freebsd-dev/sys/dev/ath/ath_hal/ar5416/ar5416_misc.c
Adrian Chadd 2af3b95bf2 Enforce the hardware chainmask when allowing the user to override the
chainmask.

This way a disabled radio chain can't be enabled by a user.
2012-02-10 10:10:41 +00:00

1063 lines
29 KiB
C

/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#include "ah_eeprom_v14.h" /* for owl_get_ntxchains() */
/*
* Return the wireless modes (a,b,g,n,t) supported by hardware.
*
* This value is what is actually supported by the hardware
* and is unaffected by regulatory/country code settings.
*
*/
u_int
ar5416GetWirelessModes(struct ath_hal *ah)
{
u_int mode;
struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
HAL_CAPABILITIES *pCap = &ahpriv->ah_caps;
mode = ar5212GetWirelessModes(ah);
/* Only enable HT modes if the NIC supports HT */
if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11A))
mode |= HAL_MODE_11NA_HT20
| HAL_MODE_11NA_HT40PLUS
| HAL_MODE_11NA_HT40MINUS
;
if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11G))
mode |= HAL_MODE_11NG_HT20
| HAL_MODE_11NG_HT40PLUS
| HAL_MODE_11NG_HT40MINUS
;
return mode;
}
/*
* Change the LED blinking pattern to correspond to the connectivity
*/
void
ar5416SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
{
static const uint32_t ledbits[8] = {
AR_MAC_LED_ASSOC_NONE, /* HAL_LED_INIT */
AR_MAC_LED_ASSOC_PEND, /* HAL_LED_SCAN */
AR_MAC_LED_ASSOC_PEND, /* HAL_LED_AUTH */
AR_MAC_LED_ASSOC_ACTIVE, /* HAL_LED_ASSOC*/
AR_MAC_LED_ASSOC_ACTIVE, /* HAL_LED_RUN */
AR_MAC_LED_ASSOC_NONE,
AR_MAC_LED_ASSOC_NONE,
AR_MAC_LED_ASSOC_NONE,
};
if (AR_SREV_HOWL(ah))
return;
/*
* Set the blink operating mode.
*/
OS_REG_RMW_FIELD(ah, AR_MAC_LED,
AR_MAC_LED_ASSOC, ledbits[state & 0x7]);
/* XXX Blink slow mode? */
/* XXX Blink threshold? */
/* XXX Blink sleep hystersis? */
/*
* Set the LED blink configuration to be proportional
* to the current TX and RX filter bytes. (Ie, RX'ed
* frames that don't match the filter are ignored.)
* This means that higher TX/RX throughput will result
* in the blink rate increasing.
*/
OS_REG_RMW_FIELD(ah, AR_MAC_LED, AR_MAC_LED_MODE,
AR_MAC_LED_MODE_PROP);
}
/*
* Get the current hardware tsf for stamlme
*/
uint64_t
ar5416GetTsf64(struct ath_hal *ah)
{
uint32_t low1, low2, u32;
/* sync multi-word read */
low1 = OS_REG_READ(ah, AR_TSF_L32);
u32 = OS_REG_READ(ah, AR_TSF_U32);
low2 = OS_REG_READ(ah, AR_TSF_L32);
if (low2 < low1) { /* roll over */
/*
* If we are not preempted this will work. If we are
* then we re-reading AR_TSF_U32 does no good as the
* low bits will be meaningless. Likewise reading
* L32, U32, U32, then comparing the last two reads
* to check for rollover doesn't help if preempted--so
* we take this approach as it costs one less PCI read
* which can be noticeable when doing things like
* timestamping packets in monitor mode.
*/
u32++;
}
return (((uint64_t) u32) << 32) | ((uint64_t) low2);
}
void
ar5416SetTsf64(struct ath_hal *ah, uint64_t tsf64)
{
OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
}
/*
* Reset the current hardware tsf for stamlme.
*/
void
ar5416ResetTsf(struct ath_hal *ah)
{
uint32_t v;
int i;
for (i = 0; i < 10; i++) {
v = OS_REG_READ(ah, AR_SLP32_MODE);
if ((v & AR_SLP32_TSF_WRITE_STATUS) == 0)
break;
OS_DELAY(10);
}
OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
}
uint32_t
ar5416GetCurRssi(struct ath_hal *ah)
{
if (AR_SREV_OWL(ah))
return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
return (OS_REG_READ(ah, AR9130_PHY_CURRENT_RSSI) & 0xff);
}
HAL_BOOL
ar5416SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
{
return AH_TRUE;
}
/* Setup decompression for given key index */
HAL_BOOL
ar5416SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
{
return AH_TRUE;
}
/* Setup coverage class */
void
ar5416SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
{
AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
}
/*
* Return the busy for rx_frame, rx_clear, and tx_frame
*/
uint32_t
ar5416GetMibCycleCountsPct(struct ath_hal *ah, uint32_t *rxc_pcnt,
uint32_t *extc_pcnt, uint32_t *rxf_pcnt, uint32_t *txf_pcnt)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u_int32_t good = 1;
/* XXX freeze/unfreeze mib counters */
uint32_t rc = OS_REG_READ(ah, AR_RCCNT);
uint32_t ec = OS_REG_READ(ah, AR_EXTRCCNT);
uint32_t rf = OS_REG_READ(ah, AR_RFCNT);
uint32_t tf = OS_REG_READ(ah, AR_TFCNT);
uint32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cc) {
/*
* Cycle counter wrap (or initial call); it's not possible
* to accurately calculate a value because the registers
* right shift rather than wrap--so punt and return 0.
*/
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cycle counter wrap. ExtBusy = 0\n", __func__);
good = 0;
} else {
uint32_t cc_d = cc - ahp->ah_cycleCount;
uint32_t rc_d = rc - ahp->ah_ctlBusy;
uint32_t ec_d = ec - ahp->ah_extBusy;
uint32_t rf_d = rf - ahp->ah_rxBusy;
uint32_t tf_d = tf - ahp->ah_txBusy;
if (cc_d != 0) {
*rxc_pcnt = rc_d * 100 / cc_d;
*rxf_pcnt = rf_d * 100 / cc_d;
*txf_pcnt = tf_d * 100 / cc_d;
*extc_pcnt = ec_d * 100 / cc_d;
} else {
good = 0;
}
}
ahp->ah_cycleCount = cc;
ahp->ah_rxBusy = rf;
ahp->ah_ctlBusy = rc;
ahp->ah_txBusy = tf;
ahp->ah_extBusy = ec;
return good;
}
/*
* Return approximation of extension channel busy over an time interval
* 0% (clear) -> 100% (busy)
*
*/
uint32_t
ar5416Get11nExtBusy(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
uint32_t busy; /* percentage */
uint32_t cycleCount, ctlBusy, extBusy;
ctlBusy = OS_REG_READ(ah, AR_RCCNT);
extBusy = OS_REG_READ(ah, AR_EXTRCCNT);
cycleCount = OS_REG_READ(ah, AR_CCCNT);
if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cycleCount) {
/*
* Cycle counter wrap (or initial call); it's not possible
* to accurately calculate a value because the registers
* right shift rather than wrap--so punt and return 0.
*/
busy = 0;
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycle counter wrap. ExtBusy = 0\n",
__func__);
} else {
uint32_t cycleDelta = cycleCount - ahp->ah_cycleCount;
uint32_t ctlBusyDelta = ctlBusy - ahp->ah_ctlBusy;
uint32_t extBusyDelta = extBusy - ahp->ah_extBusy;
uint32_t ctlClearDelta = 0;
/* Compute control channel rxclear.
* The cycle delta may be less than the control channel delta.
* This could be solved by freezing the timers (or an atomic read,
* if one was available). Checking for the condition should be
* sufficient.
*/
if (cycleDelta > ctlBusyDelta) {
ctlClearDelta = cycleDelta - ctlBusyDelta;
}
/* Compute ratio of extension channel busy to control channel clear
* as an approximation to extension channel cleanliness.
*
* According to the hardware folks, ext rxclear is undefined
* if the ctrl rxclear is de-asserted (i.e. busy)
*/
if (ctlClearDelta) {
busy = (extBusyDelta * 100) / ctlClearDelta;
} else {
busy = 100;
}
if (busy > 100) {
busy = 100;
}
#if 0
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycleDelta 0x%x, ctlBusyDelta 0x%x, "
"extBusyDelta 0x%x, ctlClearDelta 0x%x, "
"busy %d\n",
__func__, cycleDelta, ctlBusyDelta, extBusyDelta, ctlClearDelta, busy);
#endif
}
ahp->ah_cycleCount = cycleCount;
ahp->ah_ctlBusy = ctlBusy;
ahp->ah_extBusy = extBusy;
return busy;
}
/*
* Configure 20/40 operation
*
* 20/40 = joint rx clear (control and extension)
* 20 = rx clear (control)
*
* - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz when changing
* from 20/40 => 20 only
*/
void
ar5416Set11nMac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
{
uint32_t macmode;
/* Configure MAC for 20/40 operation */
if (mode == HAL_HT_MACMODE_2040) {
macmode = AR_2040_JOINED_RX_CLEAR;
} else {
macmode = 0;
}
OS_REG_WRITE(ah, AR_2040_MODE, macmode);
}
/*
* Get Rx clear (control/extension channel)
*
* Returns active low (busy) for ctrl/ext channel
* Owl 2.0
*/
HAL_HT_RXCLEAR
ar5416Get11nRxClear(struct ath_hal *ah)
{
HAL_HT_RXCLEAR rxclear = 0;
uint32_t val;
val = OS_REG_READ(ah, AR_DIAG_SW);
/* control channel */
if (val & AR_DIAG_RXCLEAR_CTL_LOW) {
rxclear |= HAL_RX_CLEAR_CTL_LOW;
}
/* extension channel */
if (val & AR_DIAG_RXCLEAR_EXT_LOW) {
rxclear |= HAL_RX_CLEAR_EXT_LOW;
}
return rxclear;
}
/*
* Set Rx clear (control/extension channel)
*
* Useful for forcing the channel to appear busy for
* debugging/diagnostics
* Owl 2.0
*/
void
ar5416Set11nRxClear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
{
/* control channel */
if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW);
} else {
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW);
}
/* extension channel */
if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW);
} else {
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW);
}
}
/* XXX shouldn't be here! */
#define TU_TO_USEC(_tu) ((_tu) << 10)
HAL_STATUS
ar5416SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
uint32_t nextStart, HAL_QUIET_FLAG flag)
{
uint32_t period_us = TU_TO_USEC(period); /* convert to us unit */
uint32_t nextStart_us = TU_TO_USEC(nextStart); /* convert to us unit */
if (flag & HAL_QUIET_ENABLE) {
if ((!nextStart) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
/* Add the nextStart offset to the current TSF */
nextStart_us += OS_REG_READ(ah, AR_TSF_L32);
}
if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
nextStart_us += ah->ah_config.ah_sw_beacon_response_time;
}
OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
OS_REG_WRITE(ah, AR_QUIET_PERIOD, period_us);
OS_REG_WRITE(ah, AR_NEXT_QUIET, nextStart_us);
OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
} else {
OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
}
return HAL_OK;
}
#undef TU_TO_USEC
HAL_STATUS
ar5416GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t *result)
{
switch (type) {
case HAL_CAP_BB_HANG:
switch (capability) {
case HAL_BB_HANG_RIFS:
return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP;
case HAL_BB_HANG_DFS:
return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP;
case HAL_BB_HANG_RX_CLEAR:
return AR_SREV_MERLIN(ah) ? HAL_OK : HAL_ENOTSUPP;
}
break;
case HAL_CAP_MAC_HANG:
return ((ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCI) ||
(ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCIE) ||
AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ?
HAL_OK : HAL_ENOTSUPP;
case HAL_CAP_DIVERSITY: /* disable classic fast diversity */
return HAL_ENXIO;
default:
break;
}
return ar5212GetCapability(ah, type, capability, result);
}
HAL_BOOL
ar5416SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
{
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
switch (type) {
case HAL_CAP_RX_CHAINMASK:
setting &= ath_hal_eepromGet(ah, AR_EEP_RXMASK, NULL);
pCap->halRxChainMask = setting;
if (owl_get_ntxchains(setting) > 2)
pCap->halRxStreams = 2;
else
pCap->halRxStreams = 1;
return HAL_OK;
case HAL_CAP_TX_CHAINMASK:
setting &= ath_hal_eepromGet(ah, AR_EEP_TXMASK, NULL);
pCap->halTxChainMask = setting;
if (owl_get_ntxchains(setting) > 2)
pCap->halTxStreams = 2;
else
pCap->halTxStreams = 1;
return HAL_OK;
default:
break;
}
return ar5212SetCapability(ah, type, capability, setting, status);
}
static int ar5416DetectMacHang(struct ath_hal *ah);
static int ar5416DetectBBHang(struct ath_hal *ah);
HAL_BOOL
ar5416GetDiagState(struct ath_hal *ah, int request,
const void *args, uint32_t argsize,
void **result, uint32_t *resultsize)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int hangs;
if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
return AH_TRUE;
switch (request) {
case HAL_DIAG_EEPROM:
return ath_hal_eepromDiag(ah, request,
args, argsize, result, resultsize);
case HAL_DIAG_CHECK_HANGS:
if (argsize != sizeof(int))
return AH_FALSE;
hangs = *(const int *) args;
ahp->ah_hangs = 0;
if (hangs & HAL_BB_HANGS)
ahp->ah_hangs |= ar5416DetectBBHang(ah);
/* NB: if BB is hung MAC will be hung too so skip check */
if (ahp->ah_hangs == 0 && (hangs & HAL_MAC_HANGS))
ahp->ah_hangs |= ar5416DetectMacHang(ah);
*result = &ahp->ah_hangs;
*resultsize = sizeof(ahp->ah_hangs);
return AH_TRUE;
}
return ar5212GetDiagState(ah, request,
args, argsize, result, resultsize);
}
typedef struct {
uint32_t dma_dbg_3;
uint32_t dma_dbg_4;
uint32_t dma_dbg_5;
uint32_t dma_dbg_6;
} mac_dbg_regs_t;
typedef enum {
dcu_chain_state = 0x1,
dcu_complete_state = 0x2,
qcu_state = 0x4,
qcu_fsp_ok = 0x8,
qcu_fsp_state = 0x10,
qcu_stitch_state = 0x20,
qcu_fetch_state = 0x40,
qcu_complete_state = 0x80
} hal_mac_hangs_t;
typedef struct {
int states;
uint8_t dcu_chain_state;
uint8_t dcu_complete_state;
uint8_t qcu_state;
uint8_t qcu_fsp_ok;
uint8_t qcu_fsp_state;
uint8_t qcu_stitch_state;
uint8_t qcu_fetch_state;
uint8_t qcu_complete_state;
} hal_mac_hang_check_t;
HAL_BOOL
ar5416SetRifsDelay(struct ath_hal *ah, const struct ieee80211_channel *chan,
HAL_BOOL enable)
{
uint32_t val;
HAL_BOOL is_chan_2g = AH_FALSE;
HAL_BOOL is_ht40 = AH_FALSE;
if (chan)
is_chan_2g = IEEE80211_IS_CHAN_2GHZ(chan);
if (chan)
is_ht40 = IEEE80211_IS_CHAN_HT40(chan);
/* Only support disabling RIFS delay for now */
HALASSERT(enable == AH_FALSE);
if (enable == AH_TRUE)
return AH_FALSE;
/* Change RIFS init delay to 0 */
val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
val &= ~AR_PHY_RIFS_INIT_DELAY;
OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
/*
* For Owl, RIFS RX parameters are controlled differently;
* it isn't enabled in the inivals by default.
*
* For Sowl/Howl, RIFS RX is enabled in the inivals by default;
* the following code sets them back to non-RIFS values.
*
* For > Sowl/Howl, RIFS RX can be left on by default and so
* this function shouldn't be called.
*/
if ((! AR_SREV_SOWL(ah)) && (! AR_SREV_HOWL(ah)))
return AH_TRUE;
/* Reset search delay to default values */
if (is_chan_2g)
if (is_ht40)
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x268);
else
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x134);
else
if (is_ht40)
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x370);
else
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x1b8);
return AH_TRUE;
}
static HAL_BOOL
ar5416CompareDbgHang(struct ath_hal *ah, const mac_dbg_regs_t *regs,
const hal_mac_hang_check_t *check)
{
int found_states;
found_states = 0;
if (check->states & dcu_chain_state) {
int i;
for (i = 0; i < 6; i++) {
if (((regs->dma_dbg_4 >> (5*i)) & 0x1f) ==
check->dcu_chain_state)
found_states |= dcu_chain_state;
}
for (i = 0; i < 4; i++) {
if (((regs->dma_dbg_5 >> (5*i)) & 0x1f) ==
check->dcu_chain_state)
found_states |= dcu_chain_state;
}
}
if (check->states & dcu_complete_state) {
if ((regs->dma_dbg_6 & 0x3) == check->dcu_complete_state)
found_states |= dcu_complete_state;
}
if (check->states & qcu_stitch_state) {
if (((regs->dma_dbg_3 >> 18) & 0xf) == check->qcu_stitch_state)
found_states |= qcu_stitch_state;
}
if (check->states & qcu_fetch_state) {
if (((regs->dma_dbg_3 >> 22) & 0xf) == check->qcu_fetch_state)
found_states |= qcu_fetch_state;
}
if (check->states & qcu_complete_state) {
if (((regs->dma_dbg_3 >> 26) & 0x7) == check->qcu_complete_state)
found_states |= qcu_complete_state;
}
return (found_states == check->states);
}
#define NUM_STATUS_READS 50
static int
ar5416DetectMacHang(struct ath_hal *ah)
{
static const hal_mac_hang_check_t hang_sig1 = {
.dcu_chain_state = 0x6,
.dcu_complete_state = 0x1,
.states = dcu_chain_state
| dcu_complete_state,
};
static const hal_mac_hang_check_t hang_sig2 = {
.qcu_stitch_state = 0x9,
.qcu_fetch_state = 0x8,
.qcu_complete_state = 0x4,
.states = qcu_stitch_state
| qcu_fetch_state
| qcu_complete_state,
};
mac_dbg_regs_t mac_dbg;
int i;
mac_dbg.dma_dbg_3 = OS_REG_READ(ah, AR_DMADBG_3);
mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
for (i = 1; i <= NUM_STATUS_READS; i++) {
if (mac_dbg.dma_dbg_3 != OS_REG_READ(ah, AR_DMADBG_3) ||
mac_dbg.dma_dbg_4 != OS_REG_READ(ah, AR_DMADBG_4) ||
mac_dbg.dma_dbg_5 != OS_REG_READ(ah, AR_DMADBG_5) ||
mac_dbg.dma_dbg_6 != OS_REG_READ(ah, AR_DMADBG_6))
return 0;
}
if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig1))
return HAL_MAC_HANG_SIG1;
if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig2))
return HAL_MAC_HANG_SIG2;
HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown MAC hang signature "
"DMADBG_3=0x%x DMADBG_4=0x%x DMADBG_5=0x%x DMADBG_6=0x%x\n",
__func__, mac_dbg.dma_dbg_3, mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
mac_dbg.dma_dbg_6);
return 0;
}
/*
* Determine if the baseband using the Observation Bus Register
*/
static int
ar5416DetectBBHang(struct ath_hal *ah)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/*
* Check the PCU Observation Bus 1 register (0x806c)
* NUM_STATUS_READS times
*
* 4 known BB hang signatures -
* [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
* [2] bits 8,9 are 1, bit 11 is 0. State machine state
* (bits 25-31) is 0x52
* [3] bits 8,9 are 1, bit 11 is 0. State machine state
* (bits 25-31) is 0x18
* [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
* Rx State (bits 20-24) is 0x7.
*/
static const struct {
uint32_t val;
uint32_t mask;
int code;
} hang_list[] = {
/* Reg Value Reg Mask Hang Code XXX */
{ 0x1E000000, 0x7E000B00, HAL_BB_HANG_DFS },
{ 0x52000B00, 0x7E000B00, HAL_BB_HANG_RIFS },
{ 0x18000B00, 0x7E000B00, HAL_BB_HANG_RX_CLEAR },
{ 0x00702400, 0x7E7FFFEF, HAL_BB_HANG_RX_CLEAR }
};
uint32_t hang_sig;
int i;
hang_sig = OS_REG_READ(ah, AR_OBSERV_1);
for (i = 1; i <= NUM_STATUS_READS; i++) {
if (hang_sig != OS_REG_READ(ah, AR_OBSERV_1))
return 0;
}
for (i = 0; i < N(hang_list); i++)
if ((hang_sig & hang_list[i].mask) == hang_list[i].val) {
HALDEBUG(ah, HAL_DEBUG_HANG,
"%s BB hang, signature 0x%x, code 0x%x\n",
__func__, hang_sig, hang_list[i].code);
return hang_list[i].code;
}
HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown BB hang signature! "
"<0x806c>=0x%x\n", __func__, hang_sig);
return 0;
#undef N
}
#undef NUM_STATUS_READS
/*
* Get the radar parameter values and return them in the pe
* structure
*/
void
ar5416GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
uint32_t val, temp;
val = OS_REG_READ(ah, AR_PHY_RADAR_0);
temp = MS(val,AR_PHY_RADAR_0_FIRPWR);
temp |= 0xFFFFFF80;
pe->pe_firpwr = temp;
pe->pe_rrssi = MS(val, AR_PHY_RADAR_0_RRSSI);
pe->pe_height = MS(val, AR_PHY_RADAR_0_HEIGHT);
pe->pe_prssi = MS(val, AR_PHY_RADAR_0_PRSSI);
pe->pe_inband = MS(val, AR_PHY_RADAR_0_INBAND);
val = OS_REG_READ(ah, AR_PHY_RADAR_1);
temp = val & AR_PHY_RADAR_1_RELPWR_ENA;
pe->pe_relpwr = MS(val, AR_PHY_RADAR_1_RELPWR_THRESH);
if (temp)
pe->pe_relpwr |= HAL_PHYERR_PARAM_ENABLE;
temp = val & AR_PHY_RADAR_1_RELSTEP_CHECK;
pe->pe_relstep = MS(val, AR_PHY_RADAR_1_RELSTEP_THRESH);
if (temp)
pe->pe_enabled = 1;
else
pe->pe_enabled = 0;
pe->pe_maxlen = MS(val, AR_PHY_RADAR_1_MAXLEN);
pe->pe_extchannel = !! (OS_REG_READ(ah, AR_PHY_RADAR_EXT) &
AR_PHY_RADAR_EXT_ENA);
pe->pe_usefir128 = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
AR_PHY_RADAR_1_USE_FIR128);
pe->pe_blockradar = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
AR_PHY_RADAR_1_BLOCK_CHECK);
pe->pe_enmaxrssi = !! (OS_REG_READ(ah, AR_PHY_RADAR_1) &
AR_PHY_RADAR_1_MAX_RRSSI);
}
/*
* Enable radar detection and set the radar parameters per the
* values in pe
*/
void
ar5416EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
uint32_t val;
val = OS_REG_READ(ah, AR_PHY_RADAR_0);
if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_FIRPWR;
val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR);
}
if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_RRSSI;
val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI);
}
if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_HEIGHT;
val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT);
}
if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_PRSSI;
val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI);
}
if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) {
val &= ~AR_PHY_RADAR_0_INBAND;
val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND);
}
/*Enable FFT data*/
val |= AR_PHY_RADAR_0_FFT_ENA;
OS_REG_WRITE(ah, AR_PHY_RADAR_0, val | AR_PHY_RADAR_0_ENA);
if (pe->pe_usefir128 == 1)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);
else if (pe->pe_usefir128 == 0)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_USE_FIR128);
if (pe->pe_enmaxrssi == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);
else if (pe->pe_enmaxrssi == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_MAX_RRSSI);
if (pe->pe_blockradar == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);
else if (pe->pe_blockradar == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_1, AR_PHY_RADAR_1_BLOCK_CHECK);
if (pe->pe_maxlen != HAL_PHYERR_PARAM_NOVAL) {
val = OS_REG_READ(ah, AR_PHY_RADAR_1);
val &= ~AR_PHY_RADAR_1_MAXLEN;
val |= SM(pe->pe_maxlen, AR_PHY_RADAR_1_MAXLEN);
OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
}
/*
* Enable HT/40 if the upper layer asks;
* it should check the channel is HT/40 and HAL_CAP_EXT_CHAN_DFS
* is available.
*/
if (pe->pe_extchannel == 1)
OS_REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
else if (pe->pe_extchannel == 0)
OS_REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
if (pe->pe_relstep != HAL_PHYERR_PARAM_NOVAL) {
val = OS_REG_READ(ah, AR_PHY_RADAR_1);
val &= ~AR_PHY_RADAR_1_RELSTEP_THRESH;
val |= SM(pe->pe_relstep, AR_PHY_RADAR_1_RELSTEP_THRESH);
OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
}
if (pe->pe_relpwr != HAL_PHYERR_PARAM_NOVAL) {
val = OS_REG_READ(ah, AR_PHY_RADAR_1);
val &= ~AR_PHY_RADAR_1_RELPWR_THRESH;
val |= SM(pe->pe_relpwr, AR_PHY_RADAR_1_RELPWR_THRESH);
OS_REG_WRITE(ah, AR_PHY_RADAR_1, val);
}
}
/*
* Extract the radar event information from the given phy error.
*
* Returns AH_TRUE if the phy error was actually a phy error,
* AH_FALSE if the phy error wasn't a phy error.
*/
/* Flags for pulse_bw_info */
#define PRI_CH_RADAR_FOUND 0x01
#define EXT_CH_RADAR_FOUND 0x02
#define EXT_CH_RADAR_EARLY_FOUND 0x04
HAL_BOOL
ar5416ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs,
uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event)
{
HAL_BOOL doDfsExtCh;
HAL_BOOL doDfsEnhanced;
HAL_BOOL doDfsCombinedRssi;
uint8_t rssi = 0, ext_rssi = 0;
uint8_t pulse_bw_info = 0, pulse_length_ext = 0, pulse_length_pri = 0;
uint32_t dur = 0;
int pri_found = 1, ext_found = 0;
int early_ext = 0;
int is_dc = 0;
uint16_t datalen; /* length from the RX status field */
/* Check whether the given phy error is a radar event */
if ((rxs->rs_phyerr != HAL_PHYERR_RADAR) &&
(rxs->rs_phyerr != HAL_PHYERR_FALSE_RADAR_EXT)) {
return AH_FALSE;
}
/* Grab copies of the capabilities; just to make the code clearer */
doDfsExtCh = AH_PRIVATE(ah)->ah_caps.halExtChanDfsSupport;
doDfsEnhanced = AH_PRIVATE(ah)->ah_caps.halEnhancedDfsSupport;
doDfsCombinedRssi = AH_PRIVATE(ah)->ah_caps.halUseCombinedRadarRssi;
datalen = rxs->rs_datalen;
/* If hardware supports it, use combined RSSI, else use chain 0 RSSI */
if (doDfsCombinedRssi)
rssi = (uint8_t) rxs->rs_rssi;
else
rssi = (uint8_t) rxs->rs_rssi_ctl[0];
/* Set this; but only use it if doDfsExtCh is set */
ext_rssi = (uint8_t) rxs->rs_rssi_ext[0];
/* Cap it at 0 if the RSSI is a negative number */
if (rssi & 0x80)
rssi = 0;
if (ext_rssi & 0x80)
ext_rssi = 0;
/*
* Fetch the relevant data from the frame
*/
if (doDfsExtCh) {
if (datalen < 3)
return AH_FALSE;
/* Last three bytes of the frame are of interest */
pulse_length_pri = *(buf + datalen - 3);
pulse_length_ext = *(buf + datalen - 2);
pulse_bw_info = *(buf + datalen - 1);
HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, ext_rssi=%d, pulse_length_pri=%d,"
" pulse_length_ext=%d, pulse_bw_info=%x\n",
__func__, rssi, ext_rssi, pulse_length_pri, pulse_length_ext,
pulse_bw_info);
} else {
/* The pulse width is byte 0 of the data */
if (datalen >= 1)
dur = ((uint8_t) buf[0]) & 0xff;
else
dur = 0;
if (dur == 0 && rssi == 0) {
HALDEBUG(ah, HAL_DEBUG_DFS, "%s: dur and rssi are 0\n", __func__);
return AH_FALSE;
}
HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, dur=%d\n", __func__, rssi, dur);
/* Single-channel only */
pri_found = 1;
ext_found = 0;
}
/*
* If doing extended channel data, pulse_bw_info must
* have one of the flags set.
*/
if (doDfsExtCh && pulse_bw_info == 0x0)
return AH_FALSE;
/*
* If the extended channel data is available, calculate
* which to pay attention to.
*/
if (doDfsExtCh) {
/* If pulse is on DC, take the larger duration of the two */
if ((pulse_bw_info & EXT_CH_RADAR_FOUND) &&
(pulse_bw_info & PRI_CH_RADAR_FOUND)) {
is_dc = 1;
if (pulse_length_ext > pulse_length_pri) {
dur = pulse_length_ext;
pri_found = 0;
ext_found = 1;
} else {
dur = pulse_length_pri;
pri_found = 1;
ext_found = 0;
}
} else if (pulse_bw_info & EXT_CH_RADAR_EARLY_FOUND) {
dur = pulse_length_ext;
pri_found = 0;
ext_found = 1;
early_ext = 1;
} else if (pulse_bw_info & PRI_CH_RADAR_FOUND) {
dur = pulse_length_pri;
pri_found = 1;
ext_found = 0;
} else if (pulse_bw_info & EXT_CH_RADAR_FOUND) {
dur = pulse_length_ext;
pri_found = 0;
ext_found = 1;
}
}
/*
* For enhanced DFS (Merlin and later), pulse_bw_info has
* implications for selecting the correct RSSI value.
*/
if (doDfsEnhanced) {
switch (pulse_bw_info & 0x03) {
case 0:
/* No radar? */
rssi = 0;
break;
case PRI_CH_RADAR_FOUND:
/* Radar in primary channel */
/* Cannot use ctrl channel RSSI if ext channel is stronger */
if (ext_rssi >= (rssi + 3)) {
rssi = 0;
};
break;
case EXT_CH_RADAR_FOUND:
/* Radar in extended channel */
/* Cannot use ext channel RSSI if ctrl channel is stronger */
if (rssi >= (ext_rssi + 12)) {
rssi = 0;
} else {
rssi = ext_rssi;
}
break;
case (PRI_CH_RADAR_FOUND | EXT_CH_RADAR_FOUND):
/* When both are present, use stronger one */
if (rssi < ext_rssi)
rssi = ext_rssi;
break;
}
}
/*
* If not doing enhanced DFS, choose the ext channel if
* it is stronger than the main channel
*/
if (doDfsExtCh && !doDfsEnhanced) {
if ((ext_rssi > rssi) && (ext_rssi < 128))
rssi = ext_rssi;
}
/*
* XXX what happens if the above code decides the RSSI
* XXX wasn't valid, an sets it to 0?
*/
/*
* Fill out dfs_event structure.
*/
event->re_full_ts = fulltsf;
event->re_ts = rxs->rs_tstamp;
event->re_rssi = rssi;
event->re_dur = dur;
event->re_flags = 0;
if (pri_found)
event->re_flags |= HAL_DFS_EVENT_PRICH;
if (ext_found)
event->re_flags |= HAL_DFS_EVENT_EXTCH;
if (early_ext)
event->re_flags |= HAL_DFS_EVENT_EXTEARLY;
if (is_dc)
event->re_flags |= HAL_DFS_EVENT_ISDC;
return AH_TRUE;
}
/*
* Return whether fast-clock is currently enabled for this
* channel.
*/
HAL_BOOL
ar5416IsFastClockEnabled(struct ath_hal *ah)
{
struct ath_hal_private *ahp = AH_PRIVATE(ah);
return IS_5GHZ_FAST_CLOCK_EN(ah, ahp->ah_curchan);
}