;
|
|
|
|
stmp->flags = 0;
|
|
if (__predict_false(stmp ==
|
|
&txq->stmp[SFXGE_NDESCS - 1]))
|
|
stmp = &txq->stmp[0];
|
|
else
|
|
stmp++;
|
|
}
|
|
txq->n_pend_desc = n_dma_seg;
|
|
}
|
|
|
|
/*
|
|
* If the mapping required more than one descriptor
|
|
* then we need to associate the DMA map with the last
|
|
* descriptor, not the first.
|
|
*/
|
|
if (used_map != &stmp->map) {
|
|
map = stmp->map;
|
|
stmp->map = *used_map;
|
|
*used_map = map;
|
|
}
|
|
|
|
stmp->u.mbuf = mbuf;
|
|
stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
|
|
|
|
/* Post the fragment list. */
|
|
sfxge_tx_qlist_post(txq);
|
|
|
|
return 0;
|
|
|
|
reject_mapped:
|
|
bus_dmamap_unload(txq->packet_dma_tag, *used_map);
|
|
reject:
|
|
/* Drop the packet on the floor. */
|
|
m_freem(mbuf);
|
|
++txq->drops;
|
|
|
|
return rc;
|
|
}
|
|
|
|
#ifdef SFXGE_HAVE_MQ
|
|
|
|
/*
|
|
* Drain the deferred packet list into the transmit queue.
|
|
*/
|
|
static void
|
|
sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
|
|
{
|
|
struct sfxge_softc *sc;
|
|
struct sfxge_tx_dpl *stdp;
|
|
struct mbuf *mbuf, *next;
|
|
unsigned int count;
|
|
unsigned int pushed;
|
|
int rc;
|
|
|
|
mtx_assert(&txq->lock, MA_OWNED);
|
|
|
|
sc = txq->sc;
|
|
stdp = &txq->dpl;
|
|
pushed = txq->added;
|
|
|
|
prefetch_read_many(sc->enp);
|
|
prefetch_read_many(txq->common);
|
|
|
|
mbuf = stdp->std_get;
|
|
count = stdp->std_count;
|
|
|
|
while (count != 0) {
|
|
KASSERT(mbuf != NULL, ("mbuf == NULL"));
|
|
|
|
next = mbuf->m_nextpkt;
|
|
mbuf->m_nextpkt = NULL;
|
|
|
|
ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
|
|
|
|
if (next != NULL)
|
|
prefetch_read_many(next);
|
|
|
|
rc = sfxge_tx_queue_mbuf(txq, mbuf);
|
|
--count;
|
|
mbuf = next;
|
|
if (rc != 0)
|
|
continue;
|
|
|
|
if (txq->blocked)
|
|
break;
|
|
|
|
/* Push the fragments to the hardware in batches. */
|
|
if (txq->added - pushed >= SFXGE_TX_BATCH) {
|
|
efx_tx_qpush(txq->common, txq->added);
|
|
pushed = txq->added;
|
|
}
|
|
}
|
|
|
|
if (count == 0) {
|
|
KASSERT(mbuf == NULL, ("mbuf != NULL"));
|
|
stdp->std_get = NULL;
|
|
stdp->std_count = 0;
|
|
stdp->std_getp = &stdp->std_get;
|
|
} else {
|
|
stdp->std_get = mbuf;
|
|
stdp->std_count = count;
|
|
}
|
|
|
|
if (txq->added != pushed)
|
|
efx_tx_qpush(txq->common, txq->added);
|
|
|
|
KASSERT(txq->blocked || stdp->std_count == 0,
|
|
("queue unblocked but count is non-zero"));
|
|
}
|
|
|
|
#define SFXGE_TX_QDPL_PENDING(_txq) \
|
|
((_txq)->dpl.std_put != 0)
|
|
|
|
/*
|
|
* Service the deferred packet list.
|
|
*
|
|
* NOTE: drops the txq mutex!
|
|
*/
|
|
static inline void
|
|
sfxge_tx_qdpl_service(struct sfxge_txq *txq)
|
|
{
|
|
mtx_assert(&txq->lock, MA_OWNED);
|
|
|
|
do {
|
|
if (SFXGE_TX_QDPL_PENDING(txq))
|
|
sfxge_tx_qdpl_swizzle(txq);
|
|
|
|
if (!txq->blocked)
|
|
sfxge_tx_qdpl_drain(txq);
|
|
|
|
mtx_unlock(&txq->lock);
|
|
} while (SFXGE_TX_QDPL_PENDING(txq) &&
|
|
mtx_trylock(&txq->lock));
|
|
}
|
|
|
|
/*
|
|
* Put a packet on the deferred packet list.
|
|
*
|
|
* If we are called with the txq lock held, we put the packet on the "get
|
|
* list", otherwise we atomically push it on the "put list". The swizzle
|
|
* function takes care of ordering.
|
|
*
|
|
* The length of the put list is bounded by SFXGE_TX_MAX_DEFFERED. We
|
|
* overload the csum_data field in the mbuf to keep track of this length
|
|
* because there is no cheap alternative to avoid races.
|
|
*/
|
|
static inline int
|
|
sfxge_tx_qdpl_put(struct sfxge_txq *txq, struct mbuf *mbuf, int locked)
|
|
{
|
|
struct sfxge_tx_dpl *stdp;
|
|
|
|
stdp = &txq->dpl;
|
|
|
|
KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
|
|
|
|
if (locked) {
|
|
mtx_assert(&txq->lock, MA_OWNED);
|
|
|
|
sfxge_tx_qdpl_swizzle(txq);
|
|
|
|
*(stdp->std_getp) = mbuf;
|
|
stdp->std_getp = &mbuf->m_nextpkt;
|
|
stdp->std_count++;
|
|
} else {
|
|
volatile uintptr_t *putp;
|
|
uintptr_t old;
|
|
uintptr_t new;
|
|
unsigned old_len;
|
|
|
|
putp = &stdp->std_put;
|
|
new = (uintptr_t)mbuf;
|
|
|
|
do {
|
|
old = *putp;
|
|
if (old) {
|
|
struct mbuf *mp = (struct mbuf *)old;
|
|
old_len = mp->m_pkthdr.csum_data;
|
|
} else
|
|
old_len = 0;
|
|
if (old_len >= SFXGE_TX_MAX_DEFERRED)
|
|
return ENOBUFS;
|
|
mbuf->m_pkthdr.csum_data = old_len + 1;
|
|
mbuf->m_nextpkt = (void *)old;
|
|
} while (atomic_cmpset_ptr(putp, old, new) == 0);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Called from if_transmit - will try to grab the txq lock and enqueue to the
|
|
* put list if it succeeds, otherwise will push onto the defer list.
|
|
*/
|
|
int
|
|
sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
|
|
{
|
|
int locked;
|
|
int rc;
|
|
|
|
/*
|
|
* Try to grab the txq lock. If we are able to get the lock,
|
|
* the packet will be appended to the "get list" of the deferred
|
|
* packet list. Otherwise, it will be pushed on the "put list".
|
|
*/
|
|
locked = mtx_trylock(&txq->lock);
|
|
|
|
/*
|
|
* Can only fail if we weren't able to get the lock.
|
|
*/
|
|
if (sfxge_tx_qdpl_put(txq, m, locked) != 0) {
|
|
KASSERT(!locked,
|
|
("sfxge_tx_qdpl_put() failed locked"));
|
|
rc = ENOBUFS;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Try to grab the lock again.
|
|
*
|
|
* If we are able to get the lock, we need to process the deferred
|
|
* packet list. If we are not able to get the lock, another thread
|
|
* is processing the list.
|
|
*/
|
|
if (!locked)
|
|
locked = mtx_trylock(&txq->lock);
|
|
|
|
if (locked) {
|
|
/* Try to service the list. */
|
|
sfxge_tx_qdpl_service(txq);
|
|
/* Lock has been dropped. */
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
return (rc);
|
|
|
|
}
|
|
|
|
static void
|
|
sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
|
|
{
|
|
struct sfxge_tx_dpl *stdp = &txq->dpl;
|
|
struct mbuf *mbuf, *next;
|
|
|
|
mtx_lock(&txq->lock);
|
|
|
|
sfxge_tx_qdpl_swizzle(txq);
|
|
for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
|
|
next = mbuf->m_nextpkt;
|
|
m_freem(mbuf);
|
|
}
|
|
stdp->std_get = NULL;
|
|
stdp->std_count = 0;
|
|
stdp->std_getp = &stdp->std_get;
|
|
|
|
mtx_unlock(&txq->lock);
|
|
}
|
|
|
|
void
|
|
sfxge_if_qflush(struct ifnet *ifp)
|
|
{
|
|
struct sfxge_softc *sc;
|
|
int i;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
for (i = 0; i < SFXGE_TX_SCALE(sc); i++)
|
|
sfxge_tx_qdpl_flush(sc->txq[i]);
|
|
}
|
|
|
|
/*
|
|
* TX start -- called by the stack.
|
|
*/
|
|
int
|
|
sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct sfxge_softc *sc;
|
|
struct sfxge_txq *txq;
|
|
int rc;
|
|
|
|
sc = (struct sfxge_softc *)ifp->if_softc;
|
|
|
|
KASSERT(ifp->if_flags & IFF_UP, ("interface not up"));
|
|
|
|
if (!SFXGE_LINK_UP(sc)) {
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
|
|
/* Pick the desired transmit queue. */
|
|
if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO)) {
|
|
int index = 0;
|
|
|
|
if (m->m_flags & M_FLOWID) {
|
|
uint32_t hash = m->m_pkthdr.flowid;
|
|
|
|
index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX];
|
|
}
|
|
txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index];
|
|
} else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
|
|
txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
|
|
} else {
|
|
txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
|
|
}
|
|
|
|
rc = sfxge_tx_packet_add(txq, m);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#else /* !SFXGE_HAVE_MQ */
|
|
|
|
static void sfxge_if_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct sfxge_softc *sc = ifp->if_softc;
|
|
struct sfxge_txq *txq;
|
|
struct mbuf *mbuf;
|
|
unsigned int pushed[SFXGE_TXQ_NTYPES];
|
|
unsigned int q_index;
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
if (!sc->port.link_up)
|
|
return;
|
|
|
|
for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) {
|
|
txq = sc->txq[q_index];
|
|
pushed[q_index] = txq->added;
|
|
}
|
|
|
|
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, mbuf);
|
|
if (mbuf == NULL)
|
|
break;
|
|
|
|
ETHER_BPF_MTAP(ifp, mbuf); /* packet capture */
|
|
|
|
/* Pick the desired transmit queue. */
|
|
if (mbuf->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO))
|
|
q_index = SFXGE_TXQ_IP_TCP_UDP_CKSUM;
|
|
else if (mbuf->m_pkthdr.csum_flags & CSUM_DELAY_IP)
|
|
q_index = SFXGE_TXQ_IP_CKSUM;
|
|
else
|
|
q_index = SFXGE_TXQ_NON_CKSUM;
|
|
txq = sc->txq[q_index];
|
|
|
|
if (sfxge_tx_queue_mbuf(txq, mbuf) != 0)
|
|
continue;
|
|
|
|
if (txq->blocked) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
/* Push the fragments to the hardware in batches. */
|
|
if (txq->added - pushed[q_index] >= SFXGE_TX_BATCH) {
|
|
efx_tx_qpush(txq->common, txq->added);
|
|
pushed[q_index] = txq->added;
|
|
}
|
|
}
|
|
|
|
for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) {
|
|
txq = sc->txq[q_index];
|
|
if (txq->added != pushed[q_index])
|
|
efx_tx_qpush(txq->common, txq->added);
|
|
}
|
|
}
|
|
|
|
void sfxge_if_start(struct ifnet *ifp)
|
|
{
|
|
struct sfxge_softc *sc = ifp->if_softc;
|
|
|
|
mtx_lock(&sc->tx_lock);
|
|
sfxge_if_start_locked(ifp);
|
|
mtx_unlock(&sc->tx_lock);
|
|
}
|
|
|
|
static inline void
|
|
sfxge_tx_qdpl_service(struct sfxge_txq *txq)
|
|
{
|
|
struct sfxge_softc *sc = txq->sc;
|
|
struct ifnet *ifp = sc->ifnet;
|
|
|
|
mtx_assert(&sc->tx_lock, MA_OWNED);
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sfxge_if_start_locked(ifp);
|
|
mtx_unlock(&sc->tx_lock);
|
|
}
|
|
|
|
#endif /* SFXGE_HAVE_MQ */
|
|
|
|
/*
|
|
* Software "TSO". Not quite as good as doing it in hardware, but
|
|
* still faster than segmenting in the stack.
|
|
*/
|
|
|
|
struct sfxge_tso_state {
|
|
/* Output position */
|
|
unsigned out_len; /* Remaining length in current segment */
|
|
unsigned seqnum; /* Current sequence number */
|
|
unsigned packet_space; /* Remaining space in current packet */
|
|
|
|
/* Input position */
|
|
unsigned dma_seg_i; /* Current DMA segment number */
|
|
uint64_t dma_addr; /* DMA address of current position */
|
|
unsigned in_len; /* Remaining length in current mbuf */
|
|
|
|
const struct mbuf *mbuf; /* Input mbuf (head of chain) */
|
|
u_short protocol; /* Network protocol (after VLAN decap) */
|
|
ssize_t nh_off; /* Offset of network header */
|
|
ssize_t tcph_off; /* Offset of TCP header */
|
|
unsigned header_len; /* Number of bytes of header */
|
|
int full_packet_size; /* Number of bytes to put in each outgoing
|
|
* segment */
|
|
};
|
|
|
|
static inline const struct ip *tso_iph(const struct sfxge_tso_state *tso)
|
|
{
|
|
KASSERT(tso->protocol == htons(ETHERTYPE_IP),
|
|
("tso_iph() in non-IPv4 state"));
|
|
return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
|
|
}
|
|
static inline const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
|
|
{
|
|
KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
|
|
("tso_ip6h() in non-IPv6 state"));
|
|
return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
|
|
}
|
|
static inline const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
|
|
{
|
|
return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
|
|
}
|
|
|
|
/* Size of preallocated TSO header buffers. Larger blocks must be
|
|
* allocated from the heap.
|
|
*/
|
|
#define TSOH_STD_SIZE 128
|
|
|
|
/* At most half the descriptors in the queue at any time will refer to
|
|
* a TSO header buffer, since they must always be followed by a
|
|
* payload descriptor referring to an mbuf.
|
|
*/
|
|
#define TSOH_COUNT (SFXGE_NDESCS / 2u)
|
|
#define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
|
|
#define TSOH_PAGE_COUNT ((TSOH_COUNT + TSOH_PER_PAGE - 1) / TSOH_PER_PAGE)
|
|
|
|
static int tso_init(struct sfxge_txq *txq)
|
|
{
|
|
struct sfxge_softc *sc = txq->sc;
|
|
int i, rc;
|
|
|
|
/* Allocate TSO header buffers */
|
|
txq->tsoh_buffer = malloc(TSOH_PAGE_COUNT * sizeof(txq->tsoh_buffer[0]),
|
|
M_SFXGE, M_WAITOK);
|
|
|
|
for (i = 0; i < TSOH_PAGE_COUNT; i++) {
|
|
rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
while (i-- > 0)
|
|
sfxge_dma_free(&txq->tsoh_buffer[i]);
|
|
free(txq->tsoh_buffer, M_SFXGE);
|
|
txq->tsoh_buffer = NULL;
|
|
return rc;
|
|
}
|
|
|
|
static void tso_fini(struct sfxge_txq *txq)
|
|
{
|
|
int i;
|
|
|
|
if (txq->tsoh_buffer) {
|
|
for (i = 0; i < TSOH_PAGE_COUNT; i++)
|
|
sfxge_dma_free(&txq->tsoh_buffer[i]);
|
|
free(txq->tsoh_buffer, M_SFXGE);
|
|
}
|
|
}
|
|
|
|
static void tso_start(struct sfxge_tso_state *tso, struct mbuf *mbuf)
|
|
{
|
|
struct ether_header *eh = mtod(mbuf, struct ether_header *);
|
|
|
|
tso->mbuf = mbuf;
|
|
|
|
/* Find network protocol and header */
|
|
tso->protocol = eh->ether_type;
|
|
if (tso->protocol == htons(ETHERTYPE_VLAN)) {
|
|
struct ether_vlan_header *veh =
|
|
mtod(mbuf, struct ether_vlan_header *);
|
|
tso->protocol = veh->evl_proto;
|
|
tso->nh_off = sizeof(*veh);
|
|
} else {
|
|
tso->nh_off = sizeof(*eh);
|
|
}
|
|
|
|
/* Find TCP header */
|
|
if (tso->protocol == htons(ETHERTYPE_IP)) {
|
|
KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
|
|
("TSO required on non-TCP packet"));
|
|
tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
|
|
} else {
|
|
KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
|
|
("TSO required on non-IP packet"));
|
|
KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
|
|
("TSO required on non-TCP packet"));
|
|
tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
|
|
}
|
|
|
|
/* We assume all headers are linear in the head mbuf */
|
|
tso->header_len = tso->tcph_off + 4 * tso_tcph(tso)->th_off;
|
|
KASSERT(tso->header_len <= mbuf->m_len, ("packet headers fragmented"));
|
|
tso->full_packet_size = tso->header_len + mbuf->m_pkthdr.tso_segsz;
|
|
|
|
tso->seqnum = ntohl(tso_tcph(tso)->th_seq);
|
|
|
|
/* These flags must not be duplicated */
|
|
KASSERT(!(tso_tcph(tso)->th_flags & (TH_URG | TH_SYN | TH_RST)),
|
|
("incompatible TCP flag on TSO packet"));
|
|
|
|
tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
|
|
}
|
|
|
|
/*
|
|
* tso_fill_packet_with_fragment - form descriptors for the current fragment
|
|
*
|
|
* Form descriptors for the current fragment, until we reach the end
|
|
* of fragment or end-of-packet. Return 0 on success, 1 if not enough
|
|
* space.
|
|
*/
|
|
static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
|
|
struct sfxge_tso_state *tso)
|
|
{
|
|
efx_buffer_t *desc;
|
|
int n;
|
|
|
|
if (tso->in_len == 0 || tso->packet_space == 0)
|
|
return;
|
|
|
|
KASSERT(tso->in_len > 0, ("TSO input length went negative"));
|
|
KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
|
|
|
|
n = min(tso->in_len, tso->packet_space);
|
|
|
|
tso->packet_space -= n;
|
|
tso->out_len -= n;
|
|
tso->in_len -= n;
|
|
|
|
desc = &txq->pend_desc[txq->n_pend_desc++];
|
|
desc->eb_addr = tso->dma_addr;
|
|
desc->eb_size = n;
|
|
desc->eb_eop = tso->out_len == 0 || tso->packet_space == 0;
|
|
|
|
tso->dma_addr += n;
|
|
}
|
|
|
|
/* Callback from bus_dmamap_load() for long TSO headers. */
|
|
static void tso_map_long_header(void *dma_addr_ret,
|
|
bus_dma_segment_t *segs, int nseg,
|
|
int error)
|
|
{
|
|
*(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
|
|
__predict_true(nseg == 1)) ?
|
|
segs->ds_addr : 0);
|
|
}
|
|
|
|
/*
|
|
* tso_start_new_packet - generate a new header and prepare for the new packet
|
|
*
|
|
* Generate a new header and prepare for the new packet. Return 0 on
|
|
* success, or an error code if failed to alloc header.
|
|
*/
|
|
static int tso_start_new_packet(struct sfxge_txq *txq,
|
|
struct sfxge_tso_state *tso,
|
|
unsigned int id)
|
|
{
|
|
struct sfxge_tx_mapping *stmp = &txq->stmp[id];
|
|
struct tcphdr *tsoh_th;
|
|
unsigned ip_length;
|
|
caddr_t header;
|
|
uint64_t dma_addr;
|
|
bus_dmamap_t map;
|
|
efx_buffer_t *desc;
|
|
int rc;
|
|
|
|
/* Allocate a DMA-mapped header buffer. */
|
|
if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
|
|
unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
|
|
unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
|
|
|
|
header = (txq->tsoh_buffer[page_index].esm_base +
|
|
buf_index * TSOH_STD_SIZE);
|
|
dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
|
|
buf_index * TSOH_STD_SIZE);
|
|
map = txq->tsoh_buffer[page_index].esm_map;
|
|
|
|
stmp->flags = 0;
|
|
} else {
|
|
/* We cannot use bus_dmamem_alloc() as that may sleep */
|
|
header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
|
|
if (__predict_false(!header))
|
|
return ENOMEM;
|
|
rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
|
|
header, tso->header_len,
|
|
tso_map_long_header, &dma_addr,
|
|
BUS_DMA_NOWAIT);
|
|
if (__predict_false(dma_addr == 0)) {
|
|
if (rc == 0) {
|
|
/* Succeeded but got >1 segment */
|
|
bus_dmamap_unload(txq->packet_dma_tag,
|
|
stmp->map);
|
|
rc = EINVAL;
|
|
}
|
|
free(header, M_SFXGE);
|
|
return rc;
|
|
}
|
|
map = stmp->map;
|
|
|
|
txq->tso_long_headers++;
|
|
stmp->u.heap_buf = header;
|
|
stmp->flags = TX_BUF_UNMAP;
|
|
}
|
|
|
|
tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
|
|
|
|
/* Copy and update the headers. */
|
|
memcpy(header, tso->mbuf->m_data, tso->header_len);
|
|
|
|
tsoh_th->th_seq = htonl(tso->seqnum);
|
|
tso->seqnum += tso->mbuf->m_pkthdr.tso_segsz;
|
|
if (tso->out_len > tso->mbuf->m_pkthdr.tso_segsz) {
|
|
/* This packet will not finish the TSO burst. */
|
|
ip_length = tso->full_packet_size - tso->nh_off;
|
|
tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
|
|
} else {
|
|
/* This packet will be the last in the TSO burst. */
|
|
ip_length = tso->header_len - tso->nh_off + tso->out_len;
|
|
}
|
|
|
|
if (tso->protocol == htons(ETHERTYPE_IP)) {
|
|
struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
|
|
tsoh_iph->ip_len = htons(ip_length);
|
|
/* XXX We should increment ip_id, but FreeBSD doesn't
|
|
* currently allocate extra IDs for multiple segments.
|
|
*/
|
|
} else {
|
|
struct ip6_hdr *tsoh_iph =
|
|
(struct ip6_hdr *)(header + tso->nh_off);
|
|
tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
|
|
}
|
|
|
|
/* Make the header visible to the hardware. */
|
|
bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
tso->packet_space = tso->mbuf->m_pkthdr.tso_segsz;
|
|
txq->tso_packets++;
|
|
|
|
/* Form a descriptor for this header. */
|
|
desc = &txq->pend_desc[txq->n_pend_desc++];
|
|
desc->eb_addr = dma_addr;
|
|
desc->eb_size = tso->header_len;
|
|
desc->eb_eop = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
|
|
const bus_dma_segment_t *dma_seg, int n_dma_seg)
|
|
{
|
|
struct sfxge_tso_state tso;
|
|
unsigned int id, next_id;
|
|
|
|
tso_start(&tso, mbuf);
|
|
|
|
/* Grab the first payload fragment. */
|
|
if (dma_seg->ds_len == tso.header_len) {
|
|
--n_dma_seg;
|
|
KASSERT(n_dma_seg, ("no payload found in TSO packet"));
|
|
++dma_seg;
|
|
tso.in_len = dma_seg->ds_len;
|
|
tso.dma_addr = dma_seg->ds_addr;
|
|
} else {
|
|
tso.in_len = dma_seg->ds_len - tso.header_len;
|
|
tso.dma_addr = dma_seg->ds_addr + tso.header_len;
|
|
}
|
|
|
|
id = txq->added & (SFXGE_NDESCS - 1);
|
|
if (__predict_false(tso_start_new_packet(txq, &tso, id)))
|
|
return -1;
|
|
|
|
while (1) {
|
|
id = (id + 1) & (SFXGE_NDESCS - 1);
|
|
tso_fill_packet_with_fragment(txq, &tso);
|
|
|
|
/* Move onto the next fragment? */
|
|
if (tso.in_len == 0) {
|
|
--n_dma_seg;
|
|
if (n_dma_seg == 0)
|
|
break;
|
|
++dma_seg;
|
|
tso.in_len = dma_seg->ds_len;
|
|
tso.dma_addr = dma_seg->ds_addr;
|
|
}
|
|
|
|
/* End of packet? */
|
|
if (tso.packet_space == 0) {
|
|
/* If the queue is now full due to tiny MSS,
|
|
* or we can't create another header, discard
|
|
* the remainder of the input mbuf but do not
|
|
* roll back the work we have done.
|
|
*/
|
|
if (txq->n_pend_desc >
|
|
SFXGE_TSO_MAX_DESC - (1 + SFXGE_TX_MAPPING_MAX_SEG))
|
|
break;
|
|
next_id = (id + 1) & (SFXGE_NDESCS - 1);
|
|
if (__predict_false(tso_start_new_packet(txq, &tso,
|
|
next_id)))
|
|
break;
|
|
id = next_id;
|
|
}
|
|
}
|
|
|
|
txq->tso_bursts++;
|
|
return id;
|
|
}
|
|
|
|
static void
|
|
sfxge_tx_qunblock(struct sfxge_txq *txq)
|
|
{
|
|
struct sfxge_softc *sc;
|
|
struct sfxge_evq *evq;
|
|
|
|
sc = txq->sc;
|
|
evq = sc->evq[txq->evq_index];
|
|
|
|
mtx_assert(&evq->lock, MA_OWNED);
|
|
|
|
if (txq->init_state != SFXGE_TXQ_STARTED)
|
|
return;
|
|
|
|
mtx_lock(SFXGE_TXQ_LOCK(txq));
|
|
|
|
if (txq->blocked) {
|
|
unsigned int level;
|
|
|
|
level = txq->added - txq->completed;
|
|
if (level <= SFXGE_TXQ_UNBLOCK_LEVEL)
|
|
txq->blocked = 0;
|
|
}
|
|
|
|
sfxge_tx_qdpl_service(txq);
|
|
/* note: lock has been dropped */
|
|
}
|
|
|
|
void
|
|
sfxge_tx_qflush_done(struct sfxge_txq *txq)
|
|
{
|
|
|
|
txq->flush_state = SFXGE_FLUSH_DONE;
|
|
}
|
|
|
|
static void
|
|
sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
|
|
{
|
|
struct sfxge_txq *txq;
|
|
struct sfxge_evq *evq;
|
|
unsigned int count;
|
|
|
|
txq = sc->txq[index];
|
|
evq = sc->evq[txq->evq_index];
|
|
|
|
mtx_lock(SFXGE_TXQ_LOCK(txq));
|
|
|
|
KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
|
|
("txq->init_state != SFXGE_TXQ_STARTED"));
|
|
|
|
txq->init_state = SFXGE_TXQ_INITIALIZED;
|
|
txq->flush_state = SFXGE_FLUSH_PENDING;
|
|
|
|
/* Flush the transmit queue. */
|
|
efx_tx_qflush(txq->common);
|
|
|
|
mtx_unlock(SFXGE_TXQ_LOCK(txq));
|
|
|
|
count = 0;
|
|
do {
|
|
/* Spin for 100ms. */
|
|
DELAY(100000);
|
|
|
|
if (txq->flush_state != SFXGE_FLUSH_PENDING)
|
|
break;
|
|
} while (++count < 20);
|
|
|
|
mtx_lock(&evq->lock);
|
|
mtx_lock(SFXGE_TXQ_LOCK(txq));
|
|
|
|
KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
|
|
("txq->flush_state == SFXGE_FLUSH_FAILED"));
|
|
|
|
txq->flush_state = SFXGE_FLUSH_DONE;
|
|
|
|
txq->blocked = 0;
|
|
txq->pending = txq->added;
|
|
|
|
sfxge_tx_qcomplete(txq);
|
|
KASSERT(txq->completed == txq->added,
|
|
("txq->completed != txq->added"));
|
|
|
|
sfxge_tx_qreap(txq);
|
|
KASSERT(txq->reaped == txq->completed,
|
|
("txq->reaped != txq->completed"));
|
|
|
|
txq->added = 0;
|
|
txq->pending = 0;
|
|
txq->completed = 0;
|
|
txq->reaped = 0;
|
|
|
|
/* Destroy the common code transmit queue. */
|
|
efx_tx_qdestroy(txq->common);
|
|
txq->common = NULL;
|
|
|
|
efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
|
|
EFX_TXQ_NBUFS(SFXGE_NDESCS));
|
|
|
|
mtx_unlock(&evq->lock);
|
|
mtx_unlock(SFXGE_TXQ_LOCK(txq));
|
|
}
|
|
|
|
static int
|
|
sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
|
|
{
|
|
struct sfxge_txq *txq;
|
|
efsys_mem_t *esmp;
|
|
uint16_t flags;
|
|
struct sfxge_evq *evq;
|
|
int rc;
|
|
|
|
txq = sc->txq[index];
|
|
esmp = &txq->mem;
|
|
evq = sc->evq[txq->evq_index];
|
|
|
|
KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
|
|
("txq->init_state != SFXGE_TXQ_INITIALIZED"));
|
|
KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
|
|
("evq->init_state != SFXGE_EVQ_STARTED"));
|
|
|
|
/* Program the buffer table. */
|
|
if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
|
|
EFX_TXQ_NBUFS(SFXGE_NDESCS))) != 0)
|
|
return rc;
|
|
|
|
/* Determine the kind of queue we are creating. */
|
|
switch (txq->type) {
|
|
case SFXGE_TXQ_NON_CKSUM:
|
|
flags = 0;
|
|
break;
|
|
case SFXGE_TXQ_IP_CKSUM:
|
|
flags = EFX_CKSUM_IPV4;
|
|
break;
|
|
case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
|
|
flags = EFX_CKSUM_IPV4 | EFX_CKSUM_TCPUDP;
|
|
break;
|
|
default:
|
|
KASSERT(0, ("Impossible TX queue"));
|
|
flags = 0;
|
|
break;
|
|
}
|
|
|
|
/* Create the common code transmit queue. */
|
|
if ((rc = efx_tx_qcreate(sc->enp, index, index, esmp,
|
|
SFXGE_NDESCS, txq->buf_base_id, flags, evq->common,
|
|
&txq->common)) != 0)
|
|
goto fail;
|
|
|
|
mtx_lock(SFXGE_TXQ_LOCK(txq));
|
|
|
|
/* Enable the transmit queue. */
|
|
efx_tx_qenable(txq->common);
|
|
|
|
txq->init_state = SFXGE_TXQ_STARTED;
|
|
|
|
mtx_unlock(SFXGE_TXQ_LOCK(txq));
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
|
|
EFX_TXQ_NBUFS(SFXGE_NDESCS));
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfxge_tx_stop(struct sfxge_softc *sc)
|
|
{
|
|
const efx_nic_cfg_t *encp;
|
|
int index;
|
|
|
|
index = SFXGE_TX_SCALE(sc);
|
|
while (--index >= 0)
|
|
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
|
|
|
|
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_CKSUM);
|
|
|
|
encp = efx_nic_cfg_get(sc->enp);
|
|
sfxge_tx_qstop(sc, SFXGE_TXQ_NON_CKSUM);
|
|
|
|
/* Tear down the transmit module */
|
|
efx_tx_fini(sc->enp);
|
|
}
|
|
|
|
int
|
|
sfxge_tx_start(struct sfxge_softc *sc)
|
|
{
|
|
int index;
|
|
int rc;
|
|
|
|
/* Initialize the common code transmit module. */
|
|
if ((rc = efx_tx_init(sc->enp)) != 0)
|
|
return (rc);
|
|
|
|
if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_NON_CKSUM)) != 0)
|
|
goto fail;
|
|
|
|
if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_IP_CKSUM)) != 0)
|
|
goto fail2;
|
|
|
|
for (index = 0; index < SFXGE_TX_SCALE(sc); index++) {
|
|
if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM +
|
|
index)) != 0)
|
|
goto fail3;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
while (--index >= 0)
|
|
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
|
|
|
|
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_CKSUM);
|
|
|
|
fail2:
|
|
sfxge_tx_qstop(sc, SFXGE_TXQ_NON_CKSUM);
|
|
|
|
fail:
|
|
efx_tx_fini(sc->enp);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/**
|
|
* Destroy a transmit queue.
|
|
*/
|
|
static void
|
|
sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
|
|
{
|
|
struct sfxge_txq *txq;
|
|
unsigned int nmaps = SFXGE_NDESCS;
|
|
|
|
txq = sc->txq[index];
|
|
|
|
KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
|
|
("txq->init_state != SFXGE_TXQ_INITIALIZED"));
|
|
|
|
if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
|
|
tso_fini(txq);
|
|
|
|
/* Free the context arrays. */
|
|
free(txq->pend_desc, M_SFXGE);
|
|
while (nmaps--)
|
|
bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
|
|
free(txq->stmp, M_SFXGE);
|
|
|
|
/* Release DMA memory mapping. */
|
|
sfxge_dma_free(&txq->mem);
|
|
|
|
sc->txq[index] = NULL;
|
|
|
|
#ifdef SFXGE_HAVE_MQ
|
|
mtx_destroy(&txq->lock);
|
|
#endif
|
|
|
|
free(txq, M_SFXGE);
|
|
}
|
|
|
|
static int
|
|
sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
|
|
enum sfxge_txq_type type, unsigned int evq_index)
|
|
{
|
|
struct sfxge_txq *txq;
|
|
struct sfxge_evq *evq;
|
|
#ifdef SFXGE_HAVE_MQ
|
|
struct sfxge_tx_dpl *stdp;
|
|
#endif
|
|
efsys_mem_t *esmp;
|
|
unsigned int nmaps;
|
|
int rc;
|
|
|
|
txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
|
|
txq->sc = sc;
|
|
|
|
sc->txq[txq_index] = txq;
|
|
esmp = &txq->mem;
|
|
|
|
evq = sc->evq[evq_index];
|
|
|
|
/* Allocate and zero DMA space for the descriptor ring. */
|
|
if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(SFXGE_NDESCS), esmp)) != 0)
|
|
return (rc);
|
|
(void)memset(esmp->esm_base, 0, EFX_TXQ_SIZE(SFXGE_NDESCS));
|
|
|
|
/* Allocate buffer table entries. */
|
|
sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(SFXGE_NDESCS),
|
|
&txq->buf_base_id);
|
|
|
|
/* Create a DMA tag for packet mappings. */
|
|
if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000,
|
|
MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
|
|
NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL,
|
|
&txq->packet_dma_tag) != 0) {
|
|
device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
|
|
rc = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate pending descriptor array for batching writes. */
|
|
txq->pend_desc = malloc(sizeof(efx_buffer_t) * SFXGE_NDESCS,
|
|
M_SFXGE, M_ZERO | M_WAITOK);
|
|
|
|
/* Allocate and initialise mbuf DMA mapping array. */
|
|
txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * SFXGE_NDESCS,
|
|
M_SFXGE, M_ZERO | M_WAITOK);
|
|
for (nmaps = 0; nmaps < SFXGE_NDESCS; nmaps++) {
|
|
rc = bus_dmamap_create(txq->packet_dma_tag, 0,
|
|
&txq->stmp[nmaps].map);
|
|
if (rc != 0)
|
|
goto fail2;
|
|
}
|
|
|
|
if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
|
|
(rc = tso_init(txq)) != 0)
|
|
goto fail3;
|
|
|
|
#ifdef SFXGE_HAVE_MQ
|
|
/* Initialize the deferred packet list. */
|
|
stdp = &txq->dpl;
|
|
stdp->std_getp = &stdp->std_get;
|
|
|
|
mtx_init(&txq->lock, "txq", NULL, MTX_DEF);
|
|
#endif
|
|
|
|
txq->type = type;
|
|
txq->evq_index = evq_index;
|
|
txq->txq_index = txq_index;
|
|
txq->init_state = SFXGE_TXQ_INITIALIZED;
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
free(txq->pend_desc, M_SFXGE);
|
|
fail2:
|
|
while (nmaps--)
|
|
bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
|
|
free(txq->stmp, M_SFXGE);
|
|
bus_dma_tag_destroy(txq->packet_dma_tag);
|
|
|
|
fail:
|
|
sfxge_dma_free(esmp);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static const struct {
|
|
const char *name;
|
|
size_t offset;
|
|
} sfxge_tx_stats[] = {
|
|
#define SFXGE_TX_STAT(name, member) \
|
|
{ #name, offsetof(struct sfxge_txq, member) }
|
|
SFXGE_TX_STAT(tso_bursts, tso_bursts),
|
|
SFXGE_TX_STAT(tso_packets, tso_packets),
|
|
SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
|
|
SFXGE_TX_STAT(tx_collapses, collapses),
|
|
SFXGE_TX_STAT(tx_drops, drops),
|
|
};
|
|
|
|
static int
|
|
sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sfxge_softc *sc = arg1;
|
|
unsigned int id = arg2;
|
|
unsigned long sum;
|
|
unsigned int index;
|
|
|
|
/* Sum across all TX queues */
|
|
sum = 0;
|
|
for (index = 0;
|
|
index < SFXGE_TXQ_IP_TCP_UDP_CKSUM + SFXGE_TX_SCALE(sc);
|
|
index++)
|
|
sum += *(unsigned long *)((caddr_t)sc->txq[index] +
|
|
sfxge_tx_stats[id].offset);
|
|
|
|
return SYSCTL_OUT(req, &sum, sizeof(sum));
|
|
}
|
|
|
|
static void
|
|
sfxge_tx_stat_init(struct sfxge_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
|
|
struct sysctl_oid_list *stat_list;
|
|
unsigned int id;
|
|
|
|
stat_list = SYSCTL_CHILDREN(sc->stats_node);
|
|
|
|
for (id = 0;
|
|
id < sizeof(sfxge_tx_stats) / sizeof(sfxge_tx_stats[0]);
|
|
id++) {
|
|
SYSCTL_ADD_PROC(
|
|
ctx, stat_list,
|
|
OID_AUTO, sfxge_tx_stats[id].name,
|
|
CTLTYPE_ULONG|CTLFLAG_RD,
|
|
sc, id, sfxge_tx_stat_handler, "LU",
|
|
"");
|
|
}
|
|
}
|
|
|
|
void
|
|
sfxge_tx_fini(struct sfxge_softc *sc)
|
|
{
|
|
int index;
|
|
|
|
index = SFXGE_TX_SCALE(sc);
|
|
while (--index >= 0)
|
|
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
|
|
|
|
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
|
|
sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
|
|
}
|
|
|
|
|
|
int
|
|
sfxge_tx_init(struct sfxge_softc *sc)
|
|
{
|
|
struct sfxge_intr *intr;
|
|
int index;
|
|
int rc;
|
|
|
|
intr = &sc->intr;
|
|
|
|
KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
|
|
("intr->state != SFXGE_INTR_INITIALIZED"));
|
|
|
|
/* Initialize the transmit queues */
|
|
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
|
|
SFXGE_TXQ_NON_CKSUM, 0)) != 0)
|
|
goto fail;
|
|
|
|
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
|
|
SFXGE_TXQ_IP_CKSUM, 0)) != 0)
|
|
goto fail2;
|
|
|
|
for (index = 0; index < SFXGE_TX_SCALE(sc); index++) {
|
|
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index,
|
|
SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
|
|
goto fail3;
|
|
}
|
|
|
|
sfxge_tx_stat_init(sc);
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
|
|
|
|
while (--index >= 0)
|
|
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
|
|
|
|
fail2:
|
|
sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
|
|
|
|
fail:
|
|
return (rc);
|
|
}
|