5517e702c0
build glue.
492 lines
17 KiB
C++
492 lines
17 KiB
C++
//===- OutputSections.cpp -------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "OutputSections.h"
|
|
#include "Config.h"
|
|
#include "LinkerScript.h"
|
|
#include "Memory.h"
|
|
#include "Strings.h"
|
|
#include "SymbolTable.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "Threads.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/SHA1.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::dwarf;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
uint8_t Out::First;
|
|
OutputSection *Out::Opd;
|
|
uint8_t *Out::OpdBuf;
|
|
PhdrEntry *Out::TlsPhdr;
|
|
OutputSection *Out::DebugInfo;
|
|
OutputSection *Out::ElfHeader;
|
|
OutputSection *Out::ProgramHeaders;
|
|
OutputSection *Out::PreinitArray;
|
|
OutputSection *Out::InitArray;
|
|
OutputSection *Out::FiniArray;
|
|
|
|
uint32_t OutputSection::getPhdrFlags() const {
|
|
uint32_t Ret = PF_R;
|
|
if (Flags & SHF_WRITE)
|
|
Ret |= PF_W;
|
|
if (Flags & SHF_EXECINSTR)
|
|
Ret |= PF_X;
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSection::writeHeaderTo(typename ELFT::Shdr *Shdr) {
|
|
Shdr->sh_entsize = Entsize;
|
|
Shdr->sh_addralign = Alignment;
|
|
Shdr->sh_type = Type;
|
|
Shdr->sh_offset = Offset;
|
|
Shdr->sh_flags = Flags;
|
|
Shdr->sh_info = Info;
|
|
Shdr->sh_link = Link;
|
|
Shdr->sh_addr = Addr;
|
|
Shdr->sh_size = Size;
|
|
Shdr->sh_name = ShName;
|
|
}
|
|
|
|
OutputSection::OutputSection(StringRef Name, uint32_t Type, uint64_t Flags)
|
|
: SectionBase(Output, Name, Flags, /*Entsize*/ 0, /*Alignment*/ 1, Type,
|
|
/*Info*/ 0,
|
|
/*Link*/ 0),
|
|
SectionIndex(INT_MAX) {}
|
|
|
|
static bool compareByFilePosition(InputSection *A, InputSection *B) {
|
|
// Synthetic doesn't have link order dependecy, stable_sort will keep it last
|
|
if (A->kind() == InputSectionBase::Synthetic ||
|
|
B->kind() == InputSectionBase::Synthetic)
|
|
return false;
|
|
auto *LA = cast<InputSection>(A->getLinkOrderDep());
|
|
auto *LB = cast<InputSection>(B->getLinkOrderDep());
|
|
OutputSection *AOut = LA->OutSec;
|
|
OutputSection *BOut = LB->OutSec;
|
|
if (AOut != BOut)
|
|
return AOut->SectionIndex < BOut->SectionIndex;
|
|
return LA->OutSecOff < LB->OutSecOff;
|
|
}
|
|
|
|
// Compress section contents if this section contains debug info.
|
|
template <class ELFT> void OutputSection::maybeCompress() {
|
|
typedef typename ELFT::Chdr Elf_Chdr;
|
|
|
|
// Compress only DWARF debug sections.
|
|
if (!Config->CompressDebugSections || (Flags & SHF_ALLOC) ||
|
|
!Name.startswith(".debug_"))
|
|
return;
|
|
|
|
// Create a section header.
|
|
ZDebugHeader.resize(sizeof(Elf_Chdr));
|
|
auto *Hdr = reinterpret_cast<Elf_Chdr *>(ZDebugHeader.data());
|
|
Hdr->ch_type = ELFCOMPRESS_ZLIB;
|
|
Hdr->ch_size = Size;
|
|
Hdr->ch_addralign = Alignment;
|
|
|
|
// Write section contents to a temporary buffer and compress it.
|
|
std::vector<uint8_t> Buf(Size);
|
|
writeTo<ELFT>(Buf.data());
|
|
if (Error E = zlib::compress(toStringRef(Buf), CompressedData))
|
|
fatal("compress failed: " + llvm::toString(std::move(E)));
|
|
|
|
// Update section headers.
|
|
Size = sizeof(Elf_Chdr) + CompressedData.size();
|
|
Flags |= SHF_COMPRESSED;
|
|
}
|
|
|
|
template <class ELFT> void OutputSection::finalize() {
|
|
if ((this->Flags & SHF_LINK_ORDER) && !this->Sections.empty()) {
|
|
std::sort(Sections.begin(), Sections.end(), compareByFilePosition);
|
|
assignOffsets();
|
|
|
|
// We must preserve the link order dependency of sections with the
|
|
// SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
|
|
// need to translate the InputSection sh_link to the OutputSection sh_link,
|
|
// all InputSections in the OutputSection have the same dependency.
|
|
if (auto *D = this->Sections.front()->getLinkOrderDep())
|
|
this->Link = D->OutSec->SectionIndex;
|
|
}
|
|
|
|
uint32_t Type = this->Type;
|
|
if (!Config->CopyRelocs || (Type != SHT_RELA && Type != SHT_REL))
|
|
return;
|
|
|
|
InputSection *First = Sections[0];
|
|
if (isa<SyntheticSection>(First))
|
|
return;
|
|
|
|
this->Link = InX::SymTab->OutSec->SectionIndex;
|
|
// sh_info for SHT_REL[A] sections should contain the section header index of
|
|
// the section to which the relocation applies.
|
|
InputSectionBase *S = First->getRelocatedSection();
|
|
this->Info = S->OutSec->SectionIndex;
|
|
}
|
|
|
|
static uint64_t updateOffset(uint64_t Off, InputSection *S) {
|
|
Off = alignTo(Off, S->Alignment);
|
|
S->OutSecOff = Off;
|
|
return Off + S->getSize();
|
|
}
|
|
|
|
void OutputSection::addSection(InputSection *S) {
|
|
assert(S->Live);
|
|
Sections.push_back(S);
|
|
S->OutSec = this;
|
|
this->updateAlignment(S->Alignment);
|
|
|
|
// The actual offsets will be computed by assignAddresses. For now, use
|
|
// crude approximation so that it is at least easy for other code to know the
|
|
// section order. It is also used to calculate the output section size early
|
|
// for compressed debug sections.
|
|
this->Size = updateOffset(Size, S);
|
|
|
|
// If this section contains a table of fixed-size entries, sh_entsize
|
|
// holds the element size. Consequently, if this contains two or more
|
|
// input sections, all of them must have the same sh_entsize. However,
|
|
// you can put different types of input sections into one output
|
|
// sectin by using linker scripts. I don't know what to do here.
|
|
// Probably we sholuld handle that as an error. But for now we just
|
|
// pick the largest sh_entsize.
|
|
this->Entsize = std::max(this->Entsize, S->Entsize);
|
|
}
|
|
|
|
// This function is called after we sort input sections
|
|
// and scan relocations to setup sections' offsets.
|
|
void OutputSection::assignOffsets() {
|
|
uint64_t Off = 0;
|
|
for (InputSection *S : Sections)
|
|
Off = updateOffset(Off, S);
|
|
this->Size = Off;
|
|
}
|
|
|
|
void OutputSection::sort(std::function<int(InputSectionBase *S)> Order) {
|
|
typedef std::pair<unsigned, InputSection *> Pair;
|
|
auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };
|
|
|
|
std::vector<Pair> V;
|
|
for (InputSection *S : Sections)
|
|
V.push_back({Order(S), S});
|
|
std::stable_sort(V.begin(), V.end(), Comp);
|
|
Sections.clear();
|
|
for (Pair &P : V)
|
|
Sections.push_back(P.second);
|
|
}
|
|
|
|
// Sorts input sections by section name suffixes, so that .foo.N comes
|
|
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
|
|
// We want to keep the original order if the priorities are the same
|
|
// because the compiler keeps the original initialization order in a
|
|
// translation unit and we need to respect that.
|
|
// For more detail, read the section of the GCC's manual about init_priority.
|
|
void OutputSection::sortInitFini() {
|
|
// Sort sections by priority.
|
|
sort([](InputSectionBase *S) { return getPriority(S->Name); });
|
|
}
|
|
|
|
// Returns true if S matches /Filename.?\.o$/.
|
|
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
|
|
if (!S.endswith(".o"))
|
|
return false;
|
|
S = S.drop_back(2);
|
|
if (S.endswith(Filename))
|
|
return true;
|
|
return !S.empty() && S.drop_back().endswith(Filename);
|
|
}
|
|
|
|
static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
|
|
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }
|
|
|
|
// .ctors and .dtors are sorted by this priority from highest to lowest.
|
|
//
|
|
// 1. The section was contained in crtbegin (crtbegin contains
|
|
// some sentinel value in its .ctors and .dtors so that the runtime
|
|
// can find the beginning of the sections.)
|
|
//
|
|
// 2. The section has an optional priority value in the form of ".ctors.N"
|
|
// or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
|
|
// they are compared as string rather than number.
|
|
//
|
|
// 3. The section is just ".ctors" or ".dtors".
|
|
//
|
|
// 4. The section was contained in crtend, which contains an end marker.
|
|
//
|
|
// In an ideal world, we don't need this function because .init_array and
|
|
// .ctors are duplicate features (and .init_array is newer.) However, there
|
|
// are too many real-world use cases of .ctors, so we had no choice to
|
|
// support that with this rather ad-hoc semantics.
|
|
static bool compCtors(const InputSection *A, const InputSection *B) {
|
|
bool BeginA = isCrtbegin(A->File->getName());
|
|
bool BeginB = isCrtbegin(B->File->getName());
|
|
if (BeginA != BeginB)
|
|
return BeginA;
|
|
bool EndA = isCrtend(A->File->getName());
|
|
bool EndB = isCrtend(B->File->getName());
|
|
if (EndA != EndB)
|
|
return EndB;
|
|
StringRef X = A->Name;
|
|
StringRef Y = B->Name;
|
|
assert(X.startswith(".ctors") || X.startswith(".dtors"));
|
|
assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
|
|
X = X.substr(6);
|
|
Y = Y.substr(6);
|
|
if (X.empty() && Y.empty())
|
|
return false;
|
|
return X < Y;
|
|
}
|
|
|
|
// Sorts input sections by the special rules for .ctors and .dtors.
|
|
// Unfortunately, the rules are different from the one for .{init,fini}_array.
|
|
// Read the comment above.
|
|
void OutputSection::sortCtorsDtors() {
|
|
std::stable_sort(Sections.begin(), Sections.end(), compCtors);
|
|
}
|
|
|
|
// Fill [Buf, Buf + Size) with Filler.
|
|
// This is used for linker script "=fillexp" command.
|
|
static void fill(uint8_t *Buf, size_t Size, uint32_t Filler) {
|
|
size_t I = 0;
|
|
for (; I + 4 < Size; I += 4)
|
|
memcpy(Buf + I, &Filler, 4);
|
|
memcpy(Buf + I, &Filler, Size - I);
|
|
}
|
|
|
|
uint32_t OutputSection::getFiller() {
|
|
// Determine what to fill gaps between InputSections with, as specified by the
|
|
// linker script. If nothing is specified and this is an executable section,
|
|
// fall back to trap instructions to prevent bad diassembly and detect invalid
|
|
// jumps to padding.
|
|
if (Optional<uint32_t> Filler = Script->getFiller(this))
|
|
return *Filler;
|
|
if (Flags & SHF_EXECINSTR)
|
|
return Target->TrapInstr;
|
|
return 0;
|
|
}
|
|
|
|
template <class ELFT> void OutputSection::writeTo(uint8_t *Buf) {
|
|
Loc = Buf;
|
|
|
|
// We may have already rendered compressed content when using
|
|
// -compress-debug-sections option. Write it together with header.
|
|
if (!CompressedData.empty()) {
|
|
memcpy(Buf, ZDebugHeader.data(), ZDebugHeader.size());
|
|
memcpy(Buf + ZDebugHeader.size(), CompressedData.data(),
|
|
CompressedData.size());
|
|
return;
|
|
}
|
|
|
|
// Write leading padding.
|
|
uint32_t Filler = getFiller();
|
|
if (Filler)
|
|
fill(Buf, Sections.empty() ? Size : Sections[0]->OutSecOff, Filler);
|
|
|
|
parallelForEachN(0, Sections.size(), [=](size_t I) {
|
|
InputSection *Sec = Sections[I];
|
|
Sec->writeTo<ELFT>(Buf);
|
|
|
|
// Fill gaps between sections.
|
|
if (Filler) {
|
|
uint8_t *Start = Buf + Sec->OutSecOff + Sec->getSize();
|
|
uint8_t *End;
|
|
if (I + 1 == Sections.size())
|
|
End = Buf + Size;
|
|
else
|
|
End = Buf + Sections[I + 1]->OutSecOff;
|
|
fill(Start, End - Start, Filler);
|
|
}
|
|
});
|
|
|
|
// Linker scripts may have BYTE()-family commands with which you
|
|
// can write arbitrary bytes to the output. Process them if any.
|
|
Script->writeDataBytes(this, Buf);
|
|
}
|
|
|
|
static uint64_t getOutFlags(InputSectionBase *S) {
|
|
return S->Flags & ~SHF_GROUP & ~SHF_COMPRESSED;
|
|
}
|
|
|
|
static SectionKey createKey(InputSectionBase *C, StringRef OutsecName) {
|
|
// The ELF spec just says
|
|
// ----------------------------------------------------------------
|
|
// In the first phase, input sections that match in name, type and
|
|
// attribute flags should be concatenated into single sections.
|
|
// ----------------------------------------------------------------
|
|
//
|
|
// However, it is clear that at least some flags have to be ignored for
|
|
// section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
|
|
// ignored. We should not have two output .text sections just because one was
|
|
// in a group and another was not for example.
|
|
//
|
|
// It also seems that that wording was a late addition and didn't get the
|
|
// necessary scrutiny.
|
|
//
|
|
// Merging sections with different flags is expected by some users. One
|
|
// reason is that if one file has
|
|
//
|
|
// int *const bar __attribute__((section(".foo"))) = (int *)0;
|
|
//
|
|
// gcc with -fPIC will produce a read only .foo section. But if another
|
|
// file has
|
|
//
|
|
// int zed;
|
|
// int *const bar __attribute__((section(".foo"))) = (int *)&zed;
|
|
//
|
|
// gcc with -fPIC will produce a read write section.
|
|
//
|
|
// Last but not least, when using linker script the merge rules are forced by
|
|
// the script. Unfortunately, linker scripts are name based. This means that
|
|
// expressions like *(.foo*) can refer to multiple input sections with
|
|
// different flags. We cannot put them in different output sections or we
|
|
// would produce wrong results for
|
|
//
|
|
// start = .; *(.foo.*) end = .; *(.bar)
|
|
//
|
|
// and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
|
|
// another. The problem is that there is no way to layout those output
|
|
// sections such that the .foo sections are the only thing between the start
|
|
// and end symbols.
|
|
//
|
|
// Given the above issues, we instead merge sections by name and error on
|
|
// incompatible types and flags.
|
|
|
|
uint32_t Alignment = 0;
|
|
uint64_t Flags = 0;
|
|
if (Config->Relocatable && (C->Flags & SHF_MERGE)) {
|
|
Alignment = std::max<uint64_t>(C->Alignment, C->Entsize);
|
|
Flags = C->Flags & (SHF_MERGE | SHF_STRINGS);
|
|
}
|
|
|
|
return SectionKey{OutsecName, Flags, Alignment};
|
|
}
|
|
|
|
OutputSectionFactory::OutputSectionFactory(
|
|
std::vector<OutputSection *> &OutputSections)
|
|
: OutputSections(OutputSections) {}
|
|
|
|
static uint64_t getIncompatibleFlags(uint64_t Flags) {
|
|
return Flags & (SHF_ALLOC | SHF_TLS);
|
|
}
|
|
|
|
// We allow sections of types listed below to merged into a
|
|
// single progbits section. This is typically done by linker
|
|
// scripts. Merging nobits and progbits will force disk space
|
|
// to be allocated for nobits sections. Other ones don't require
|
|
// any special treatment on top of progbits, so there doesn't
|
|
// seem to be a harm in merging them.
|
|
static bool canMergeToProgbits(unsigned Type) {
|
|
return Type == SHT_NOBITS || Type == SHT_PROGBITS || Type == SHT_INIT_ARRAY ||
|
|
Type == SHT_PREINIT_ARRAY || Type == SHT_FINI_ARRAY ||
|
|
Type == SHT_NOTE;
|
|
}
|
|
|
|
static void reportDiscarded(InputSectionBase *IS) {
|
|
if (!Config->PrintGcSections)
|
|
return;
|
|
message("removing unused section from '" + IS->Name + "' in file '" +
|
|
IS->File->getName());
|
|
}
|
|
|
|
void OutputSectionFactory::addInputSec(InputSectionBase *IS,
|
|
StringRef OutsecName) {
|
|
SectionKey Key = createKey(IS, OutsecName);
|
|
OutputSection *&Sec = Map[Key];
|
|
return addInputSec(IS, OutsecName, Sec);
|
|
}
|
|
|
|
void OutputSectionFactory::addInputSec(InputSectionBase *IS,
|
|
StringRef OutsecName,
|
|
OutputSection *&Sec) {
|
|
if (!IS->Live) {
|
|
reportDiscarded(IS);
|
|
return;
|
|
}
|
|
|
|
uint64_t Flags = getOutFlags(IS);
|
|
if (Sec) {
|
|
if (getIncompatibleFlags(Sec->Flags) != getIncompatibleFlags(IS->Flags))
|
|
error("incompatible section flags for " + Sec->Name +
|
|
"\n>>> " + toString(IS) + ": 0x" + utohexstr(IS->Flags) +
|
|
"\n>>> output section " + Sec->Name + ": 0x" +
|
|
utohexstr(Sec->Flags));
|
|
if (Sec->Type != IS->Type) {
|
|
if (canMergeToProgbits(Sec->Type) && canMergeToProgbits(IS->Type))
|
|
Sec->Type = SHT_PROGBITS;
|
|
else
|
|
error("section type mismatch for " + IS->Name +
|
|
"\n>>> " + toString(IS) + ": " +
|
|
getELFSectionTypeName(Config->EMachine, IS->Type) +
|
|
"\n>>> output section " + Sec->Name + ": " +
|
|
getELFSectionTypeName(Config->EMachine, Sec->Type));
|
|
}
|
|
Sec->Flags |= Flags;
|
|
} else {
|
|
Sec = make<OutputSection>(OutsecName, IS->Type, Flags);
|
|
OutputSections.push_back(Sec);
|
|
}
|
|
|
|
Sec->addSection(cast<InputSection>(IS));
|
|
}
|
|
|
|
OutputSectionFactory::~OutputSectionFactory() {}
|
|
|
|
SectionKey DenseMapInfo<SectionKey>::getEmptyKey() {
|
|
return SectionKey{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0};
|
|
}
|
|
|
|
SectionKey DenseMapInfo<SectionKey>::getTombstoneKey() {
|
|
return SectionKey{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0};
|
|
}
|
|
|
|
unsigned DenseMapInfo<SectionKey>::getHashValue(const SectionKey &Val) {
|
|
return hash_combine(Val.Name, Val.Flags, Val.Alignment);
|
|
}
|
|
|
|
bool DenseMapInfo<SectionKey>::isEqual(const SectionKey &LHS,
|
|
const SectionKey &RHS) {
|
|
return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
|
|
LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment;
|
|
}
|
|
|
|
uint64_t elf::getHeaderSize() {
|
|
if (Config->OFormatBinary)
|
|
return 0;
|
|
return Out::ElfHeader->Size + Out::ProgramHeaders->Size;
|
|
}
|
|
|
|
template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
|
|
template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
|
|
template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
|
|
template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);
|
|
|
|
template void OutputSection::finalize<ELF32LE>();
|
|
template void OutputSection::finalize<ELF32BE>();
|
|
template void OutputSection::finalize<ELF64LE>();
|
|
template void OutputSection::finalize<ELF64BE>();
|
|
|
|
template void OutputSection::maybeCompress<ELF32LE>();
|
|
template void OutputSection::maybeCompress<ELF32BE>();
|
|
template void OutputSection::maybeCompress<ELF64LE>();
|
|
template void OutputSection::maybeCompress<ELF64BE>();
|
|
|
|
template void OutputSection::writeTo<ELF32LE>(uint8_t *Buf);
|
|
template void OutputSection::writeTo<ELF32BE>(uint8_t *Buf);
|
|
template void OutputSection::writeTo<ELF64LE>(uint8_t *Buf);
|
|
template void OutputSection::writeTo<ELF64BE>(uint8_t *Buf);
|